首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
微藻是可广泛用于健康食品及水产养殖的饵料,同时,微藻细胞内积累的油脂可作为可再生生物燃料,因此微藻的生长和代谢受到广泛关注。温度和pH对微藻的生物量积累有很大影响,考察不同温度和pH条件下微藻细胞的生长有助于寻找最佳的条件进行微藻的培养。自絮凝小球藻JSC-7(Chlorella vulgaris JSC-7)可实现自沉降采收,有利于降低微藻生产成本,优化其生长条件对更好地利用该微藻具有重要意义。考察了温度(22∽40℃)及pH(6.0∽10.0)对其细胞生长、叶绿素含量和油脂产量的影响。在所选取的温度及pH范围内,JSC-7细胞均可生长,显示该藻种可以适应广泛的温度和pH条件。适合细胞生长的温度依次为31℃〉28℃〉35℃〉25℃,pH依次为7.0〉8.0〉6.0。pH 8.0时生物量和油脂的积累量最多,说明该藻株在弱碱条件下更适合生长和产油。当温度为31℃、pH为7.0时,可获得最高的生长量(OD690=0.941)、叶绿素含量(19 mg/L)及油脂产量(39.07%/克干重)。  相似文献   

2.
Magnetic cobalt ferrite/silica nanoparticles (MSNs) and methyl functionalized MSNs (methyl‐MSNs) were used to enhance lipid production in Chlorella vulgaris culture through enhancement of gas‐water mass transfer and increased dissolved concentration of CO2. Methyl‐MSNs enhanced CO2–water mass transfer rate better than MSNs, and 0.3 wt% methyl‐MSNs are more effective than 0.1 wt% MSNs. In the cultivation experiment, 0.3 wt% methyl‐MSNs yielded the highest dry cell weight and subsequently, the highest mass transfer rate. However, enhancement of mass transfer rate did not increase lipid content. The volumetric lipid productivity in C. vulgaris culture depends not only on intracellular lipid content but also on the cell mass concentration. Consequently, 0.1 wt% methyl‐MSNs yielded the highest volumetric lipid productivity in C. vulgaris cultivation. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:929–933, 2018  相似文献   

3.
An in‐depth investigation of how various illumination conditions influence microalgal growth in photobioreactors (PBR) has been presented. Effects of both the light emission spectrum (white and red) and the light incident angle (0° and 60°) on the PBR surface were investigated. The experiments were conducted in two fully controlled lab‐scale PBRs, a torus PBR and a thin flat‐panel PBR for high cell density culture. The results obtained in the torus PBR were used to build the kinetic growth model of Chlorella vulgaris taken as a model species. The PBR model was then applied to the thin flat‐panel PBR, which was run with various illumination conditions. Its detailed representation of local rate of photon absorption under various conditions (spectral calculation of light attenuation, incident angle influence) enabled the model to take into account all the tested conditions with no further adjustment. This allowed a detailed investigation of the coupling between radiation field and photosynthetic growth. Effects of all the radiation conditions together with pigment acclimation, which was found to be relevant, were investigated in depth. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:247–261, 2016  相似文献   

4.
Carbon dioxide (CO2) is a colorless gas that exists at a concentration of approximately 330 ppm in the atmosphere and is released in great quantities when fossil fuels are burned. The current flux of carbon out of fossil fuels is about 600 times greater than that into fossil fuels. With increased concerns about global warming and greenhouse gas emissions, there have been several approaches proposed for managing the levels of CO2 emitted into the atmosphere. One of the most understudied methods for CO2 mitigation is the use of biological processes in engineered systems such as photobioreactors. This research project describes the effectiveness of Chlorella vulgaris, used in a photobioreactor with a very short gas residence time, in sequestering CO2 from an elevated CO2 airstream. We evaluated a flow-through photobioreactor's operational parameters, as well as the growth characteristics of the C. vulgaris inoculum when exposed to an airstream with over 1850 ppm CO2. When using dry weight, chlorophyll, and direct microscopic measurements, it was apparent that the photobioreactor's algal inoculum responded well to the elevated CO2 levels and there was no build-up of CO2 or carbonic acid in the photobioreactor. The photobioreactor, with a gas residence time of approximately 2 s, was able to remove up to 74% of the CO2 in the airstream to ambient levels. This corresponded to a 63.9-g/m3/h bulk removal for the experimental photobioreactor. Consequently, this photobioreactor shows that biological processes may have some promise for treating point source emissions of CO2 and deserve further study. Received 25 April 2002/ Accepted in revised form 27 July 2002  相似文献   

5.
pH值对沼液培养的普通小球藻生长及油含量积累的影响   总被引:3,自引:0,他引:3  
王翠  李环  王钦琪  韦萍 《生物工程学报》2010,26(8):1074-1079
以50%的沼液为普通小球藻的全营养培养基,考察培养基的起始pH值对小球藻生长及油脂含量的影响,普通小球藻对不同初始pH的沼液中氮、磷的去除情况。设定了2组实验,一组只调节初始接种培养液的pH,分别为6.0、6.5、7.0、7.5、8.0、8.5;另一组将培养液pH分别固定在6.0、6.5、7.0、7.5、8.0、8.5,pH用稀HCl和NaOH进行调节。研究发现在pH 6.5和pH 7.0的偏酸环境有利于小球藻生长,而pH在7.0~8.5的偏碱性条件下有利于小球藻油脂的积累,因此综合小球藻生长和油脂积累2个因素,得到最适合小球藻生长和油脂积累的pH为7.0。培养结束后沼液中氮磷的去除率分别达到了95%和97%,沼液中的总氮由原来的134.91 mg/L降至4.86 mg/L,总磷由10.19 mg/L降到0.32 mg/L。  相似文献   

6.
A novel green unicellular microalgal isolate from the freshwater of the Inner Mongolia Province of China and named as CCTCC M209220, grows between pH 6 and 11 and temperatures of 20-35°C with optimal conditions at pH 9 and 30°C. Morphological features and the phylogenetic analysis for the 18S rRNA gene reveal that the isolate is a Chlorella sorokiniana strain. A nitrogen source test reveals that this strain can grow well with nitrate and urea, but not ammonium. The strain can grow heterotrophically with glucose as the carbon source and accumulates lipid content as high as 56% (w/w) dry weight after 7 days in high glucose concentrations compared to 19% lipids achieved in 30 days of photoautotrophic culture. The relative neutral lipid content as a fraction of the total lipid is also much higher in heterotrophic culture as compared to photoautotrophic culture.  相似文献   

7.
8.
The freshwater microalga Chlorella vulgaris was cultured batchwise on the seawater‐simulating Schlösser medium either in a 1.1‐L‐working volume helicoidal photobioreactor (HeP) or Erlenmeyer flask (EF) as control and continuously supplying air as CO2 source. In these systems, maximum biomass concentration reached 1.65 ± 0.17 g L?1 and 1.25 ± 0.06 g L?1, and maximum cell productivity 197.6 ± 20.4 mg L?1 day?1 and 160.8 ± 12.2 mg L?1 day?1, respectively. Compared to the Bold's Basal medium, commonly employed to cultivate this microorganism on a bench‐scale, the Schlösser medium ensured significant increases in all the growth parameters, namely maximum cell concentration (268% in EF and 126% in HeP), maximum biomass productivity (554% in EF and 72% in HeP), average specific growth rate (67% in EF and 42% in HeP), and maximum specific growth rate (233% in EF and 22% in HeP). The lipid fraction of biomass collected at the end of runs was analyzed in terms of both lipid content and fatty acid profile. It was found that the seawater‐simulating medium, despite of a 56–63% reduction of the overall biomass lipid content compared to the Bold's Basal one, led in HeP to significant increases in both the glycerides‐to‐total lipid ratio and polyunsaturated fatty acid content compared to the other conditions taken as an average. These results as a whole suggest that the HeP configuration could be a successful alternative to the present means to cultivate C. vulgaris as a lipid source. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:279–284, 2016  相似文献   

9.
Growth of Chlorella vulgaris and its lipid production were investigated under autotrophic, heterotrophic, and mixotrophic conditions. Cheap agricultural waste molasses and corn steep liquor from industries were used as carbon and nitrogen sources, respectively. Chlorella vulgaris grew remarkably under this agricultural waste medium, which resulted in a reduction in the final cost of the biodiesel production. Maximum dry weight of 2.62 g L?1 was obtained in mixotrophic growth with the highest lipid concentration of 0.86 g L?1. These biomass and lipid concentrations were, respectively, 140% and 170% higher than autotrophic growth and 300% and 1200% higher than heterotrophic growth. In mixotrophic growth, independent or simultaneous occurrence of autotrophic and heterotrophic metabolisms was investigated. The growth of the microalgae was observed to take place first heterotrophically to a minimum substrate concentration with a little fraction in growth under autotrophic metabolism, and then the cells grew more autotrophically. It was found that mixotrophic growth was not a simple combination of heterotrophic and autotrophic growth.  相似文献   

10.
11.
Light supply is one of the most important factors affecting autotrophic growth of microalgae. This study investigated the effect of the type and light intensity of artificial light sources on the cell growth of an indigenous microalga Chlorella vulgaris ESP‐31 obtained from southern Taiwan. In addition, a dissolved inorganic carbon source (i.e. sodium bicarbonate) was used to improve the biomass production of strain ESP‐31. The results show that a new fluorescent light source (TL5) was effective in indoor cultivation of microalgae. Better overall productivity of 0.029 g dry cell weight/L‐d was obtained when using TL5 lamps as the light source with a light intensity of 9 W/m2. A carbon source (sodium bicarbonate) concentration of 1000 mg/L was found to be optimal for the growth of strain ESP‐31 in terms of both biomass production and carbon source utilization. Under the optimal growth conditions, the resulting microalgal biomass consisted of 25–30% protein, 6–10% carbohydrate, and 30–40% lipid.  相似文献   

12.
Lutein is a carotenoid with a purported role in protecting eyes from oxidative stress, particularly the high‐energy photons of blue light. Statistical optimization was performed to growth media that supports a higher production of lutein by heterotrophically cultivated Chlorella vulgaris. The effect of media composition of C. vulgaris on lutein was examined using fractional factorial design (FFD) and central composite design (CCD). The results indicated that the presence of magnesium sulfate, EDTA‐2Na, and trace metal solution significantly affected lutein production. The optimum concentrations for lutein production were found to be 0.34 g/L, 0.06 g/L, and 0.4 mL/L for MgSO4·7H2O, EDTA‐2Na, and trace metal solution, respectively. These values were validated using a 5‐L jar fermenter. Lutein concentration was increased by almost 80% (139.64 ± 12.88 mg/L to 252.75 ± 12.92 mg/L) after 4 days. Moreover, the lutein concentration was not reduced as the cultivation was scaled up to 25,000 L (260.55 ± 3.23 mg/L) and 240,000 L (263.13 ± 2.72 mg/L). These observations suggest C. vulgaris as a potential lutein source. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:736–743, 2014  相似文献   

13.
The microalgae Chlorella vulgaris produce lipids that after extraction from cells can be converted into biodiesel. However, these lipids cannot be efficiently extracted from cells due to the presence of the microalgae cell wall, which acts as a barrier for lipid removal when traditional extraction methods are employed. Therefore, a microalgae system with high lipid productivity and thinner cell walls could be more suitable for lipid production from microalgae. This study addresses the effect of culture conditions, specifically carbon dioxide and sodium nitrate concentrations, on biomass concentration and the ratio of lipid productivity/cellulose content. Optimization of culture conditions was done by response surface methodology. The empirical model for biomass concentration (R2 = 96.0%) led to a predicted maximum of 1123.2 mg dw L?1 when carbon dioxide and sodium nitrate concentrations were 2.33% (v/v) and 5.77 mM, respectively. For lipid productivity/cellulose content ratio (R2 = 95.2%) the maximum predicted value was 0.46 (mg lipid L?1 day?1)(mg cellulose mg biomass?1)?1 when carbon dioxide concentration was 4.02% (v/v) and sodium nitrate concentration was 3.21 mM. A common optimum point for both variables (biomass concentration and lipid productivity/cellulose content ratio) was also found, predicting a biomass concentration of 1119.7 mg dw L?1 and lipid productivity/cellulose content ratio of 0.44 (mg lipid L?1 day?1)(mg cellulose mg biomass?1)?1 for culture conditions of 3.77% (v/v) carbon dioxide and 4.01 mM sodium nitrate. The models were experimentally validated and results supported their accuracy. This study shows that it is possible to improve lipid productivity/cellulose content by manipulation of culture conditions, which may be applicable to any scale of bioreactors. Biotechnol. Bioeng. 2013; 110: 2114–2122. © 2013 Wiley Periodicals, Inc.  相似文献   

14.
【背景】从海南热带海区中分离得到一株微藻,其生长速度快、适应力强,经鉴定该微藻为普通小球藻。【目的】提高热带普通小球藻的生长速率。【方法】以"宁波大学3#微藻培养液配方"为基础培养液,分别添加有机碳(C6H12O6和CH3COONa)对热带普通小球藻进行自养、兼养及异养培养,获得促进热带普通小球藻快速生长的培养方式。在"宁波大学3#微藻培养液配方"的基础上对热带普通小球藻的兼养培养基配方进行优化,并用优化兼养培养基与"宁波大学3#微藻培养基"对比培养热带普通小球藻。【结果】添加6 g/L CH3COONa的兼养模式促进热带普通小球藻生长效果最好;优化的兼养培养基配方为:6 g/L CH3COONa,20 mg/L(NH4)2SO4-N,5 mg/L Na H2PO4-P,3 mg/L Fe SO4-Fe,1 mg/L Vitamin B1和0.000 5 mg/L Vitamin B12。对比培养实验结果显示,培养第6天,兼养培养液收获的生物量(细胞密度)达4.20×107 cells/m L,是"宁波大学3#配方微藻培养液"的2.30倍。【结论】兼养培养模式为热带普通小球藻的最佳培养模式,优化的兼养培养基极显著地提高了热带普通小球藻的生物量(P0.01)。  相似文献   

15.
We report for the first time that the endogenous, pseudo‐steady‐state, specific intracellular levels of the hydroxyl radical (si‐OH) oscillate in an ultradian fashion (model system: the microalga, Chlorella vulgaris), and also characterize the various rhythm parameters. The ultradian rhythm in the endogenous levels of the si‐OH occurred with an approximately 6 h period in the daily cycle of light and darkness. Further, we expected that the rhythm reset to a shorter period could rapidly switch the cellular redox states that could favor lipid accumulation. We reset the endogenous rhythm through entrainment with UVA radiation, and generated two new ultradian rhythms with periods of approximately 2.97 h and 3.8 h in the light phase and dark phase, respectively. The reset increased the window of maximum lipid accumulation from 6 h to 12 h concomitant with the onset of the ultradian rhythms. Further, the saturated fatty acid content increased approximately to 80% of total lipid content, corresponding to the peak maxima of the hydroxyl radical levels in the reset rhythm. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:673–680, 2014  相似文献   

16.
To be able to study the effect of mixing as well as any other parameter on productivity of algal cultures, we designed a lab‐scale photobioreactor in which a short light path (SLP) of (12 mm) is combined with controlled mixing and aeration. Mixing is provided by rotating an inner tube in the cylindrical cultivation vessel creating Taylor vortex flow and as such mixing can be uncoupled from aeration. Gas exchange is monitored on‐line to gain insight in growth and productivity. The maximal productivity, hence photosynthetic efficiency, of Chlorella sorokiniana cultures at high light intensities (1,500 μmol m?1 s?1) was investigated in this Taylor vortex flow SLP photobioreactor. We performed duplicate batch experiments at three different mixing rates: 70, 110, and 140 rpm, all in the turbulent Taylor vortex flow regime. For the mixing rate of 140 rpm, we calculated a quantum requirement for oxygen evolution of 21.2 mol PAR photons per mol O2 and a yield of biomass on light energy of 0.8 g biomass per mol PAR photons. The maximal photosynthetic efficiency was found at relatively low biomass densities (2.3 g L?1) at which light was just attenuated before reaching the rear of the culture. When increasing the mixing rate twofold, we only found a small increase in productivity. On the basis of these results, we conclude that the maximal productivity and photosynthetic efficiency for C. sorokiniana can be found at that biomass concentration where no significant dark zone can develop and that the influence of mixing‐induced light/dark fluctuations is marginal. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

17.
A challenge in algae‐based bio‐oil production is to simultaneously enhance specific growth rates and specific lipid content. We have demonstrated simultaneous increases in both the above in Chlorella vulgaris through reactive species (RS) induced under ultraviolet (UV) A and UVB light treatments. We postulated that the changes in photosystem (PS) stoichiometry and antenna size were responsible for the increases in specific growth rate. UVB treatment excited PSII, which resulted in a twofold to sevenfold increase in PSII/PSI ratio compared to control. An excited PSII caused a 2.7‐fold increase in the specific levels of superoxide and a twofold increase in the specific levels of hydroxyl radicals. We have established that the increased specific intracellular RS (si‐RS) levels increased the PSII antenna size by a significant 10‐fold as compared to control. In addition, the 8.2‐fold increase in specific lipid content was directly related to the si‐RS levels. We have also demonstrated that the RS induced under UVA treatment led to a 3.2‐fold increase in the saturated to unsaturated fatty acid ratio. Based on the findings, we have proposed and demonstrated a UV‐based strategy, which achieved an 8.8‐fold increase in volumetric lipid productivity. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 30:291–299, 2014  相似文献   

18.
重要理化因子对小球藻生长和油脂产量的影响   总被引:5,自引:0,他引:5  
本文采用通气培养的方法研究了N、P、Fe3 、盐度、光照强度、温度对小球藻(Chlorella sp. XQ-200419)生长速率、生物量和油脂产量的影响。主要结果如下:N浓度对小球藻的生长和油脂产量均有显著的影响,在KNO3浓度0.05—0.3g/L范围内,小球藻生长速率随N浓度的增加而提高,并积累更多的生物量,而油脂含量随之递减,KNO3浓度为0.3g/L时,油脂产量最高。小球藻对P浓度变化的适应范围很大,K2HPO4浓度在10—160mg/L范围内,对小球藻的生长和油脂产量都没有显著影响。在小球藻培养后期补加不同浓度Fe3 对其生长速率没有显著影响,总脂含量随着Fe3 浓度升高呈现上升的趋势,均比对照有极显著提高,Fe3 浓度为0.75mmol/L时油脂产量最高。盐度对小球藻的生长有一定的抑制作用;油脂含量先随着盐度的增大而提高,当NaCl浓度达到0.6mol/L, 油脂含量又显著降低;油脂含量和油脂产量均在盐度为0.2mol/L时最高。光照强度对处于生长后期的小球藻的生长影响不大,但影响其油脂积累,小球藻的油脂含量和产量随光照强度的增大而显著提高,当光照强度增至280μmolm-2s-1时,油脂含量和油脂产量最高。温度对小球藻的生长速率、生物量、油脂含量和油脂产量都有显著的影响,在15-40℃范围内,随着培养温度的升高,生长速率、生物量、油脂含量和油脂产量都经历了一个先上升然后下降的过程,适合小球藻生长、积累油脂的温度范围是20-35℃,30-35℃时油脂产量最高,40℃时生物量、油脂含量和产量都最低。理化因子对生长和油脂含量的影响分为两种情况:1. 温度、光强、铁浓度和盐度的影响表现为在适宜生长的条件下提高油脂含量,这种模式可以称为“适宜模式”;2. 氮浓度的影响表现为在不利于生长的条件下提高油脂含量,这种模式可以称为“胁迫模式”。两种模式都可以提高油脂含量,但是,只有适宜模式才可以提高油脂产量。在筛选小球藻优良产油藻种时要注意,只有在适宜的培养条件下油脂含量高的藻种才具有高产油潜力。  相似文献   

19.
ABSTRACT

Microalgae have enormous potential as feedstock for biofuel production compared with other sources, due to their high areal productivity, relatively low environmental impact, and low impact on food security. However, high production costs are the major limitation for commercialization of algal biofuels. Strategies to maximize biomass and lipid production are crucial for improving the economics of using microalgae for biofuels. Selection of suitable algal strains, preferably from indigenous habitats, and further improvement of those ‘platform strains’ using mutagenesis and genetic engineering approaches are desirable. Conventional approaches to improve biomass and lipid productivity of microalgae mainly involve manipulation of nutritional (e.g. nitrogen and phosphorus) and environmental (e.g. temperature, light and salinity) factors. Approaches such as the addition of phytohormones, genetic and metabolic engineering, and co-cultivation of microalgae with yeasts and bacteria are more recent strategies to enhance biomass and lipid productivity of microalgae. Improvement in culture systems and the use of a hybrid system (i.e. a combination of open ponds and photobioreactors) is another strategy to optimize algal biomass and lipid production. In addition, the use of low-cost substrates such as agri-industrial wastewater for the cultivation of microalgae will be a smart strategy to reduce production costs. Such systems not only generate high algal biomass and lipid productivity, but are also useful for bioremediation of wastewater and bioremoval of waste CO2. The aim of this review is to highlight the advances in the use of various strategies to enhance production of algal biomass and lipids for biofuel feedstock.  相似文献   

20.
To reduce CO2 emissions and simultaneously produce biomass rich in essential fatty acids, Chlorella vulgaris CCAP 211 was continuously grown in a tubular photobioreactor using air alone or air enriched with CO2 as the sole carbon source. While on one hand, nitrogen‐limited conditions strongly affected biomass growth, conversely, they almost doubled its lipid fraction. Under these conditions using air enriched with 0, 2, 4, 8, and 16% (v/v) CO2, the maximum biomass concentration was 1.4, 5.8, 6.6, 6.8, and 6.4 gDB L?1 on a dry basis, the CO2 consumption rate 62, 380, 391, 433, and 430 L?1 day?1, and the lipid productivity 3.7, 23.7, 24.8, 29.5, and 24.4 mg L?1 day?1, respectively. C. vulgaris was able to grow effectively using CO2‐enriched air, but its chlorophyll a (3.0–3.5 g 100gDB?1), chlorophyll b (2.6–3.0 g 100gDB?1), and lipid contents (10.7–12.0 g 100gDB?1) were not significantly influenced by the presence of CO2 in the air. Most of the fatty acids in C. vulgaris biomass were of the saturated series, mainly myristic, palmitic, and stearic acids, but a portion of no less than 45% consisted of unsaturated fatty acids, and about 80% of these were high added‐value essential fatty acids belonging to the ω3 and ω6 series. These results highlight that C. vulgaris biomass could be of great importance for human health when used as food additive or for functional food production. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:916–922, 2014  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号