首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
It is well-known that secondary metabolite production is repressed by excess nitrogen substrate available in the fermentation media. Although the nitrogen catabolite repression has been known, quantitative process models have not been reported to represent this phenomenon in complex medium. In this paper, we present a cybernetic model for rifamycin B production via Amycolatopsis mediterranei S699 in complex medium, which is typically used in industry. Nitrogen substrate is assumed to be present in two forms in the medium; available nitrogen (S ANS) such as free amino acids and unavailable nitrogen (S UNS) such as peptides and proteins. The model assumes that an inducible enzyme catalyzes the conversion of S UNS to S ANS. Although S ANS is required for growth and product formation, high concentrations were found to inhibit rifamycin production. To experimentally validate the model, five different organic nitrogen sources were used that differ in the ratio of S ANS/S UNS. The model successfully predicts higher rifamycin B productivity for nitrogen sources that contain lower initial S ANS. The higher productivity is attributed to the sustained availability of S ANS at low concentration via conversion of S UNS to S ANS, thereby minimizing the effects of nitrogen catabolite repression on rifamycin production. The model can have applications in model-based optimization of substrate feeding recipe and in monitoring and control of fed batch processes.  相似文献   

2.
The induced synthesis of d-serine deaminase in Escherichia coli is subject to three catabolic effects: inhibition on inducer uptake, transient repression, and catabolite repression. Inhibition on d-serine uptake is not significant at the d-serine concentration normally used for induction. Transient repression and catabolite repression of d-serine deaminase synthesis are abolished by mutations in dsdCy, which appears to be an operator locus. The decline in the rate of constitutive synthesis observed in dsdCx mutants growing with glycerol as carbon source at temperatures above 37 C is due to catabolite repression. The low level of constitutivity at 37 C and the partial cis dominance of dsdCx mutants are not artifacts of catabolite repression. It is suggested that a product of one of the genes of the dsd operon may regulate the expression of the operon.  相似文献   

3.

Background  

Industrial fermentation typically uses complex nitrogen substrates which consist of mixture of amino acids. The uptake of amino acids is known to be mediated by several amino acid transporters with certain preferences. However, models to predict this preferential uptake are not available. We present the stoichiometry for the utilization of amino acids as a sole carbon and nitrogen substrate or along with glucose as an additional carbon source. In the former case, the excess nitrogen provided by the amino acids is excreted by the organism in the form of ammonia. We have developed a cybernetic model to predict the sequence and kinetics of uptake of amino acids. The model is based on the assumption that the growth on a specific substrate is dependent on key enzyme(s) responsible for the uptake and assimilation of the substrates. These enzymes may be regulated by mechanisms of nitrogen catabolite repression. The model hypothesizes that the organism is an optimal strategist and invests resources for the uptake of a substrate that are proportional to the returns.  相似文献   

4.
The d-gluconate transport system of Bacillus subtilis is optimally induced by exposure of cells for 2 h to 5 mM d-gluconate in the growth medium. d-gluconate transport is subject to catabolite repression, as distinct from inducer exclusion or catabolite inhibition, in a manner parallel to the repression of inducible histidase synthesis, suggesting that the repression is not specific to this transport system. Maximum repression with the repressing carbon source (10 mM) added to cells grown in either casein hydrolysate or amino acid medium is achieved within two doubling times. Urea, the only non-carbon source tested for a repressing effect, was found to act solely by inducer exclusion. The ability of a sugar carbon source to evoke catabolite repression appears to be unrelated to its suitability as a substrate for the sugar: phosphoenolpyruvate phosphotransferase system but nonetheless the conversion to a phosphorylated derivative of the sugar seems essential. Repressed cells fail to synthesize, or do so to a more limited extent, an as yet unidentified phosphorylated compound (probably a highly phosphorylated nucleotide) which is accumulated in the medium of non-repressed cells. Mutant studies imply that inosinic acid synthesis is necessary for catabolite repression whereas the adenosine highly phosphorylated nucleotides required for spurulation are not.  相似文献   

5.
6.
1. The specific role of the lac repressor (i-gene product) in transient catabolite repression evoked by the introduction of glucose into the medium has been investigated in Escherichia coli by using mutants of the i-gene. 2. A temperature-sensitive mutant (i(TL)) is normally inducible and demonstrates transient repression when grown at 32 degrees . At 42 degrees it is about 20% constitutive and transient catabolite repression is abolished. 3. A strain carrying an amber suppressor-sensitive mutation in the i-gene is phenotypically constitutive and also fails to show transient catabolite repression. 4. Insertion of Flaci(+) into this strain restores both inducibility and transient repression. 5. It is concluded that the i-gene product interacts with the catabolite co-repressor in such a way that its affinity for the operator is increased.  相似文献   

7.
The production of L-asparaginase, an enzyme widely used in cancer chemotherapy, is mainly regulated by carbon catabolite repression and oxygen. This study was carried out to understand how different carbon sources and Vitreoscilla hemoglobin (VHb) affect the production of this enzyme in Pseudomonas aeruginosa and its VHb-expressing recombinant strain (PaJC). Both strains grown with various carbon sources showed a distinct profile of the enzyme activity. Compared to no carbohydrate supplemented medium, glucose caused a slight repression of L-asparaginase in P. aeruginosa, while it stimulated it in the PaJC strain. Glucose, regarded as one of the inhibitory sugars for the production L-asparaginase by other bacteria, was determined to be the favorite carbon source compared to lactose, glycerol and mannitol. Furthermore, contrary to common knowledge of oxygen repression of L-asparaginase in other bacteria, oxygen uptake provided by VHb was determined to even stimulate the L-asparaginase synthesis by P. aeruginosa. This study, for the first time, shows that in P. aeruginosa utilizing a recombinant oxygen uptake system, VHb, L-asparaginase synthesis is stimulated by glucose and other carbohydrate sources compared to the host strain. It is concluded that carbon catabolite and oxygen repression of L-asparaginase in fermentative bacteria is not the case for a respiratory non-fermentative bacterium like P. aeruginosa.  相似文献   

8.
9.
Besides lactic acid, many lactic acid bacteria also produce proteinaceous metabolites (bacteriocins) such as nisin. As catabolite repression and end-product inhibition limit production of both products, we have investigated the use of alternative methods of supplying substrate and neutralizing or extracting lactic acid to increase yields. Fed-batch fermentation trials using a stillage-based medium with pH control by NH4OH resulted in improved lactic acid (83.4 g/l, 3.18 g/l/h, 95% yield) and nisin (1,260 IU/ml, 84,000 IU/l/h, 14,900 IU/g) production. Removing particulate matter from the stillage-based medium increased nisin production (1,590 IU/ml, 33,700 IU/g), but decreased lactic acid production (58.5 g/l, 1.40 g/l/h, 96% yield). Removing lactic acid by ion exchange resins stimulated higher lactic acid concentrations (60 to 65 g/l) and productivities (2.0 to 2.6 g/l/h) in the filtered stillage medium at the expense of nisin production (1,500 IU/ml, 25,800 IU/g).  相似文献   

10.
The activity of glycerol kinase is rate-limiting in the metabolism of glycerol by cells of Escherichia coli. A mutant strain producing a glycerol kinase resistant to inhibition by fructose-1,6-diphosphate grows faster than its wild-type parent on glycerol as the sole source of carbon and energy. The amount of intracellular fructose-1,6-diphosphate was determined for wild-type cells growing exponentially on glycerol. The water content of such cells was also determined, allowing calculation of the intracellular concentration of fructose-1,6-diphosphate. This value, 1.7 mm, is adequate to exert substantial inhibition on the wild-type glycerol kinase. The desensitization of glycerol kinase to feedback inhibition also enhances the power of glycerol to exert catabolite repression, both on the enzymes of the glycerol system itself and on those of the lactose system. However, desensitization of glycerol kinase alone does not eliminate the phenomenon of diauxic growth in a glucose-glycerol medium. Biphasic growth in such a medium is abolished if the altered enzyme is produced constitutively. The constitutive production of the mutant kinase at high levels, however, renders the cells vulnerable to glycerol. Thus, when the cells have been grown on a carbon source with a low power for catabolite repression, e.g., succinate, sudden exposure to glycerol leads to overconsumption of the nutrient and cell death.  相似文献   

11.
12.
The amiE gene encodes an aliphatic amidase capable of converting fluoroacetamide to the toxic compound fluoroacetate and is one of many genes whose expression is subject to catabolite repression control in Pseudomonas aeruginosa. The protein product of the crc gene, Crc, is required for repression of amiE and most other genes subject to catabolite repression control in this bacterium. When grown in a carbon source such as succinate, wild-type P. aeruginosa is insensitive to fluoroacetamide (due to repression of amiE expression). In contrast, mutants harboring the crc-10 null allele cannot grow in the presence of fluoroacetamide (due to lack of repression of amiE). Selection for succinate-dependent, fluoroacetamide-resistant derivatives of the crc-10 mutant yielded three independent pseudorevertants containing suppressors that restored a degree of catabolite repression control. Synthesis of Crc protein was not reestablished in these pseudorevertants. All three suppressors of crc-10 were extragenic, and all three also suppressed a Delta crc::tetA allele. In each of the three pseudorevertants, catabolite repression control of amidase expression was restored. Catabolite repression control of mannitol dehydrogenase production was also restored in two of the three isolates. None of the suppressors restored repression of glucose-6-phosphate dehydrogenase or pyocyanin production.  相似文献   

13.
The objective of this work was to relate macroscopically measurable on-line fermentation parameters such as dissolved oxygen, off-gas oxygen and carbon dioxide, and cell mass, to the controlled production of key intracellular enzymes under carbon limited conditions. Both batch and perturbed batch aerobic fermentations were performed using two different strains of Escherichia coli, with glucose and lactose as the sole carbon sources. The two strains differed from each other only in the lac operon region of their genome. The parent strain, E. coli 3000, was inducible for the enzyme beta-galactosidase. The other strain, E. coli 3300, was a constitutive mutant in the production of beta-galactosidase. In all experiments, off-line assays of sugars and beta-galactosidase activity were performed. It was observed that there is a clear relationship between the macroscopic on-line measurements, dissolved oxygen tension, carbon dioxide evolution rate and oxygen uptake rate, and the microscopic control phenomena of catabolite repression, catabolite inhibition, and inducer repression.  相似文献   

14.
Clostridium acetobutylicum is a strict anaerobic organism that is used for biotechnological butanol fermentation. It ferments various hexoses and pentoses to solvents but prefers glucose presumably using a catabolite repression mechanism. Accordingly during growth on a mixture of D-glucose and D-xylose a typical diauxic growth pattern was observed. We used DNA microarrays and real-time RT-PCR to study gene expression during growth on D-glucose, D-xylose mixtures on a defined minimal medium together with monitoring substrate consumption and product formation. We identified two putative operons involved in D-xylose degradation. The first operon (CAC1344-CAC1349) includes a transporter, a xylulose-kinase, a transaldolase, a transketolase, an aldose-1-epimerase and a putative xylose isomerase that has been annotated as an arabinose isomerase. This operon is induced by D-xylose but was catabolite repressed by D-glucose. A second operon (CAC2610-CAC2612) consists of a xylulose-kinase, a hypothetical protein and a gene that has been annotated as a L-fucose isomerase that might in fact code for a xylose isomerase. This operon was induced by D-xylose but was not subject to catabolite repression. In accordance with these results we identified a CRE site in the catabolite repressed operon but not in the operon that was not subject to catabolite repression.  相似文献   

15.
The microbial production of alpha-amylase from Bacillus amyloliquefaciens was investigated. The microorganism was grown using media containing glucose or maltose at 37 degrees C and under aerobic conditions in a 16-L fermentor. The alpha-amylase synthesis from maltose was not found to be inducible but was found to be subject to catabolite repression. The maltose uptake rate was observed to be the rate-limiting step compared to the conversion rate of maltose to glucose by intracellular alpha-glucosidase. The alpha-amylase activity achieved with maltose as a substrate was higher than that achieved with glucose. A slower growth rate and a higher cell density were obtained with maltose. The enzyme production pattern depended upon the nutrient composition of the medium.  相似文献   

16.
The symbiotic, nitrogen-fixing bacterium Sinorhizobium meliloti favors succinate and related dicarboxylic acids as carbon sources. As a preferred carbon source, succinate can exert catabolite repression upon genes needed for the utilization of many secondary carbon sources, including the alpha-galactosides raffinose and stachyose. We isolated lacR mutants in a genetic screen designed to find S. meliloti mutants that had abnormal succinate-mediated catabolite repression of the melA-agp genes, which are required for the utilization of raffinose and other alpha-galactosides. The loss of catabolite repression in lacR mutants was seen in cells grown in minimal medium containing succinate and raffinose and grown in succinate and lactose. For succinate and lactose, the loss of catabolite repression could be attributed to the constitutive expression of beta-galactoside utilization genes in lacR mutants. However, the inactivation of lacR did not cause the constitutive expression of alpha-galactoside utilization genes but caused the aberrant expression of these genes only when succinate was present. To explain the loss of diauxie in succinate and raffinose, we propose a model in which lacR mutants overproduce beta-galactoside transporters, thereby overwhelming the inducer exclusion mechanisms of succinate-mediated catabolite repression. Thus, some raffinose could be transported by the overproduced beta-galactoside transporters and cause the induction of alpha-galactoside utilization genes in the presence of both succinate and raffinose. This model is supported by the restoration of diauxie in a lacF lacR double mutant (lacF encodes a beta-galactoside transport protein) grown in medium containing succinate and raffinose. Biochemical support for the idea that succinate-mediated repression operates by preventing inducer accumulation also comes from uptake assays, which showed that cells grown in raffinose and exposed to succinate have a decreased rate of raffinose transport compared to control cells not exposed to succinate.  相似文献   

17.
Synthesis of the secondary metabolite, actinomycin, and the enzyme, phenoxazinone synthase, involved in the biosynthesis of the antibiotic, were shown to be under severe catabolite repression by glucose. Of a variety of hexoses and carbon compounds examined, glucose, and to a lesser extent, mannose, proved to be the most repressive for enzyme synthesis. The repression by glucose was most evident before production of the antibiotic. In a chemically defined medium suitable for actinomycin production, synthesis of phenoxazinone synthase began at the time the glucose (0.1%) supply was depleted. Soon after, antibiotic synthesis was initiated. Galactose, the major carbon source for growth and antibiotic synthesis, was not utilized until the glucose was consumed. Generally, carbon compounds which supported a rapid rate of growth were most effective in producing catabolite repression.  相似文献   

18.
19.
Recombinant mixed feed bioprocesses are characterized by the controlled feeding of multiple defined carbon sources aiming at increased productivities. However, mixed feed process design is challenging due to physiological constraints such as adaptation times and catabolite repression.A novel soft-sensor assisted dynamic method that allows the science-based process design with respect to co-utilization of primary and secondary substrate was developed. The method is based on the control of the specific uptake rates of primary and secondary substrate via a combination of a rate-based soft sensor and in-line infrared spectroscopy. Maximum secondary substrate specific uptake rates and adaptation times are determined by a combination of dynamic pulse and ramp experimentation.The power of the presented method was demonstrated on a recombinant Escherichia coli pBAD mixed feed process with d-glucose as primary and l-arabinose as secondary carbon source. Onset of catabolite repression was observed once a total specific substrate uptake rate of 1.0 g/gh was exceeded. Adaptation times to l-arabinose were determined as ~10 min.The presented method can be considered generically applicable for the physiological investigation of mixed feed systems. Furthermore, metabolic capabilities of the promising but yet unexplored E. coli pBAD mixed feed system were explored for the first time.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号