首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The protein disulfide isomerase (PDI) reaction kinetics has been studied to evaluate its effect on the monoclonal antibody (MAb) refulding and assembly which accompanies disulfide bond formation. The MAbin vitro assembly experiments showed that the assembly rate of heavy and light chains can be greatly enhanced in the presence of PDI as compared to the rate of assembly obtained by the air-oxidation. The reassembly patterns of MAb intermediates were identical for both with and without PDI, suggesting that the PDI does not determine the MAb assembly pathway, but rather facilitates the rate of MAb assembly by promoting PDI catalyzed disulfide bond formation. The effect of growth rate on PDI activities for MAb production has also been examined by using continuous culture system. The specific MAb productivity of hyboridoma cells decreased as the growth rate increased. However, PDI activities were nearly constant for a wide range of growth rates except very high growth rate, indicating that no direct correlation between PDI activity and specifle MAb productivity exists.  相似文献   

2.
Protein disulfide isomerase (PDI), one of the ER-resident molecular chaperones, forms and isomerizes disulfide bonds. This study attempts to investigate the effect of PDI expression level on specific productivity (q) of recombinant Chinese hamster ovary (rCHO) cells producing thrombopoietin (TPO) and antibody (Ab). To regulate the PDI expression level, the Tet-Off system was introduced in TPO and Ab producing CHO cells, and stable Tet-Off cells (TPO-Tet-Off and Ab-Tet-Off) were screened using the luciferase assay. The doxycycline-regulated PDI expression system in Tet-Off rCHO cells (Tet-TPO-PDI and Tet-Ab-PDI) was established by the cotransfection of pTRE-PDI and pTK-Hyg expression vector into TPO-Tet-Off and Ab-Tet-Off cells, respectively. Subsequent screening was done by Western blot analysis of PDI and an enzyme-linked immunosorbent assay of the secreted TPO and antibody. We cultured two Tet-TPO-PDI and two Tet-Ab-PDI clones, and all these clones showed an average of 2.5-fold increase in PDI expression when compared to the basal level. In both these cell lines the PDI expression was tightly controlled by various concentrations of doxycycline. The q of TPO (q(TPO)) was unaffected but that of antibody producing cells was increased by 15-27% due to the PDI expression level.  相似文献   

3.
Transfection with polyethylenimine (PEI) was evaluated as a method for the generation of recombinant Chinese hamster ovary (CHO DG44) cell lines by direct comparison with calcium phosphate-DNA coprecipitation (CaPO4) using both green fluorescent protein (GFP) and a monoclonal antibody as reporter proteins. Following transfection with a GFP expression vector, the proportion of GFP-positive cells as determined by flow cytometry was fourfold higher for the PEI transfection as compared to the CaPO4 transfection. However, the mean level of transient GFP expression for the cells with the highest level of fluorescence was twofold greater for the CaPO4 transfection. Fluorescence in situ hybridization on metaphase chromosomes from pools of cells grown under selective pressure demonstrated that plasmid integration always occurred at a single site regardless of the transfection method. Importantly, the copy number of integrated plasmids was measurably higher in cells transfected with CaPO4. The efficiency of recombinant cell line recovery under selective pressure was fivefold higher following PEI transfection, but the average specific productivity of a recombinant antibody was about twofold higher for the CaPO4-derived cell lines. Nevertheless, no difference between the two transfection methods was observed in terms of the stability of protein production. These results demonstrated the feasibility of generating recombinant CHO-derived cell lines by PEI transfection. However, this method appeared inferior to CaPO4 transfection with regard to the specific productivity of the recovered cell lines.  相似文献   

4.
Protein disulfide isomerase ERp57 is localized predominantly in the endoplasmic reticulum, but is also present in the cytosol and, according to preliminary evidence, in the nucleus of avian cells. Conclusive evidence of its nuclear localization and of its interaction with DNA in vivo in mammalian cells is provided here on the basis of DNA-protein cross-linking experiments performed with two different cross-linking agents on viable HeLa and 3T3 cells. Nuclear ERp57 could also be detected by immunofluorescence in HeLa cells, where it showed an intracellular distribution clearly different from that of an homologous protein, located exclusively in the endoplasmic reticulum. Mammalian ERp57 resembles the avian protein in its recognition of S/MAR-like DNA sequences and in its association with the nuclear matrix. It can be hypothesized that ERp57, which is known to associate with other proteins, in particular STAT3 and calreticulin, may contribute to their nuclear import, DNA binding, or other functions that they fulfil inside the nucleus.  相似文献   

5.
Due to the increasing economic and social relevance of biotherapeutics, their production processes are continually being reconsidered and reoptimized in an effort to secure higher product concentrations and qualities. Monitoring the productivity of cultured cells is therefore a critically important part of the cultivation process. Traditionally, this is achieved by determining the overall product titer by high performance liquid chromatography (HPLC), and then calculating the specific cell productivity based on this titer and an associated viable cell density. Unfortunately, this process is typically time‐consuming and laborious. In this study, the productivity of Chinese Hamster Ovary (CHO) cells expressing a monoclonal antibody was analyzed over the course of the cultivation process. In addition to calculating the specific cell productivity based on the traditional product titer determined by HPLC analysis, culture productivity of single cells was also analyzed via flow cytometry using a cold capture assay. The cold capture assay is a cell surface labelling technique described by Brezinsky et al., which allows for the visualization of a product on the surface of the producing cell. The cell productivity results obtained via HPLC and the results of cold capture assay remained in great accordance over the whole cultivation process. Accordingly, our study demonstrates that the cold capture assay offers an interesting, comparatively time‐effective, and potentially cheaper alternative for monitoring the productivity of a cell culture.  相似文献   

6.
In eukaryotes, the formation of protein disulfide bonds among cysteine residues is mediated by protein disulfide isomerases and occurs in the highly oxidised environment of the endoplasmic reticulum. This process is poorly understood in malaria parasites. In this paper, we report the gene isolation, sequence and phylogenetic comparisons, protein structure and thioredoxin-domain analyses of nine protein disulfide isomerases-like molecules from five species of malaria parasites including Plasmodium falciparum and Plasmodium vivax (human), Plasmodium knowlesi (simian) and Plasmodium berghei and Plasmodium yoelii (murine). Four of the studied protein disulfide isomerases belong to P. falciparum malaria and have been named PfPDI-8, PfPDI-9, PfPDI-11 and PfPDI-14, based on their chromosomal location. Among these, PfPDI-8 bears the closest similarity to a prototype PDI molecule with two thioredoxin domains (containing CGHC active sites) and a C-terminal Endoplasmic reticulum retrieval signal, SEEL. PfPDI-8 is expressed during all stages of parasite life cycle and is highly conserved (82-96% identity at amino acid level) in the other four Plasmodium species studied. Detailed biochemical analysis of PfPDI-8 revealed that this molecule is a potent oxido-reductase enzyme that facilitated the disulfide-dependent conformational folding of EBA-175, a leading malaria vaccine candidate. These studies open the avenues to understand the process of protein folding and secretory pathway in malaria parasites that in turn might aid in the production of superior recombinant vaccines and provide novel drug targets.  相似文献   

7.
The majority of the cysteine residues in the secreted proteins form disulfide bonds via protein disulfide isomerase (PDI)-mediated catalysis, stabilizing the enzyme activity. The role of PDI in cellulase production is speculative, as well as the possibility of PDI as a target for improving enzyme production efficiency of Trichoderma reesei, a widely used producer of enzyme for the production of lignocellulose-based biofuels and biochemicals. Here, we report that a PDI homolog, TrPDI2 in T. reesei exhibited a 36.94% and an 11.81% similarity to Aspergillus niger TIGA and T. reesei PDI1, respectively. The capability of TrPDI2 to recover the activity of reduced and denatured RNase by promoting refolding verified its protein disulfide isomerase activity. The overexpression of Trpdi2 increased the secretion and the activity of CBH1 at the early stage of cellulase induction. In addition, both the expression level and redox state of TrPDI2 responded to cellulase induction in T. reesei, providing sustainable oxidative power to ensure cellobiohydrolase maturation and production. The results suggest that TrPDI2 may contribute to cellobiohydrolase secretion by enhancing the capability of disulfide bond formation, which is essential for protein folding and maturation.  相似文献   

8.
9.
10.
Protein disulfide isomerase (PDI) supports proinsulin folding as chaperone and isomerase. Here, we focus on how the two PDI functions influence individual steps in the complex folding process of proinsulin. We generated a PDI mutant (PDI-aba'c) where the b' domain was partially deleted, thus abolishing peptide binding but maintaining a PDI-like redox potential. PDI-aba'c catalyzes the folding of human proinsulin by increasing the rate of formation and the final yield of native proinsulin. Importantly, PDI-aba'c isomerizes non-native disulfide bonds in completely oxidized folding intermediates, thereby accelerating the formation of native disulfide bonds. We conclude that peptide binding to PDI is not essential for disulfide isomerization in fully oxidized proinsulin folding intermediates.  相似文献   

11.
Generalized increases in protein oxidation and protein degradation in response to mild oxidative stress have been widely reported, but only a few individual proteins have actually been shown to undergo selective, oxidation-induced proteolysis. Our goal was to find such proteins in Clone 9 liver cells exposed to hydrogen peroxide. Using metabolic radiolabeling of intracellular proteins with [35S]cysteine/methionine, and analysis by two-dimensional polyacrylamide gel electrophoresis (2-D PAGE), we found at least three labeled proteins ("A," "B," and "C") whose levels were decreased significantly more than the generalized protein loss after mild oxidative stress. "Protein C" was excised from 2-D PAGE and subjected to N-terminal amino acid microsequencing. "Protein C" was identified as Protein Disulfide Isomerase or PDI (E.C. 5.3.4.1), and this identity was reconfirmed by Western blotting with a C-terminal anti-PDI monoclonal antibody. A combination of quantitative radiometry and Western blotting in 2-D PAGE revealed that PDI was selectively degraded and then new PDI was synthesized, following H2O2 exposure. PDI degradation was blocked by inhibitors of the proteasome, and by cell treatment with proteasome C2 subunit antisense oligonucleotides, indicating that the proteasome was largely responsible for oxidation-induced PDI degradation.  相似文献   

12.
In eukaryotes, secretory proteins are folded and assembled in the endoplasmic reticulum (ER). Many heterologous proteins are retained in the ER due to suboptimal folding conditions. We previously reported that heterologous secretion of Pyrococcus furiosus beta-glucosidase in Saccharomyces cerevisiae resulted in the accumulation of a large fraction of inactive beta-glucosidase in the ER. In this work, we determine the effect of introducing additional genes of ER-resident yeast proteins, Kar2p (binding protein [BiP]) and protein disulfide isomerase (PDI), on relieving this bottleneck. Single-copy expression of BiP and PDI worked synergistically to improve secretion by reverse similar 60%. In an effort to optimize BiP and PDI interactions, we created a library of beta-glucosidase expression strains that incorporated four combinations of constitutively or inducibly-expressed BiP and PDI genes integrated to random gene copynumbers in the yeast chromosome. Approximately 15% of the transformants screened had secretion level improvements higher than that seen with single BiP/PDI gene overexpression, and the highest secreting strain had threefold higher beta-glucosidase levels than the control. Nineteen of the improved strains were re-examined for beta-glucosidase secretion as well as BiP and PDI levels. Within the improved transformants BiP and PDI levels ranged sevenfold and tenfold over the control, respectively. Interestingly, increasing BiP levels decreased beta-glucosidase secretion, whereas increasing PDI levels increased beta-glucosidase secretion. The action of PDI was unexpected because beta-glucosidase is not a disulfide-bonded protein. We suggest that PDI may be acting in a chaperone-like capacity or possibly creating mixed disulfides with the beta-glucosidase's lone cysteine residue during the folding and assembly process.  相似文献   

13.
Human protein disulfide isomerase (PDI) is an essential redox-regulated enzyme required for oxidative protein folding. It comprises four thioredoxin domains, two catalytically active (a, a’) and two inactive (b, b’), organized to form a flexible abb’a’ U-shape. Snapshots of unbound oxidized and reduced PDI have been obtained by X-ray crystallography. Yet, how PDI’s structure changes in response to the redox environment and inhibitor binding remains controversial. Here, we used multiparameter confocal single-molecule FRET to track the movements of the two catalytic domains with high temporal resolution. We found that at equilibrium, PDI visits three structurally distinct conformational ensembles, two “open” (O1 and O2) and one “closed” (C). We show that the redox environment dictates the time spent in each ensemble and the rate at which they exchange. While oxidized PDI samples O1, O2, and C more evenly and in a slower fashion, reduced PDI predominantly populates O1 and O2 and exchanges between them more rapidly, on the submillisecond timescale. These findings were not expected based on crystallographic data. Using mutational analyses, we further demonstrate that the R300-W396 cation-π interaction and active site cysteines dictate, in unexpected ways, how the catalytic domains relocate. Finally, we show that irreversible inhibitors targeting the active sites of reduced PDI did not abolish these protein dynamics but rather shifted the equilibrium toward the closed ensemble. This work introduces a new structural framework that challenges current views of PDI dynamics, helps rationalize its multifaceted role in biology, and should be considered when designing PDI-targeted therapeutics.  相似文献   

14.
Malaria remains one of the major human parasitic diseases, particularly in subtropical regions. Most of the fatal cases are caused by Plasmodium falciparum. The rodent parasite Plasmodium chabaudi has been the model of choice in research due to its similarities to human malaria, including developmental cycle, preferential invasion of mature erythrocytes, synchrony of asexual development, antigenic variation, gene sinteny as well as similar resistance mechanisms. Protein disulfide isomerase (PDI) is an essential catalyst of the endoplasmic reticulum in different biological systems with folding and chaperone activities. Most of the proteins exported by parasites have to pass through the endoplasmic reticulum before reaching their final destination and their correct folding is critical for parasite survival. PDI constitutes a potential target for the development of alternative therapy strategies based on the inhibition of folding and chaperoning of exported proteins. We here describe the sequencing of the gene coding for the PDI from P. chabaudi and analyse the relationship to its counterpart enzymes, particularly with the PDI from other Plasmodium species. The model constructed, based on the recent model deduced from the crystallographic structure 2B5E, was compared with the previous theoretical model for the whole PDI molecule constructed by threading. A recombinant PDI from P. chabaudi was also produced and used as an antigen for monoclonal antibody production for application in PDI immunolocalization.  相似文献   

15.
Protein disulfide isomerase (PDI) interacts with secretory proteins, irrespective of their thiol content, late during translocation into the ER; thus, PDI may be part of the quality control machinery in the ER. We used yeast pdi1 mutants with deletions in the putative peptide binding region of the molecule to investigate its role in the recognition of misfolded secretory proteins in the ER and their export to the cytosol for degradation. Our pdi1 deletion mutants are deficient in the export of a misfolded cysteine-free secretory protein across the ER membrane to the cytosol for degradation, but ER-to-Golgi complex transport of properly folded secretory proteins is only marginally affected. We demonstrate by chemical cross-linking that PDI specifically interacts with the misfolded secretory protein and that mutant forms of PDI have a lower affinity for this protein. In the ER of the pdi1 mutants, a higher proportion of the misfolded secretory protein remains associated with BiP, and in export-deficient sec61 mutants, the misfolded secretory protein remain bounds to PDI. We conclude that the chaperone PDI is part of the quality control machinery in the ER that recognizes terminally misfolded secretory proteins and targets them to the export channel in the ER membrane.  相似文献   

16.
17.
A potential vaccine candidate, Necator americanus secretory protein (Na-ASP1), against hookworm infections, has been expressed in Pichia pastoris. Na-ASP1, a 45 kDa protein containing 20 cysteines, was directed outside the cell by fusing the protein to the preprosequence of the alpha-mating factor of Saccharomyces cerevisiae. Most of the protein produced by single copy clones was secreted outside the cell. However, increasing gene copy number of Na-ASP1 protein in P. pastoris saturated secretory capacity and therefore, decreased the amount of secreted protein in clones harboring multiple copies of Na-ASP1 gene. Overexpression of the endoplasmic reticulum (ER) resident, homologous chaperone protein, protein disulfide isomerase (PDI) was able to increase the secretion of (Na-ASP1) protein in high copy clones. The effect of PDI levels on secretion of Na-ASP1 protein was examined in clones with varying copy number of PDI gene. Increase in secreted Na-ASP1 secretion is correlated well with the PDI copy number. Increasing levels of PDI also increased overall Na-ASP1 protein production in all the clones. Nevertheless, there was still accumulation of intracellular Na-ASP1 protein in P. pastoris clones over-expressing Na-ASP1 and PDI proteins.  相似文献   

18.
We have previously shown that treatment of Neospora caninum tachyzoites with the aspartyl protease inhibitor pepstatin A reduces host cell invasion [Naguleswaran, A., Muller, N., Hemphill, A., 2003. Neospora caninum and Toxoplasma gondii: a novel adhesion/invasion assay reveals distinct differences in tachyzoite-host cell interactions. Exp. Parasitol. 104, 149-158]. Pepstatin A-affinity-chromatography led to the isolation of a major band of approximately 52 kDa which was identified as a homologue of a previously described Toxoplasma gondii putative protein disulfide isomerase (TgPDI) through tandem mass spectrometry. A BLAST search against N. caninum expressed sequence tags (ESTs) on the ApiDots server using TgPDI cDNA as query sequence revealed a 2251 bp PDI-like consensus (NcPDI), which shows 94% identity to the T. gondii homologue. In N. caninum tachyzoites, NcPDI was found mainly in the soluble hydrophilic fraction. Immunofluorescence showed that expression of NcPDI was dramatically down-regulated in the bradyzoite stage, and immunogold-EM on tachyzoites localised the protein to the cytoplasm, mostly in close vicinity to the nuclear membrane, to the micronemes, and to the parasite cell surface. However, NcPDI was absent in rhoptries and dense granules. Preincubation of tachyzoites with the sulfhydryl blocker 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB), p-chloromercuribenzoic acid (pCMBA), and with the PDI inhibitor bacitracin reduced adhesion of parasites to host cells. In addition, incubation of N. caninum tachyzoites with affinity-purified anti-NcPDI antibodies reduced host cell adhesion. PDIs catalyse the formation, reduction or isomerisation of disulfide bonds. Many major components of the adhesion and invasion machinery of apicomplexan parasites are cysteine-rich and dependent on correct folding via disulfide bond formation. Thus, our data points towards an important role for surface-associated NcPDI in Neospora-host cell interaction.  相似文献   

19.
A major hallmark of mutant superoxide dismutase (SOD1)‐linked familial amyotrophic lateral sclerosis is SOD1‐immunopositive inclusions found within motor neurons. The mechanism by which SOD1 becomes aggregated, however, remains unclear. In this study, we aimed to investigate the role of nitrosative stress and S‐nitrosylation of protein disulfide isomerase (PDI) in the formation of SOD1 aggregates. Our data show that with disease progression inducible nitric oxide synthase (iNOS) was up‐regulated, which generated high levels of nitric oxide (NO) and subsequently induced S‐nitrosylation of PDI in the spinal cord of mutant SOD1 transgenic mice. This was further confirmed by in vitro observation that treating SH‐SY5Y cells with NO donor S‐nitrosocysteine triggered a dose‐dependent formation of S‐nitrosylated PDI. When mutant SOD1 was over‐expressed in SH‐SY5Y cells, the iNOS expression was up‐regulated, and NO generation was consequently increased. Furthermore, both S‐nitrosylation of PDI and the formation of mutant SOD1 aggregates were detected in the cells expressing mutant SOD1G93A. Blocking NO generation with the NOS inhibitor N‐nitro‐l ‐arginine attenuated the S‐nitrosylation of PDI and inhibited the formation of mutant SOD1 aggregates. We conclude that NO‐mediated S‐nitrosylation of PDI is a contributing factor to the accumulation of mutant SOD1 aggregates in amyotrophic lateral sclerosis.  相似文献   

20.
Protein disulfide isomerase (PDI) is a multifunctional protein required for many aspects of protein folding and transit through the endoplasmic reticulum. A conserved family of three PDIs has been functionally analysed using genetic mutants of the model organism Caenorhabditis elegans. PDI-1 and PDI-3 are individually non-essential, whereas PDI-2 is required for normal post-embryonic development. In combination, all three genes are synergistically essential for embryonic development in this nematode. Mutations in pdi-2 result in severe body morphology defects, uncoordinated movement, adult sterility, abnormal molting and aberrant collagen deposition. Many of these phenotypes are consistent with a role in collagen biogenesis and extracellular matrix formation. PDI-2 is required for the normal function of prolyl 4-hydroxylase, a key collagen-modifying enzyme. Site-directed mutagenesis indicates that the independent catalytic activity of PDI-2 may also perform an essential developmental function. PDI-2 therefore performs two critical roles during morphogenesis. The role of PDI-2 in collagen biogenesis can be restored following complementation of the mutant with human PDI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号