共查询到20条相似文献,搜索用时 15 毫秒
1.
Ho‐Kee Koon Pui‐Shan Chan Ricky Ngok‐Shun Wong Zhen‐Guo Wu Maria Li Lung Chi‐Kwong Chang Nai‐Ki Mak 《Journal of cellular biochemistry》2009,108(6):1356-1363
Epidermal growth factor receptor (EGFR), a receptor often expressed in nasopharyngeal carcinoma (NPC) cells, is one of the recently identified molecular targets in cancer treatment. In the present study, the effects of combined treatment of Zn‐BC‐AM PDT with an EGFR inhibitor AG1478 were investigated. Well‐differentiated NPC HK‐1 cells were subjected to PDT with 1 µM of Zn‐BC‐AM and were irradiated at a light dose of 1 J/cm2 in the presence or absence of EGFR inhibitor AG1478. Specific protein kinase inhibitors of downstream EGFR targets were also used in the investigation. EGFR, Akt, and ERK were found constitutively activated in HK‐1 cells and the activities could be inhibited by the EGFR inhibitor AG1478. A sub‐lethal concentration of AG1478 was found to further enhance the irreversible cell damage induced by Zn‐BC‐AM PDT in HK‐1 cells. Pre‐incubation of the cells with specific inhibitors of EGFR (AG1478), PI3k/Akt (LY294002), or MEK/ERK (PD98059) before light irradiation were found to enhance Zn‐BC‐AM PDT‐induced formation of apoptotic cells. The efficacy of Zn‐BC‐AM PDT can be increased through the inhibition of EGFR/PI3K/Akt and EGFR/MEK/ERK signaling pathways in NPC cells. Combination therapy with Zn‐BC‐AM PDT and EGFR inhibitors may further be developed for the treatment of advanced NPC. J. Cell. Biochem. 108: 1356–1363, 2009. © 2009 Wiley‐Liss, Inc. 相似文献
2.
Ischemia‐reperfusion (I/R) injury often occurs during skin flap transplantation and results in tissue damage. Although estrogen treatment significantly alleviates this I/R injury‐induced damage, the detailed molecular mechanism is not clear. In this study, a superficial epigastric artery flap I/R injury model was created in adult Wistar rats. Severe necrosis was observed in skin tissue after I/R injury. Histological examination of skin tissue revealed that I/R injury damages skin structure and results in neutrophil infiltration. Inflammation‐related parameters, including neutrophil count, tumor necrosis factor‐α, and interleukin‐10 levels, were increased due to I/R injury. These pathological phenomena were reduced by estradiol treatment. Further investigation found that I/R injury triggers the p38 mitogen‐activated protein kinase (p38‐MAPK) pathway. The expression levels of p38‐MAPK and phosphorylated p38‐MAPK were increased after I/R injury. Estradiol increased the expression level of MAPK phosphatase‐2, a putative phosphatase of p38, and reduced the levels of p38‐MAPK and phosphorylated p38‐MAPK. These results suggest that estradiol can improve skin flap survival, possibly by inhibiting neutrophil infiltration and the expression of p38‐MAPK. This study provides an explanation for how estrogen alleviates I/R injury‐induced damage that occurs during skin flap transplantation. In a rat pathological model, I/R injury leads to skin necrosis, skin structure damage, neutrophil infiltration, and inflammatory cytokine secretion, which are probably downstream effects of activation of the p38‐MAPK pathway. On the other hand, estradiol treatment triggers the expression of MAPK phosphatase‐2, a putative phosphatase of p38‐MAPK, and reduced all examined pathological phenomena. Therefore, estrogen may reduce the deleterious effect of I/R injury on skin flap transplantation through modulating the p38‐MAPK pathway. 相似文献
3.
4.
5.
6.
7.
Cappellini A Tazzari PL Mantovani I Billi AM Tassi C Ricci F Conte R Martelli AM 《Apoptosis : an international journal on programmed cell death》2005,10(1):141-152
A combination of 8-methoxypsoralen and ultraviolet-A radiation (320–400 nm) (PUVA) is used for the treatment of T cell-mediated disorders, including chronic graft-versus-host disease, autoimmune disorders, and cutaneous T-cell lymphomas. The mechanisms of action of this therapy, referred to as extracorporeal phototherapy, have not been fully elucidated. PUVA is known to induce apoptosis in T lymphocytes collected by apheresis, however no information is available concerning the underlying signaling pathways which are activated by PUVA. In this study, we found that PUVA treatment of Jurkat cells and human T lymphocytes up-regulates the p38 MAPK pathway but not the p42/44 MAPK or the SAPK/JNK signaling networks. The use of a pharmacological inhibitor selective for the p38 MAPK pathway, SB203580, allowed us to demonstrate that this network exerts an antiapoptotic effect in PUVA-treated Jurkat cells and T lymphocytes from healthy donors. Moreover, the effect of SB203580 was not due to a down-regulation of the Akt survival pathway which was not activated in response to PUVA. These results may suggest that p38 MAPK-dependent signaling is very important for the regulation of survival genes after exposure to PUVA. Since the therapeutic effect of PUVA seems to depend, at least in part, on apoptosis, further studies on the apoptosis signaling networks activated by this treatment might lead to the use of signal transduction modulators in combination with PUVA, to increase the efficacy of this form of therapy. 相似文献
8.
Lowe LC Senaratne SG Colston KW 《Biochemical and biophysical research communications》2005,329(2):772-779
The 1,1-bisphosphonate ester family member apomine (SR-45023A) is known to have anti-tumour activity in various cancer cell types. The aims of this study were to determine the effect of apomine on the growth of two breast cancer cell lines, MCF-7 and MDA-MB-231, to ascertain whether any growth inhibitory effects found were due to induction of apoptosis, and to investigate the mechanism of action of apomine. Apomine caused significant growth inhibition of both cell lines after 72h of treatment. Apomine-induced growth inhibition was associated with caspase and p38 MAPK activation and DNA fragmentation. Apomine had no effect on Ras localisation, nor did addition of mevalonate to treatment media prevent apomine-induced apoptosis. We conclude that apomine induces apoptosis in breast cancer cells, an effect that is independent of oestrogen receptor status and is not via inhibition of the mevalonate pathway. Our study suggests apomine is a potential anti-neoplastic drug in breast cancer treatment. 相似文献
9.
PDT (photodynamic therapy) has been used for the treatment of NMCC (non‐melanoma cutaneous cancer) particularly, human SCC (squamous cell carcinoma). However, the nature of the photosensitizer, the activation light source and the mode of cell death induced post‐PDT remains elusive. We tried to optimize PDT using the light‐activated (320–400 nm) St John's Wort‐derived compound, Hyp (hypericin). The work highlights the potential mode of cell death and the increased efficacy of the technique associated with multiple Hyp‐PDT treatment. SCC cells were exposed to different concentrations of Hyp and activated with light at 1 J/cm2 for 1 or 2 days. Thereafter with the optimum dose of Hyp proliferation, ROS (reactive oxygen species), and apoptosis were analysed by XTT [2,3‐bis‐(2‐methoxy‐4‐nitro‐5‐sulfophenyl)‐2H‐tetrazolium‐5‐carboxanilide] assay, FACS analysis and Fluorescent/Phase contrast microscopy was carried out for morphological studies. Hyp‐PDT produces more ROS after 1 day compared with 2 days and the mode of cell death is a necrotic caspase‐independent mechanism. We propose a novel ‘double‐hit/2‐day’ strategy to reduce the viability in SCC using Hyp‐based PDT as an adjunctive treatment modality. 相似文献
10.
11.
The p38 MAPK inhibitor, PD169316, inhibits transforming growth factor beta-induced Smad signaling in human ovarian cancer cells 总被引:4,自引:0,他引:4
Fu Y O'Connor LM Shepherd TG Nachtigal MW 《Biochemical and biophysical research communications》2003,310(2):391-397
Transforming growth factor beta (TGFbeta) can signal through a variety of Smad-independent pathways, including the p38 MAPK pathway. Recent work has shown that inhibitors of p38 MAPK, such as SB203580 and SB202190, can inhibit signaling induced by TGFbeta. Here we show that another p38 MAPK inhibitor, PD169316, abrogates signaling initiated by both TGFbeta and Activin A, but not bone morphogenetic protein (BMP) 4. Inhibition of TGFbeta signaling is dose dependent and results in reduced Smad2 and Smad3 phosphorylation, nuclear translocation, and up-regulation of the TGFbeta target gene Smad7. Reduced TGFbeta signaling is not due to abrogation of p38 MAPK activity, since blocking p38 MAPK activity with a dominant negative form of p38 MAPK has no effect on TGFbeta/Smad signaling. Our results show that use of PD169316 at 5 MICROM or higher can block TGFbeta signaling activity and thus caution must be used when attributing cellular activities exclusively to p38 MAPK signaling when these inhibitors are used experimentally. 相似文献
12.
Involvement of p38 mitogen-activated protein kinase in gemcitabine-induced apoptosis in human pancreatic cancer cells 总被引:5,自引:0,他引:5
Habiro A Tanno S Koizumi K Izawa T Nakano Y Osanai M Mizukami Y Okumura T Kohgo Y 《Biochemical and biophysical research communications》2004,316(1):71-77
In this study, we investigated the involvement of Akt and members of the mitogen-activated protein kinase (MAPK) superfamily, including ERK, JNK, and p38 MAPK, in gemcitabine-induced cytotoxicity in human pancreatic cancer cells. We found that gemcitabine induces apoptosis in PK-1 and PCI-43 human pancreatic cancer cell lines. Gemcitabine specifically activated p38 MAPK in a dose- and time-dependent manner. A selective p38 MAPK inhibitor, SB203580, significantly inhibited gemcitabine-induced apoptosis in both cell lines, suggesting that phosphorylation of p38 MAPK may play a key role in gemcitabine-induced apoptosis in pancreatic cancer cells. A selective JNK inhibitor, SP600125, failed to inhibit gemcitabine-induced apoptosis in both cell lines. MKK3/6, an upstream activator of p38 MAPK, was phosphorylated by gemcitabine, indicating that the MKK3/6-p38 MAPK signaling pathway is indeed involved in gemcitabine-induced apoptosis. Furthermore, gemcitabine-induced cleavage of the caspase substrate poly(ADP-ribose) polymerase was inhibited by pretreatment with SB203580, suggesting that activation of p38 MAPK by gemcitabine induces apoptosis through caspase signaling. These results together suggest that gemcitabine-induced apoptosis in human pancreatic cancer cells is mediated by the MKK3/6-p38 MAPK-caspase signaling pathway. Further, these results lead us to suggest that p38 MAPK should be investigated as a novel molecular target for human pancreatic cancer therapies. 相似文献
13.
Jean‐François L. Bodart 《Journal of cellular biochemistry》2010,109(5):850-857
This review point out several aspects regarding the mitogen‐activated protein kinase (MAPK)/extracellular‐regulated kinase (Erk) network, which are still pending issues in the understanding how this pathway integrate information to drive cell fates. Focusing on the role of Erk during cell cycle, it has to be underlined that Erk downstream effectors, which are required for mitosis progression and contribute to aneuploidy during tumorigenesis, remain to be determined. In addition to the identity of the terminal enzymes or effectors of Erk, it has to be stressed that the dynamic nature of the Erk signal is itself a key factor in cell phenotype decisions. Development of biophotonics strategies for monitoring the Erk network at the spatiotemporal level in living cells, as well as computational and hypothesis‐driven approaches, are called to unravel the principles by which signaling networks create biochemical and biological specificities. Finally, Erk dynamics might also be impacted by other post‐translational modification than phosphorylation, such as O‐GlcNAcylation. J. Cell. Biochem. 109: 850–857, 2010. © 2010 Wiley‐Liss, Inc. 相似文献
14.
Zhi-feng Liu Jing-jing Ji Dong Zheng Lei Su Tianqing Peng 《Journal of cellular physiology》2019,234(7):10761-10770
Cardiovascular dysfunction is a common complication among heatstroke patients, but its underlying mechanism is unclear. This study was designed to investigate the role of calpain-2 and its downstream signal pathway in heat stress-induced cardiomyocyte apoptosis and heart dysfunction. In cultured primary mouse neonatal cardiomyocytes (MNCs), heat stress (43°C for 2 hr) induced a heat-shock response, as indicated by upregulated heat-shock protein 27 (HSP27) expression and cellular apoptosis, as indicated by increased caspase-3 activity, DNA fragmentation and decreased cell viability. Meanwhile, heat stress decreased calpain activity, which was accompanied by downregulated calpain-2 expression and increased phosphorylation of p38, extraceIIuIar signaI-reguIated protein kinase (ERK1/2) and c-Jun N-terminaI kinase (JNK). Calpain-2 overexpression abrogated heat stress-induced apoptosis and phosphorylation of p38 and JNK, but not of ERK1/2. Blocking only p38 prevented heat stress-induced apoptosis in MNCs. In cardiac-specific calpain-2 overexpressing transgenic mice, p38 phosphorylation and cardiomyocyte apoptosis were decreased in the heart tissue of heatstroke mice, as revealed by western blot and terminal deoxynucleotidyl transferase dUTP nick end labelling assays, respectively. M-mode echocardiography also demonstrated that calpain-2 overexpression significantly improved heatstroke-induced decreases in ventricular end-diastolic volume and cardiac output. In conclusion, our study suggests that heat stress reduces calpain-2 expression, which then activates p38, leading to cardiomyocyte apoptosis and heart dysfunction. 相似文献
15.
This study examined the impact of ceramide, an intracellular mediator of apoptosis, on the mitochondria to test the hypothesis
that ceramide utilized p38 MAPK in the mitochondria to alter mitochondrial potential and induce apoptosis. The capacity of
ceramide to adversely affect mitochondria was demonstrated by the significant loss of mitochondrial potential (ΔΨm), indicated by a J-aggregate fluorescent probe, after embryonic chick cardiomyocytes were treated with the cell permeable
ceramide analogue C2-ceramide. p38 MAPK was identified in the mitochondrial fraction of the cell and p38 MAPK phosphorylation in this mitochondrial
fraction of the cell occurred with ceramide treatment. In addition, SAPK phosphorylation and a decrease in ERK phosphorylation
occurred in whole cell lysates after ceramide treatment. The p38 MAPK inhibitor SB 202190 but not the MEK inhibitor PD 98059
significantly inhibited ceramide-induced apoptosis and loss of ΔΨm. These data suggest that p38 MAPK is present in the mitochondria and its activation by ceramide indicates local signaling
more directly coupled to the mitochondrial pathway in apoptosis. (Mol Cell Biochem 278: 39–51, 2005) 相似文献
16.
Zongwei Li Hua Wei Xuebin Liu Shengshou Hu Xiangfeng Cong Xi Chen 《Journal of cellular biochemistry》2010,111(4):811-820
Poor viability of transplanted mesenchymal stem cells (MSCs) in the infracted heart has limited their therapeutic efficacy in cardiac repair after myocardial infarction. We previously demonstrated that hypoxia and serum deprivation (hypoxia/SD) induced mitochondria‐dependent apoptosis in MSCs, while lysophosphatidic acid (LPA) could almost completely block this apoptotic process. However, the role of endoplasmic reticulum (ER) stress and its upstream signaling events in hypoxia/SD‐induced MSC apoptosis remain largely unknown. Here we found that hypoxia/SD‐induced MSC apoptosis was associated with ER stress, as shown by the induction of CHOP expression and procaspase‐12 cleavage, while the effects were abrogated by LPA treatment, suggesting ER stress is also a target of LPA. Furthermore, hypoxia/SD induced p38 activation, inhibition of which resulted in decreases of apoptotic cells, procaspase‐12 cleavage and mitochondrial cytochrome c release that function in parallel in MSC apoptosis. Unexpectedly, p38 inhibition enhanced hypoxia/SD‐induced CHOP expression. Interestingly, p38 activation, a common process mediating various biological effects of LPA, was inhibited by LPA in this study, and the regulation of p38 pathway by LPA was dependent on LPA1/3/Gi/ERK1/2 pathway‐mediated MKP‐1 induction but independent of PI3K/Akt pathway. Collectively, our findings indicate that ER stress is a target of LPA to antagonize hypoxia/SD‐induced MSC apoptosis, and the modulation of mitochondrial and ER stress‐associated apoptotic pathways by LPA is at least partly dependent on LPA1/3/Gi/ERK/MKP‐1 pathway‐mediated p38 inhibition. This study may provide new anti‐apoptotic targets for elevating the viability of MSCs for therapeutic potential of cardiac repair. J. Cell. Biochem. 111: 811–820, 2010. © 2010 Wiley‐Liss, Inc. 相似文献
17.
18.
Lindsay M. Wohlers Sean M. Sweeney Christopher W. Ward Richard M. Lovering Espen E. Spangenburg 《Journal of cellular biochemistry》2009,107(1):171-178
Recent evidence suggests that ovarian hormones contribute to altered function of skeletal muscle, however the signaling processes thought to regulate muscle function remain undefined in females. Thus, the purpose of this investigation is to determine if ovarian hormone status is critical for contraction‐induced activation of AMPK or MAPK in skeletal muscle. Female mice were divided into two groups, ovariectomy (OVX) and SHAM, which were then subjected to in situ isometric contractile protocols. AMPK, ERK 1/2, p38, and JNK phosphorylation were measured in the control and contracting limb. In the in situ protocol, OVX muscles were significantly more resistant to fatigue compared to the SHAM animals. In addition, the muscles from OVX mice demonstrated significantly lower levels of normalized AMPK phosphorylation at rest. AMPK phosphorylation was not increased in the muscles from SHAM mice after the in situ contractile protocol, while the OVX demonstrated significant increases in AMPK phosphorylation. After contraction, normalized ERK2 phosphorylation was significantly higher in the OVX group compared to the SHAM group. Both p38 and JNK phosphorylation increased in response to contraction; but no group differences were detected. A second set of SHAM and OVX animals were subjected to fatigue stimulated under in vitro conditions. Significant increases in AMPK and ERK2 phosphorylation were detected, but no differences were found between groups. In conclusion, removal of the ovaries results in different responses to contraction‐induced changes in phosphorylation of AMPK and ERK2 in female mice and suggests hormones secreted from the ovaries significantly impacts cellular signaling in skeletal muscle. J. Cell. Biochem. 107: 171–178, 2009. © 2009 Wiley‐Liss, Inc. 相似文献
19.
Mitogen‐activated protein kinase (MAPK) signaling pathway is activated in a wide spectrum of human tumors, exhibiting cardinal oncogenic roles and sustained inhibition of this pathway is considered as a primary goal in clinic. Within this pathway, receptor tyrosine kinases such as epithelial growth factor receptor, mesenchymal–epithelial transition, and AXL act as upstream regulators of RAS/RAF/MEK/extracellular‐signal‐regulated kinase. MAPK signaling is active in both early and advanced stages of tumorigenesis, and it promotes tumor proliferation, survival, and metastasis. MAPK regulatory effects on cellular constituent of the tumor microenvironment is for immunosuppressive purposes. Cross‐talking between MAPK with oncogenic signaling pathways including WNT, cyclooxygenase‐2, transforming growth factor‐β, NOTCH and (in particular) with phosphatidylinositol 3‐kinase is contributed to the multiplication of tumor progression and drug resistance. Developing resistance (intrinsic or acquired) to MAPK‐targeted therapy also occurs due to heterogeneity of tumors along with mutations and negative feedback loop of interactions exist between various kinases causing rebound activation of this signaling. Multidrug regimen is a preferred therapeutic avenue for targeting MAPK signaling. To enhance patient tolerance and to mitigate potential adversarial effects related to the combination therapy, determination of a desired dose and drug along with pre‐evaluation of cancer‐type‐specific kinase mutation and sensitivity, especially for patients receiving triplet therapy is an urgent need. 相似文献
20.
Roles of mitogen-activated protein kinase pathways during <Emphasis Type="Italic">Escherichia coli-</Emphasis>induced apoptosis in U937 cells 总被引:2,自引:0,他引:2
Wang JH Zhou YJ He P Chen BY 《Apoptosis : an international journal on programmed cell death》2007,12(2):375-385
Escherichia coli (E. coli) infections play an important and growing role in the clinic. In the present study, we investigated the involvement of members
of the mitogen-activated protein kinase (MAPK) superfamily, including extracellular signal-regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK) and p38 MAPK, and caspase-3 and 9 activity in E. coli-induced apoptosis in human U937 cells. We found that E. coli induces apoptosis in U937 cell lines in a dose- and time-dependent manner, p38 MAPK and JNK were activated after 10 min of
infection with E. coli. In contrast, ERK1/2 was down-regulated in a time-dependent manner. The levels of total (phosphorylation state-independent)
p38 MAPK, JNK and ERK1/2 did not change in E. coli-infected U937 cells at all times examined. Moreover, exposure of U937 cells to E. coli led to caspase-3 and 9 activity. For the evaluation of the role of MAPKs, PD98059, SB203580 and SP600125 were used as MAPKs
inhibitors for ERK1/2, p38 MAPK and JNK. Inhibition of ERK1/2 with PD98059 caused further enhancement in apoptosis and caspase-3
and 9 activity, while a selective p38 MAPK inhibitor, SB203580 and JNK inhibitor, SP600125 significantly inhibited E. coli-induced apoptosis and caspase-3 and 9 activity in U937 cells. The results were further confirmed by the observation that
the caspase inhibitors Z-DEVD-FMK and Z-LEHD-FMK blocked E. coli-induced U937 apoptosis. Taken together, we have shown that E. coli increase p38 MAPK and JNK and decrease ERK1/2 phosphorylation and increase caspase-3 and 9 activity in U937 cells. 相似文献