首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Neglect of imperfect capture efficiency leads to biased inferences on population abundance, and correspondingly, seriously affects ecological research, bioassessment, conservation, and fisheries management. To date, many research studies have studied capture efficiency of salmonid fishes, but the catchability of fishes living in non-salmonid streams has received much less attention. This paper estimates capture probability for seven fish species in densely vegetated lowland streams by using double-pass electrofishing data and an N-mixture removal model. Results show that capture probability can vary among species, and between-stream differences have a stronger influence on the abundance and the catchability than within-stream variability. Estimation uncertainty decreases with observed abundance, and the mean catchability tends to be the highest for the medium abundant species. These findings suggest that relative abundances from single-pass data are biased to a species- and habitat-specific degree. Therefore, plausible estimation of capture probability from double-pass electrofishing requires data collected from numerous sites that cover a wide range of the environmental gradient in lowland streams.  相似文献   

2.
Population monitoring of Atlantic salmon (Salmo salar L.) abundance is an essential element to understand annual stock variability and inform fisheries management processes. Smolts are the life stage marking the transition from the freshwater to the marine phase of anadromous Atlantic salmon. Estimating smolt abundance allows for subsequent inferences on freshwater and marine survival rates. Annual abundances of out-migrating Atlantic salmon smolts were estimated using Bayesian models and an 18-year capture–mark–recapture time series from two to five trapping locations within the Restigouche River (Canada) catchment. Some of the trapping locations were at the outlet of large upstream tributaries, and these sampled a portion of the total out-migrating population of smolts for the watershed, whereas others were located just above the head of tide of the Restigouche River and sampled the entire run of salmon smolts. Due to logistic and environmental conditions, not all trapping locations were operational each year. Additionally, recapture rates were relatively low (<5%), and the absolute number of recaptures was relatively few (most often a few dozen), leading to incoherent and highly uncertain estimates of tributary-specific and whole catchment abundance estimates when the data were modeled independently among trapping locations and years. Several models of increasing complexity were tested using simulated data, and the best-performing model in terms of bias and precision incorporated a hierarchical structure among years on the catchability parameters and included an explicit spatial structure to account for the annual variations in the number of sampled locations within the watershed. When the best model was applied to the Restigouche River catchment dataset, the annual smolt abundance estimates varied from 250,000 to 1 million smolts, and the subbasin estimates of abundance were consistent with the spatial structure of the monitoring programme. Ultimately, increasing the probabilities of capture and the absolute number of recaptures at the different traps will be required to improve the precision and reduce the bias of the estimates of smolt abundance for the entire basin and within subbasins of the watershed. The model and approach provide a significant improvement in the models used to date based on independent estimates of abundance by trapping location and year. Total abundance and relative production in discrete spawning, nesting, or rearing areas provide critical information to appropriately understand and manage the threats to species that can occur at subpopulation spatial scales.  相似文献   

3.
Dorazio RM  Jelks HL  Jordan F 《Biometrics》2005,61(4):1093-1101
A statistical modeling framework is described for estimating the abundances of spatially distinct subpopulations of animals surveyed using removal sampling. To illustrate this framework, hierarchical models are developed using the Poisson and negative-binomial distributions to model variation in abundance among subpopulations and using the beta distribution to model variation in capture probabilities. These models are fitted to the removal counts observed in a survey of a federally endangered fish species. The resulting estimates of abundance have similar or better precision than those computed using the conventional approach of analyzing the removal counts of each subpopulation separately. Extension of the hierarchical models to include spatial covariates of abundance is straightforward and may be used to identify important features of an animal's habitat or to predict the abundance of animals at unsampled locations.  相似文献   

4.
This study is based on a 23‐year sampling of fish and compares raw population abundance and biomass obtained from three to six consecutive electrofishing passes in a small lowland stream in Poland, with values of calculated density and a biomass from the Zippin model. Three density estimates and four biomass estimates obtained with three passes were higher than those estimates based on six catches. This discrepancy occurred because fewer fish were collected in the first pass than in the second pass. However, when the six consecutive passes were considered, the higher raw abundance and biomass in the second pass did not produce any significant error in the density calculation. A catchability decline resulted from the low number of juvenile fish captured when there was a high number of fish that had successfully spawned in a given year. Nevertheless, fish density assessment on the basis of three runs in lowland streams is recommended for quantitative sampling, and the problems that sometimes emerge will be explained in this study.  相似文献   

5.
Synopsis At each of 11 localities a section of stream was closed off with nets and an electrofisher used to estimate the abundance of fishes in the section. Each section was fished from 5–7 times with each fishing equalling one unit of effort. Using the catch-effort methods of Leslie, DeLury and Ricker, separate estimates were made for each species. In several cases species were split into size groups and estimates made for each group. The fish remaining in each section after the fishings were collected using rotenone. Thus the estimates could be compared to the actual number of fish present. Estimates were considered to be either good, if the regressions used in the above methods were statistically significant or bad if they were not significant. Lower limits for the number of fish and mean weight of a fish for good estimates were identified.The Leslie and Ricker estimates, which did not differ significantly, were least in error. They tended to underestimate (–21.6% on the average for the Leslie method). Direct estimates of biomass did not differ significantly from those made using the estimates for numbers and the mean weight of fish caught. The interrelationships among variables such as mean weight, numbers, catchability, density, biomass, number of catches used, proportion of fish taken during the estimate, number of fish in the last catch and their relationships with the error of the estimates were examined using correlation and principal components analysis. Error was most closely related to the proportion of fish collected. The effects of other variables such as mean weight affected error through catchability and subsequently the proportion of fishes caught. It was not possible to predict a significant proportion of the error using variables which could be measured without a complete collection. The effects of locality, electrofisher, and species on error were examined. Each accounted for a significant proportion of the variability in error but primarily by affecting the proportion of fish caught.These results suggest that the most appropriate way of decreasing error would be to increase the total effort and consequently the proportion of fish collected. This would be best done by increasing the number of fishings used in the estimate.Catchability tended to decrease in successive fishings. The observed trends in changing catchability accounted for most of the error. Size-selectivity, which was evident as a change in mean weight in successive catches, was not significantly associated with changing catchability.  相似文献   

6.
Catchability: a key parameter for fish stock assessment   总被引:11,自引:1,他引:10  
Summary Catchability is a concept in fishery biology which reflects the efficiency of a particular fishery. Its quantitative magnitude is expressed by the catchability coefficient, which relates the biomass abundance to the capture or fishing mortality. This paper is a comprehensive review of catchability including the development of our knowledge, interpretation and estimation.Catchability patterns indicate that the catchability coefficient has been used in two main lines: (a) increased efficiency of fishing effort and (b) its relation to population fishery processes for assessment and management purposes. It involves various aspects of the fishery, such as individual and population biology, characteristics of the fishing gear, amount of fishing, fishing strategies, and environmental fluctuation, among others.The concept is proposed of an integrated model of the catchability coefficient, which incorporates various of the aspects mentioned above. It is illustrated with two examples of its application: the red grouper (Epinephelus morio) fishery from the Campeche Bank, Gulf of Mexico, and the sardine (Sardinops caeruleus) fishery from the Gulf of California.  相似文献   

7.
A Circular Depletion Sampler (CDS) was designed to allow the removal of consecutive subsamples from a sample area, while minimizing immigration and emigration. Equal sampling effort was expended during each removal period to permit estimation of both the probability of capture, and the number of individuals not captured from a sample area. Average probabilities of capture from 270 CDS samples ranged from 0.19 per minute for Antocha (Tipulidae) to 0.96 for Paratendipes (Chiroal (3 removal periods), Surber, and kick-net methods. Removal population estimates were consistently higher and less variable than those of the other methods. Estimates of diversity from samples taken with conventional methods were biased by differences in catchability, and by emigration. Separation of benthos from detritus took about twice as long per unit sample area for Surber and kick-net methods, although sampling time per unit area was nearly equal for all three methods. Removal estimates using only the first two catches were comparable to estimates based on three catches, indicating a further possible increase in efficiency.  相似文献   

8.
Complex trawl surveys were conducted in the upper epipelagic zone of the western Bering Sea and adjacent Pacific waters in the summer and fall seasons of 2002–2006. The abundance of small nekton (micronekton) was estimated using two independent methods: traditional trawling and a mathematical model of selective feeding by fish. According to the trawl data, total micronekton density varied from 1 to 158 (average 40) mg/m3 on the northwestern Bering Sea shelf and from 6 to 151 (37) mg/m3 in deep-water areas of the southwestern Bering Sea and adjacent Pacific waters. According to model calculations, micronekton density was higher—72–193 (141) mg/m3 on the shelf and 78–507 (228) mg/m3 in the deep-water part of the studied area. Both trawl and model data showed that small nekton on the northwestern shelf mostly consisted of larval and juvenile walleye pollock, as well as small fish species, such as capelin and Pacific sand lance. In the deepwater areas, mesopelagic fish and squid (northern lampfish, northern smoothtongue, and boreopacific gonate squid), which migrate to the surface at night, juvenile Atka mackerel, and shortarm gonate squid dominated among micronekton. The advantages and disadvantages of both the trawl and model methods for calculating the abundance of small fish and squid were considered. Comparison of abundance estimates for mass fish species, obtained through trawl and model methods, enabled us to analyze trawl catchability coefficients and propose a more differentiated division of micronekton into size classes than had been done earlier. A function that characterizes the dependence of the catchability coefficient (CC) on body length was offered for juvenile Atka mackerel. This equation can be also used for evaluation of CC for other fishes that have similar size and behavior.  相似文献   

9.
Summary .   In surveys of natural populations of animals, a sampling protocol is often spatially replicated to collect a representative sample of the population. In these surveys, differences in abundance of animals among sample locations may induce spatial heterogeneity in the counts associated with a particular sampling protocol. For some species, the sources of heterogeneity in abundance may be unknown or unmeasurable, leading one to specify the variation in abundance among sample locations stochastically. However, choosing a parametric model for the distribution of unmeasured heterogeneity is potentially subject to error and can have profound effects on predictions of abundance at unsampled locations. In this article, we develop an alternative approach wherein a Dirichlet process prior is assumed for the distribution of latent abundances. This approach allows for uncertainty in model specification and for natural clustering in the distribution of abundances in a data-adaptive way. We apply this approach in an analysis of counts based on removal samples of an endangered fish species, the Okaloosa darter. Results of our data analysis and simulation studies suggest that our implementation of the Dirichlet process prior has several attractive features not shared by conventional, fully parametric alternatives.  相似文献   

10.
We assessed the influence of two commercial fish farms on the local aggregation of coastal wild fishes through a 'post-impact' sampling design at Gran Canaria Island (Canary Islands). At each farm, we established two controls and one impact location and estimated fish abundance bimonthly by means of SCUBA diving. Results provide evidence of local aggregation in the associated fish assemblages around sea-cage fish farms. Dissimilarities between control and impact locations for both fish farms were due to differences on the abundance of a few species. However, we detected significant differences by means of some assemblages between controls in one fish farm, as a consequence of the removal and re-location of cages. Moreover, we also detected significant within location small-scale variability for several fish assemblages around both sea-cages farms. Otherwise, we did not observe any effect of sampling times.  相似文献   

11.
A new ground-based technique for estimating the density of nesting Adélie penguins (Pygoscelis adeliae) within occupied habitat is described and evaluated using an experimental approach with model penguins. In this set-up, an operator takes photos with a camera mounted on a 3-m pole at pre-determined sampling locations within habitat occupied by nesting penguins, and the actual boundaries of the plot in which penguin density is estimated are added post-survey. Density estimates are calculated by overlaying slope-specific templates delineating plot boundaries and distances of known dimensions onto the digital photos to allow a distance-sampling analysis to correct for any negative bias in counts arising from a proportion of penguins being obscured. Experimental assessment of biases in density estimates because of misclassification error was <2% when compared to true density, indicating that this survey method is effective at accurately estimating penguin density and, therefore, abundance.  相似文献   

12.
ABSTRACT Criteria for delisting Golden‐cheeked Warblers (Dendroica chrysoparia) include protection of sufficient breeding habitat to ensure the continued existence of 1000 to 3000 singing males in each of eight recovery regions for ≥10 consecutive years. Hence, accurate abundance estimation is an integral component in the recovery of this species. I conducted a field test to determine if the distance sampling method provided unbiased abundance estimates for Golden‐cheeked Warblers and develop recommendations to improve the accuracy of estimates by minimizing the effects of violating this method's assumptions. To determine if observers could satisfy the assumptions that birds are detected at the point with certainty and at their initial locations, I compared point‐transect sampling estimates from 2‐, 3‐, 4‐, and 5‐min time intervals to actual abundance determined by intensive territory monitoring. Point‐transect abundance estimates were 15%, 29%, 43%, and 59% greater than actual abundance (N= 156) for the 2‐, 3‐, 4‐, and 5‐min intervals, respectively. Point‐transect sampling produced unbiased estimates of Golden‐cheeked Warbler abundance when counts were limited to 2 min (N= 154–207). Abundance estimates derived from point‐transect sampling were likely greater than actual abundance because observers did not satisfy the assumption that birds were detected at their initial locations due to the frequent movements and large territory sizes of male Golden‐cheeked Warblers. To minimize the effect of movement on abundance estimates, I recommend limiting counts of singing males to 2‐min per point. Counts for other species in similar habitats with similar behavior and movement patterns also should be limited to 2 min when unbiased estimates are important and conducting field tests of the point‐transect distance sampling method is not possible.  相似文献   

13.
The fish stock of a deep temperate, mesotrophic lake was sampled at different depths using a fixed‐frame fry trawl, during two nights in mid‐September 2009. Additionally, horizontal and vertical hydroacoustics were used simultaneously to evaluate fish abundance and biomass estimates obtained by the trawl. Roach Rutilus rutilus and smelt Osmerus eperlanus were the dominant species of young‐of‐the‐year (YOY) fish in the trawl catches from the surface layers (0–9 m). Bleak Alburnus alburnus dominated the catch of older fish in the upper part of the surface profile (0–6 m). Around the thermocline (9–13 m) smelt dominated the catches of both the YOY and older fish. Beneath the thermocline (13–36 m) vendace Coregonus albula dominated the catch of YOY fish, and smelt was the only species of older fish in the trawl catches. Species composition, abundance and biomass of the YOY and older fish were heterogeneous throughout the depth profiles of the lake, but only abundance differed significantly between the layers. The hydroacoustics gave relatively similar estimates of abundance and biomass to those obtained by the trawl in all the depths sampled. Our results indicate that there is a clear separation of small fish of different species along the vertical profile of a deep temperate lake during the night, and an unequal vertical distribution of fish abundance and biomass. The similarity of the trawl and hydroacoustics estimates of abundances and biomass indicated that the trawl sampling did not cause important avoidance reactions of small fish during the night in this deep temperate lake (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
15.
I quantify the effects of 11 variables on the catchability and fishing power of pelagic longlines, which are used to catch tunas and billfishes in the open ocean. Extension of the depth range and the duration of longline operations have reduced the catchability of several epipelagic species, such as mako sharks (Isurus spp.), since industrial longlining commenced in the tropical Pacific Ocean in the early 1950s. Reductions in the body size of many species may also have reduced encounters with longline hooks. By contrast, the catchability of commercially valuable bigeye tuna (Thunnus obesus) increased substantially because of the longer duration and extension of the depth range of longlines. Stronger and less visible line materials and increased fishing-master experience also contributed to increased catchability. By affecting the rate of bait loss, the introduction of new bait species increased fishing power. This study highlights significant problems in deriving indices of abundance from commercial catch and effort data. Instead of relying on commercial data, assessments should use tag-recapture experiments or dedicated surveys to obtain fishery-independent estimates of abundance.  相似文献   

16.
Roadside point counts are often used to estimate trends of bird populations. The use of aural counts of birds without adjustment for detection probability, however, can lead to incorrect population trend estimates. We compared precision of estimates of density and detectability of whistling northern bobwhites (Colinus virginianus) using distance sampling, independent double-observer, and removal methods from roadside surveys. Two observers independently recorded each whistling bird heard, distance from the observer, and time of first detection at 362 call-count stops in Ohio. We examined models that included covariates for year and observer effects for each method and distance from observer effects for the double-observer and removal methods using Akaike's Information Criterion (AIC). The best model of detectability from distance sampling included observer and year effects. The best models from the removal and double-observer techniques included observer and distance effects. All 3 methods provided precise estimates of detection probability (CV = 2.4–4.4%) with a range of detectability of 0.44–0.95 for a 6-min survey. Density estimates from double-observer surveys had the lowest coefficient of variation (2005 = 3.2%, 2006 = 1.7%), but the removal method also provided precise estimates of density (2005 CV = 3.4%, 2006 CV = 4.8%), and density estimates from distance sampling were less precise (2005 CV = 9.6%, 2006 CV = 7.9%). Assumptions of distance sampling were violated in our study because probability of detecting bobwhites near the observer was <1 or the roadside survey points were not randomly distributed with respect to the birds. Distances also were not consistently recorded by individual members of observer pairs. Although double-observer surveys provided more precise estimates, we recommend using the removal method to estimate detectability and abundance of bobwhites. The removal method provided precise estimates of density and detection probability and requires half the personnel time as double-observer surveys. Furthermore, the likelihood of meeting model assumptions is higher for the removal survey than with independent double-observers. © 2011 The Wildlife Society.  相似文献   

17.
A baited underwater video (BUV) system for the study of reef-associated fish populations on shallow (10-20 m) rocky habitats in the western Mediterranean was assessed at four locations in Spain and two in France. We describe the apparatus and optimal deployment times for video sampling. Different species had different response times to the bait, with four response groups identified. Examination of species accumulation curves and fish abundance estimates over time revealed that a period of approximately 20 min deployment was sufficient to capture most species on video. The technique sampled a wide variety of species, with 51 species belonging to 33 families recorded. Nine species of fish appeared regularly at the bait in relatively high numbers, and consist of six carnivores (Serranus cabrilla, Serranus scriba, Coris julis, Diplodus annularis, Diplodus vulgaris, Thalassoma pavo), two planktivores (Chromis chromis, Boops boops) and one omnivore (Oblada melanura). However, abundance estimates for other species were generally very low (mean < 1 per location). Comparison of results from BUV with those obtained by Underwater Visual Census (UVC) at the same locations suggests that although BUV estimates species richness reliably, UVC is the more suitable technique for estimating the abundance of shallow-water reef fish in the Mediterranean. BUV improvements are suggested to optimise its use in deeper waters where UVC using scuba is inoperable.  相似文献   

18.
Experiments show that the first of a series of replicate electric fishings can cause a decrease in catchability so that the second and subsequent catches are made from what is, effectively, a reduced population. Depletion (DeLury) estimates can be thus seriously low. Species affected are roach Rutilus rutilus (L.), gudgeon Gobio gobio (L.), rudd Scardinius erythophthalmus (L.) and, from other published data, probably rainbow trout Salmo gairdneri Richardson and eels Anguilla anguilla (L.). Being caught does not, apparently, cause fish to become less catchable. The reason why an electric field causes a proportion of a population to become uncatchable is obscure but it may be that refractory behaviour is involved; the effect lasts for between 3 and 24 h. A method is given for adjusting DeLury estimates for decreased catchability.  相似文献   

19.
This study shows how capture–mark–recapture (CMR) models can provide robust estimates of detection heterogeneity (sources of bias) in underwater visual‐census data. Detection biases among observers and fish family groups were consistent between fished and unfished reef sites in Kenya, even when the overall level of detection declined between locations. Species characteristics were the greatest source of detection heterogeneity and large, highly mobile species were found to have lower probabilities of detection than smaller, site‐attached species. Fish family and functional‐group detectability were also found to be lower at fished locations, probably due to differences in local abundance. Because robust CMR models deal explicitly with sampling where not all species are detected, their use is encouraged for studies addressing reef‐fish community dynamics.  相似文献   

20.
The effectiveness of baited fishing gear ultimately depends upon behaviour of the target species – activity rhythms, feeding motivation, and sensory and locomotory abilities. While any environmental parameter that mediates feeding or locomotion can have an important influence on the active space presented by the bait and fish catchability, few biologists have considered how such variation in behaviour might affect catch per unit effort (CPUE) and the resultant stock abundance estimates or population parameters. This review reveals that environment‐related variation in feeding behaviour can act through four different mechanisms: metabolic processes, sensory limitations, social interactions and direct impacts. Water temperature, light level, current velocity and ambient prey density are likely to have largest effects on fish catchability, potentially affecting variation in CPUE by a factor of ten. Feeding behaviour is also density‐dependent, with both positive and negative effects. Over time and geographic space a target species can occupy wide ranges of environmental conditions, and in certain cases, spatial and temporal variation in feeding biology could have a larger impact on CPUE than patterns of abundance. Temperature, light and current can be measured with relative facility and corrections to stock assessment models are feasible. Making corrections for biological variables such as prey density and bait competitors will be more difficult because the measurements are often not practical and relationships to feeding catchability are more complex and poorly understood. There is a critical need for greater understanding of how environmental variables affect feeding‐related performance of baited fishing gear. A combination of field observations and laboratory experiments will be necessary to parameterize stock assessment models that are improved to accommodate variation in fish behaviour. Otherwise, survey data could reveal more about variation in behaviour than abundance trends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号