共查询到20条相似文献,搜索用时 15 毫秒
1.
ClpB is a member of a multichaperone system in Escherichia coli (with DnaK, DnaJ, and GrpE) that reactivates aggregated proteins. The sequence of ClpB contains two ATP-binding regions that are enclosed between the N- and C-terminal extensions. Whereas it has been found that the N-terminal region of ClpB is essential for the chaperone activity, the structure of this region is not known, and its biochemical properties have not been studied. We expressed and purified the N-terminal fragment of ClpB (residues 1-147). Circular dichroism of the isolated N-terminal region showed a high content of alpha-helical structure. Differential scanning calorimetry showed that the N-terminal region of ClpB is thermodynamically stable and contains a single folding domain. The N-terminal domain is monomeric, as determined by gel-filtration chromatography, and the elution profile of the N-terminal domain does not change in the presence of the N-terminally truncated ClpB (ClpBDeltaN). This indicates that the N-terminal domain does not form strong contacts with ClpBDeltaN. Consistently, addition of the separated N-terminal domain does not reverse an inhibition of ATPase activity of ClpBDeltaN in the presence of casein. As shown by ELISA measurements, full-length ClpB and ClpBDeltaN bind protein substrates (casein, inactivated luciferase) with similar affinity. We also found that the isolated N-terminal domain of ClpB interacts with heat-inactivated luciferase. Taken together, our results indicate that the N-terminal fragment of ClpB forms a distinct domain that is not strongly associated with the ClpB core and is not required for ClpB interactions with other proteins, but may be involved in recognition of protein substrates. 相似文献
2.
ClpB is a heat-shock protein that reactivates aggregated proteins in cooperation with the DnaK chaperone system. ClpB belongs to the family of AAA+ ATPases and forms ring-shaped oligomers: heptamers in the absence of nucleotides and hexamers in the presence of nucleotides. We investigated the thermodynamic stability of ClpB in its monomeric and oligomeric forms. ClpB contains six distinct structural domains: the N-terminal domain involved in substrate binding, two AAA+ ATP-binding modules, each consisting of two domains, and a coiled-coil domain inserted between the AAA+ modules. We produced seven variants of ClpB, each containing a single Trp located in each of the ClpB domains and measured the changes in Trp fluorescence during the equilibrium urea-induced unfolding of ClpB. We found that two structural domains: the small domain of the C-terminal AAA+ module and the coiled-coil domain were destabilized in the oligomeric form of ClpB, which indicates that only those domains change their conformation and/or interactions during formation of the ClpB rings. 相似文献
3.
Tanaka N Tani Y Hattori H Tada T Kunugi S 《Protein science : a publication of the Protein Society》2004,13(12):3214-3221
The Escherichia coli heat-shock protein ClpB reactivates protein aggregates in cooperation with the DnaK chaperone system. The ClpB N-terminal domain plays an important role in the chaperone activity, but its mechanism remains unknown. In this study, we investigated the effect of the ClpB N-terminal domain on malate dehydrogenase (MDH) refolding. ClpB reduced the yield of MDH refolding by a strong interaction with the intermediate. However, the refolding kinetics was not affected by deletion of the ClpB N-terminal domain (ClpBDeltaN), indicating that MDH refolding was affected by interaction with the N-terminal domain. In addition, the MDH refolding yield increased 50% in the presence of the ClpB N-terminal fragment (ClpBN). Fluorescence polarization analysis showed that this chaperone-like activity is explained best by a weak interaction between ClpBN and the reversible aggregate of MDH. The dissociation constant of ClpBN and the reversible aggregate was estimated as 45 muM from the calculation of the refolding kinetics. Amino acid substitutions at Leu 97 and Leu 110 on the ClpBN surface reduced the chaperone-like activity and the affinity to the substrate. In addition, these residues are involved in stimulation of ATPase activity in ClpB. Thus, Leu 97 and Leu 110 are responsible for the substrate recognition and the regulation of ATP-induced ClpB conformational change. 相似文献
4.
ClpB from Escherichia coli is a member of a protein-disaggregating multi-chaperone system that also includes DnaK, DnaJ, and GrpE. The sequence of ClpB contains two ATP-binding domains that are enclosed between the amino-terminal and carboxyl-terminal regions. The N-terminal sequence region does not contain known functional sequence motifs. Here, we performed site-directed mutagenesis of four polar residues within the N-terminal domain of ClpB (Thr7, Ser84, Asp103 and Glu109). These residues are conserved in several ClpB homologs. We found that the mutations, T7A, S84A, D103A, and E109A did not significantly affect the secondary structure and thermal stability of ClpB, nor did they inhibit the self-association of ClpB, its basal ATPase activity, or the enhanced rate of the ATP hydrolysis by ClpB in the presence of poly-L-lysine. We observed, however, that three mutations, T7A, D103A, and E109A, reduced the casein-induced activation of the ClpB ATPase. The same three mutant ClpB variants also showed low chaperone activity in the luciferase reactivation assay. We found, however, that the four ClpB mutants, as well as the wild-type, bound similar amounts of inactivated luciferase. In summary, we have identified three essential amino acid residues within the N-terminal region of ClpB that participate in the coupling between a protein-binding signal and the ATP hydrolysis, and also support the chaperone activity of ClpB. 相似文献
5.
Ting Zhang Elizabeth A. Ploetz Maria Nagy Shannon M. Doyle Sue Wickner Paul E. Smith Michal Zolkiewski 《Proteins》2012,80(12):2758-2768
ClpB reactivates aggregated proteins in cooperation with DnaK/J. The ClpB monomer contains two nucleotide‐binding domains (D1, D2), a coiled‐coil domain, and an N‐terminal domain attached to D1 with a 17‐residue‐long unstructured linker containing a Gly‐Gly motif. The ClpB‐mediated protein disaggregation is linked to translocation of substrates through the central channel in the hexameric ClpB, but the events preceding the translocation are poorly understood. The N‐terminal domains form a ring surrounding the entrance to the channel and contribute to the aggregate binding. It was suggested that the N‐terminal domain's mobility that is maintained by the unstructured linker might control the efficiency of aggregate reactivation. We produced seven variants of ClpB with modified sequence of the N‐terminal linker. To increase the linker's conformational flexibility, we inserted up to four Gly next to the GG motif. To decrease the linker's flexibility, we deleted the GG motif and converted it into GP and PP. We found that none of the linker modifications inhibited the basal ClpB ATPase activity or its capability to form oligomers. However, the modified linker ClpB variants showed lower reactivation rates for aggregated glucose‐6‐phosphate dehydrogenase and firefly luciferase and a lower aggregate‐binding efficiency than wt ClpB. We conclude that the linker does not merely connect the N‐terminal domain, but it supports the chaperone activity of ClpB by contributing to the efficiency of aggregate binding and disaggregation. Moreover, our results suggest that selective pressure on the linker sequence may be crucial for maintaining the optimal efficiency of aggregate reactivation by ClpB. Proteins 2012; © 2012 Wiley Periodicals, Inc. 相似文献
6.
Conformational analysis of the full‐length M2 protein of the influenza A virus using solid‐state NMR
Mei Hong 《Protein science : a publication of the Protein Society》2013,22(11):1623-1638
The influenza A M2 protein forms a proton channel for virus infection and mediates virus assembly and budding. While extensive structural information is known about the transmembrane helix and an adjacent amphipathic helix, the conformation of the N‐terminal ectodomain and the C‐terminal cytoplasmic tail remains largely unknown. Using two‐dimensional (2D) magic‐angle‐spinning solid‐state NMR, we have investigated the secondary structure and dynamics of full‐length M2 (M2FL) and found them to depend on the membrane composition. In 2D 13C DARR correlation spectra, 1,2‐dimyristoyl‐sn‐glycero‐3‐phosphocholine (DMPC)‐bound M2FL exhibits several peaks at β‐sheet chemical shifts, which result from water‐exposed extramembrane residues. In contrast, M2FL bound to cholesterol‐containing membranes gives predominantly α‐helical chemical shifts. Two‐dimensional J‐INADEQUATE spectra and variable‐temperature 13C spectra indicate that DMPC‐bound M2FL is highly dynamic while the cholesterol‐containing membranes significantly immobilize the protein at physiological temperature. Chemical‐shift prediction for various secondary‐structure models suggests that the β‐strand is located at the N‐terminus of the DMPC‐bound protein, while the cytoplasmic domain is unstructured. This prediction is confirmed by the 2D DARR spectrum of the ectodomain‐truncated M2(21–97), which no longer exhibits β‐sheet chemical shifts in the DMPC‐bound state. We propose that the M2 conformational change results from the influence of cholesterol, and the increased helicity of M2FL in cholesterol‐rich membranes may be relevant for M2 interaction with the matrix protein M1 during virus assembly and budding. The successful determination of the β‐strand location suggests that chemical‐shift prediction is a promising approach for obtaining structural information of disordered proteins before resonance assignment. 相似文献
7.
Maria Nagy Hui‐Chuan Wu Zhonghua Liu Sabina Kedzierska‐Mieszkowska Michal Zolkiewski 《Protein science : a publication of the Protein Society》2009,18(2):287-293
Hexameric AAA+ ATPases induce conformational changes in a variety of macromolecules. AAA+ structures contain the nucleotide‐binding P‐loop with the Walker A sequence motif: GxxGxGK(T/S). A subfamily of AAA+ sequences contains Asn in the Walker A motif instead of Thr or Ser. This noncanonical subfamily includes torsinA, an ER protein linked to human dystonia and DnaC, a bacterial helicase loader. Role of the noncanonical Walker A motif in the functionality of AAA+ ATPases has not been explored yet. To determine functional effects of introduction of Asn into the Walker A sequence, we replaced the Walker‐A Thr with Asn in ClpB, a bacterial AAA+ chaperone which reactivates aggregated proteins. We found that the T‐to‐N mutation in Walker A partially inhibited the ATPase activity of ClpB, but did not affect the ClpB capability to associate into hexamers. Interestingly, the noncanonical Walker A sequence in ClpB induced preferential binding of ADP vs. ATP and uncoupled the linkage between the ATP‐bound conformation and the high‐affinity binding to protein aggregates. As a consequence, ClpB with the noncanonical Walker A sequence showed a low chaperone activity in vitro and in vivo. Our results demonstrate a novel role of the Walker‐A Thr in sensing the nucleotide's γ‐phosphate and in maintaining an allosteric linkage between the P‐loop and the aggregate binding site of ClpB. We postulate that AAA+ ATPases with the noncanonical Walker A might utilize distinct mechanisms to couple the ATPase cycle with their substrate‐remodeling activity. 相似文献
8.
9.
Marabotti A Herman P Staiano M Varriale A de Champdoré M Rossi M Gryczynski Z D'Auria S 《Proteins》2006,62(1):193-201
The effect of the pressure on the structure and stability of the D-Galactose/D-Glucose binding protein (GGBP) from Escherichia coli was studied by steady-state and time-resolved fluorescence spectroscopy, and the ability of glucose ligand to stabilize the GGBP structure was also investigated. Steady-state fluorescence experiments showed a marked quenching of fluorescence emission of GGBP in the absence of glucose. Instead, the presence of glucose seems to stabilize the structure of GGBP at low and moderate pressure values. Time-resolved fluorescence measurements showed that the GGBP taumean in the absence of glucose varies significantly up to 600 bar, while in the presence of the ligand it is almost unaffected by pressure increase up to 600 bar. The effect of the pressure on GGBP was also studied by molecular dynamics simulations. The simulation data support the spectroscopic results and confirm that the presence of glucose is able to contrast the negative effects of pressure on the protein structure. Taken together, the spectroscopic and computer simulation studies suggest that at pressure values up to 2000 bar the structure of GGBP in the absence of glucose remains folded, but a significant perturbation of the protein secondary structures can be detected. The binding of glucose reduces the negative effect of pressure on protein structure and confers protection from perturbation especially at moderate pressure values. 相似文献
10.
Molecular dynamics simulations (MD) have been performed on variant crystal and NMR-derived structures of the glucocorticoid receptor DNA-binding domain (GR DBD). A loop region five residues long, the so-called D-box, exhibits significant flexibility, and transient perturbations of the tetrahedral geometry of two structurally important Cys4 zinc finger are seen, coupled to conformational changes in the D-box. In some cases, one of the Cys ligands to zinc exchanges with water, although no global distortion of the protein structure is observed. Thus, from MD simulation, dynamics of the D-box could partly be explained by solvent effects in conjunction with structural reformation of the zinc finger. 相似文献
11.
The rate and level of DnaK-dependent refolding of heat-inactivated Vibrio fischeri luciferase in the clp A mutant (clp A:: kan) were considerably lower then in wild-type cells. The decline in refolding level progressed with increasing heat inactivation time. A mutation of clp P had no influence on the kinetics and level of luciferase refolding. Approximately equal amounts of the DnaKJE chaperone were synthesized upon heat shock induction in E. coli clp A + and E. coli clpA::kan cells. It was assumed that, like homologous chaperone ClpB, ClpA is involved in disaggregation of denatured proteins, increasing the refolding efficiency. This in vivo phenomenon occurred only upon a prolonged incubation of cells at a higher temperature, which led to the formation of large protein aggregates that were poorly refoldable by the DnaKJE system. 相似文献
12.
Elisabetta Schievano Stefano Mammi Alessandro Bisello Michael Rosenblatt Michael Chorev Evaristo Peggion 《Journal of peptide science》1999,5(7):330-337
The N‐terminal 1–34 segments of both parathyroid hormone (PTH) and parathyroid hormone‐related protein (PTHrP) bind and activate the same membrane receptor in spite of major differences in their amino acid sequence. The hypothesis was made that they share the same bioactive conformation when bound to the receptor. A common structural motif in all bioactive fragments of the hormone in water/trifluoroethanol mixtures or in aqueous solution containing detergent micelles is the presence of two helical segments at the N‐ and C‐termini of the sequence. In order to stabilize the helical structures, we have recently synthesized and studied the PTHrP(1–34) analog [(Lys13–As p17, Lys26–As p30)]PTHrP(1–34)NH2, which contains lactam‐constrained Lys‐Asp side chains at positions i, i+4. This very potent agonist exhibits enhanced helix stability with respect to the corresponding linear peptide and also two flexible sites at positions 12 and 19 in 1:1 trifluoroethanol/water. These structural elements have been suggested to play a critical role in bioactivity. In the present work we have extended our conformational studies on the bicyclic lactam‐constrained analog to aqueous solution. By CD, 2D‐NMR and structure calculations we have shown that in water two helical segments are present in the region of the lactam bridges (13–18, and 26–31) with high flexibility around Gly12 and Arg19. Thus, the essential structural features observed in the aqueous‐organic medium are maintained in water even if, in this solvent, the overall structure is more flexible. Our findings confirm the stabilizing effect of side‐chain lactam constraints on the α‐helical structure. Copyright © 1999 European Peptide Society and John Wiley & Sons, Ltd. 相似文献
13.
This paper employs methods used earlier to study helix propensity in a model α-helix. The methods are extended to simulations of a motif structure of the α-helical coiled coil, i.e., a structure with a simple amino acid sequence, containing only alanine, leucine, and valine, with leucine and valine forming hydrophobic contacts in the helix interface (positions “d” and “a”). Dynamic simulations of the model coiled-coil structure reproduce characteristic features of the coiled-coil motif seen in experimental studies. Free energy simulations were used to assess the change in stability of the model when a leucine pair or a valine pair in the helix interface was replaced with an alanine pair. A leucine pair at position d was found to contribute 3.4 kcal/mol to the stability of the coiled coil relative to an alanine pair, and a valine pair at postion a was found to contribute 0.8 kcal/mol relative to an alanine pair. The value for the leucine pair agrees with reports in two experimental studies with molecules having different amino sequence. The value for the valine pair is reasonable given the smaller size of the valine side chain and the intrinsic low helix propensity of valine. No experimental value was available for comparison. © 1993 Wiley-Liss, Inc. 相似文献
14.
Conformational stability of HPr: the histidine-containing phosphocarrier protein from Bacillus subtilis. 总被引:1,自引:3,他引:1 下载免费PDF全文
The conformational stability of the histidine-containing phosphocarrier protein (HPr) from Bacillus subtilis has been determined using a combination of thermal unfolding and solvent denaturation experiments. The urea-induced denaturation of HPr was monitored spectroscopically at fixed temperatures and thermal unfolding was performed in the presence of fixed concentrations of urea. These data were analyzed in several different ways to afford a measure of the cardinal parameters (delta Hg, Tg, delta Sg, and delta Cp) that describe the thermodynamics of folding for HPr. The method of Pace and Laurents (Pace CN, Laurents DV, 1989, Biochemistry 28:2520-2525) was used to estimate delta Cp as was a global analysis of the thermal- and urea-induced unfolding data. Each method used to analyze the data gives a similar value for delta Cp (1,170 +/- 50 cal mol-1K-1). Despite the high melting temperature for HPr (Tg = 73.5 degrees C), the maximum stability of the protein, which occurs at 26 degrees C, is quite modest (delta Gs = 4.2 kcal mol-1). In the presence of moderate concentrations of urea, HPr exhibits cold denaturation, and thus a complete stability curve for HPr, including a measure of delta Cp, can be achieved using the method of Chen and Schellman (Chen B, Schellman JA, 1989, Biochemistry 28:685-691). A comparison of the different methods for the analysis of solvent denaturation curves is provided and the effects of urea on the thermal stability of this small globular protein are discussed. The methods presented will be of general utility in the characterization of the stability curve for many small proteins. 相似文献
15.
Jens Liebold Reno Winter Ralph Golbik Gerd Hause Christoph Parthier Elisabeth Schwarz 《Protein science : a publication of the Protein Society》2015,24(11):1789-1799
The disease oculopharyngeal muscular dystrophy is caused by alanine codon trinucleotide expansions in the N‐terminal segment of the nuclear poly(A) binding protein PABPN1. As histochemical features of the disease, intranuclear inclusions of PABPN1 have been reported. Whereas the purified N‐terminal domain of PABPN1 forms fibrils in an alanine‐dependent way, fibril formation of the full‐length protein occurs also in the absence of alanines. Here, we addressed the question whether the stability of the RNP domain or domain swapping within the RNP domain may add to fibril formation. A variant of full‐length PABPN1 with a stabilizing disulfide bond at position 185/201 in the RNP domain fibrillized in a redox‐sensitive manner suggesting that the integrity of the RNP domain may contribute to fibril formation. Thermodynamic analysis of the isolated wild‐type and the disulfide‐linked RNP domain showed two state unfolding/refolding characteristics without detectable intermediates. Quantification of the thermodynamic stability of the mutant RNP domain pointed to an inverse correlation between fibril formation of full‐length PABPN1 and the stability of the RNP domain. 相似文献
16.
Protein function often involves changes between different conformations. Central questions are how these conformational changes are coupled to the binding or catalytic processes during which they occur, and how they affect the catalytic rates of enzymes. An important model system is the enzyme dihydrofolate reductase (DHFR) from Escherichia coli, which exhibits characteristic conformational changes of the active‐site loop during the catalytic step and during unbinding of the product. In this article, we present a general kinetic framework that can be used (1) to identify the ordering of events in the coupling of conformational changes, binding, and catalysis and (2) to determine the rates of the substeps of coupled processes from a combined analysis of nuclear magnetic resonance R2 relaxation dispersion experiments and traditional enzyme kinetics measurements. We apply this framework to E. coli DHFR and find that the conformational change during product unbinding follows a conformational‐selection mechanism, that is, the conformational change occurs predominantly prior to unbinding. The conformational change during the catalytic step, in contrast, is an induced change, that is, the change occurs after the chemical reaction. We propose that the reason for these conformational changes, which are absent in human and other vertebrate DHFRs, is robustness of the catalytic rate against large pH variations and changes to substrate/product concentrations in E. coli. Proteins 2012;. © 2012 Wiley Periodicals, Inc. 相似文献
17.
M. S. R. Sastry Weibin Zhou François Baneyx 《Protein science : a publication of the Protein Society》2009,18(7):1439-1447
Hsp31 is a stress‐inducible molecular chaperone involved in the management of protein misfolding at high temperatures and in the development of acid resistance in starved E. coli. Each subunit of the Hsp31 homodimer consists of two structural domains connected by a flexible linker that sits atop a continuous tract of nonpolar residues adjacent to a hydrophobic bowl defined by the dimerization interface. Previously, we proposed that while the bowl serves as a binding site for partially folded species at physiological temperatures, chaperone function under heat shock conditions requires that folding intermediates further anneal to high‐affinity binding sites that become uncovered upon thermally induced motion of the linker. In support of a mechanism requiring that client proteins first bind to the bowl, we show here that fusion of a 20‐residue‐long hexahistidine tag to the N‐termini of Hsp31 abolishes chaperone activity at all temperatures by inducing reversible structural changes that interfere with substrate binding. We further demonstrate that extending the C‐termini of Hsp31 with short His tags selectively suppresses chaperone function at high temperatures by interfering with linker movement. The structural and functional sensitivity of Hsp31 to lengthening is consistent with the high degree of conservation of class I Hsp31 orthologs and will serve as a cautionary tale on the implications of affinity tagging. 相似文献
18.
Gert‐Jan Bekker Benson Ma Narutoshi Kamiya 《Protein science : a publication of the Protein Society》2019,28(2):429-438
Single‐domain antibodies (sdAbs) function like regular antibodies, however, consist of only one domain. Because of their low molecular weight, sdAbs have advantages with respect to production and delivery to their targets and for applications such as antibody drugs and biosensors. Thus, sdAbs with high thermal stability are required. In this work, we chose seven sdAbs, which have a wide range of melting temperature (Tm) values and known structures. We applied molecular dynamics (MD) simulations to estimate their relative stability and compared them with the experimental data. High‐temperature MD simulations at 400 K and 500 K were executed with simulations at 300 K as a control. The fraction of native atomic contacts, Q, measured for the 400 K simulations showed a fairly good correlation with the Tm values. Interestingly, when the residues were classified by their hydrophobicity and size, the Q values of hydrophilic residues exhibited an even better correlation, suggesting that stabilization is correlated with favorable interactions of hydrophilic residues. Measuring the Q value on a per‐residue level enabled us to identify residues that contribute significantly to the instability and thus demonstrating how our analysis can be used in a mutant case study. 相似文献
19.
Dan Zabetakis Lisa C. Shriver‐Lake Mark A. Olson Ellen R. Goldman George P. Anderson 《Protein science : a publication of the Protein Society》2019,28(10):1909-1912
Recently Bekker et al. [Bekker G‐J et al. Protein Sci. 2019;28:429–438.] described a computational strategy of applying molecular‐dynamics simulations to estimate the relative stabilities of single‐domain antibodies, and utilized their method to design changes with the aim of increasing the stability of a single‐domain antibody with a known crystal structure. The structure from which they generated potentially stabilizing mutations is an anti‐cholera toxin single domain antibody selected from a naïve library which has relatively low thermal stability, reflected by a melting point of 48°C. Their work was purely theoretical, so to examine their predictions, we prepared the parental and predicted stabilizing mutant single domain antibodies and examined their thermal stability, ability to refold and affinity. We found that the mutation that improved stability the most (~7°C) was one which changed an amino acid in CDR1 from an asparagine to an aspartic acid. This change unfortunately was also accompanied by a reduction in affinity. Thus, while their modeling did appear to successfully predict stabilizing mutations, introducing mutations in the binding regions is problematic. Of further interest, the mutations selected via their high temperature simulations, did improve refolding, suggesting that they were successful in stabilizing the structure at high temperatures and thereby decrease aggregation. Our result should permit them to reassess and refine their model and may one day lead to a usefulin silico approach to protein stabilization. 相似文献
20.
Evaristo Peggion Stefano Mammi Elisabetta Schievano Vered Behar Michael Rosenblatt Michael Chorev 《Biopolymers》1999,50(5):525-535
The N‐terminal 1–34 segments of both parathyroid hormone (PTH) and parathyroid hormone‐related protein (PTHrP) bind and activate the same membrane receptor in spite of major differences between the two hormones in their amino acid sequence. Recently, it was shown that in (1–34)PTH/PTHrP segmental hybrid peptides, the N‐terminal 1–14 segment of PTHrP is incompatible with the C‐terminal 15–34 region of PTH leading to substantial reduction in potency. The sites of incompatibility were identified as positions 5 in PTH and 19 in PTHrP. In the present paper we describe the synthesis, biological evaluation, and conformational characterization of two point‐mutated PTH/PTHrP 1–34 hybrids in which the arginine residues at positions 19 and 21 of the native sequence of PTHrP have been replaced by valine (hybrid V21) and glutamic acid (hybrid E19), respectively, taken from the PTH sequence. Hybrid V21 exhibits both high receptor affinity and biological potency, while hybrid E19 binds weakly and is poorly active. The conformational properties of the two hybrids were studied in aqueous solution containing dodecylphosphocholine (DPC) micelles and in water/2,2,2‐trifluoroethanol (TFE) mixtures. Upon addition of TFE or DPC micelles to the aqueous solution, both hybrids undergo a coil‐helix transition. The maximum helix content in 1 : 1 water/TFE, obtained by CD data for both hybrids, is ∼ 80%. In the presence of DPC micelles, the maximum helix content is ∼ 40%. The conformational properties of the two hybrids in the micellar system were further investigated by combined 2D‐nmr, distance geometry (DG), and molecular dynamics (MD) calculations. The common structural motif, consisting of two helical segments located at N‐ and C‐termini, was observed in both hybrids. However, the biologically potent hybrid V21 exhibits two flexible sites, centered at residues 12 and 19 and connecting helical segments, while the flexibility sites in the weakly active hybrid E19 are located at position 11 and in the sequence 20–26. Our findings support the hypothesis that the presence and location of flexibility points between helical segments are essential for enabling the active analogs to fold into the bioactive conformation upon interaction with the receptor. © 1999 John Wiley & Sons, Inc. Biopoly 50: 525–535, 1999 相似文献