首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pseudomonas oleovorans and recombinant strains containing the alkane oxidation genes can produce alkane oxidation products in two‐liquid phase bioreactor systems. In these bioprocesses the cells, which grow in the aqueous phase, oxidize apolar, non‐water soluble substrates. The apolar products typically accumulate in the emulsified apolar phase. We have studied both the bioconversion systems and several downstream processing systems to separate and purify alkanols from these two‐liquid phase media. Based on the information generated in these studies, we have now designed bioconversion and downstream processing systems for the production of 1‐alkanols from n‐alkanes on a 10 kiloton/yr scale, taking the conversion of n‐octane to 1‐octanol as a model system. Here, we describe overall designs of fed‐batch and continuous‐fermentation processes for the oxidation of octane to 1‐octanol by Pseudomonas oleovorans, and we discuss the economics of these processes. In both systems the two‐liquid phase system consists of an apolar phase with hexadecene as the apolar carrier solvent into which n‐octane is dissolved, while the cells are present in the aqueous phase. In one system, multiple‐batch fermentations are followed by continuous processing of the product from the separated apolar phase. The second system is based on alkane oxidation by continuously growing cultures, again followed by continuous processing of the product. Fewer fermentors were required and a higher space‐time‐yield was possible for production of 1‐octanol in a continuous process. The overall performance of each of these two systems has been modeled with Aspen software. Investment and operating costs were estimated with input from equipment manufacturers and bulk‐material suppliers. Based on this study, the production cost of 1‐octanol is about 7 US$kg−1 when produced in the fed‐batch process, and 8 US$kg−1 when produced continuously. The comparison of upstream and downstream capital costs and production costs showed significantly higher upstream costs for the fed‐batch process and slightly higher upstream costs for continuous fermentation. The largest cost contribution was due to variable production costs, mainly resulting from media costs. The organisms used in these systems are P. putida alk+ recombinants which oxidize alkanes, but cannot oxidize the resulting alkanols further. Hence, such cells need a second carbon source, which in these systems is glucose. Although the continuous process is about 10% more expensive than the fed‐batch process, improvements to reduce overall cost can be achieved more easily for continuous than for fed‐batch fermentation by decreasing the dilution rate while maintaining near constant productivity. Improvements relevant to both processes can be achieved by increasing the biocatalyst performance, which results in improved overall efficiency, decreased capital investment, and hence, decreased production cost. © 1999 John Wiley & Sons, Inc. Biotechnol Bioeng 84: 459–477, 1999.  相似文献   

2.
The aim of the study was to evaluate, from a technical and economic standpoint, the enzymatic processes involved in the production of fuel ethanol from softwood. Two base case configurations, one based on simultaneous saccharification and fermentation (SSF) and one based on separate hydrolysis and fermentation (SHF), were evaluated and compared. The process conditions selected were based mainly on laboratory data, and the processes were simulated by use of Aspen plus. The capital costs were estimated using the Icarus Process Evaluator. The ethanol production costs for the SSF and SHF base cases were 4.81 and 5.32 SEK/L or 0.57 and 0.63 USD/L (1 USD = 8.5SEK), respectively. The main reason for SSF being lower was that the capital cost was lower and the overall ethanol yield was higher. A major drawback of the SSF process is the problem with recirculation of yeast following the SSF step. Major economic improvements in both SSF and SHF could be achieved by increasing the income from the solid fuel coproduct. This is done by lowering the energy consumption in the process through running the enzymatic hydrolysis or the SSF step at a higher substrate concentration and by recycling the process streams. Running SSF with use of 8% rather than 5% nonsoluble solid material would result in a 19% decrease in production cost. If after distillation 60% of the stillage stream was recycled back to the SSF step, the production cost would be reduced by 14%. The cumulative effect of these various improvements was found to result in a production cost of 3.58 SEK/L (0.42 USD/L) for the SSF process.  相似文献   

3.
Mitigating the effect of fermentation inhibitors in bioethanol plants can have a great positive impact on the economy of this industry. Liquid–liquid extraction (LLE) using ethyl acetate is able to remove fermentation inhibitors—chiefly, acetic acid—from an aqueous solution used to produce bioethanol. The fermentation broth resulting from LLE has higher performance for ethanol yield and its production rate. Previous techno‐economic analyses focused on second‐generation biofuel production did not address the impact of removing the fermentation inhibitors on the economic performance of the biorefinery. A comprehensive analysis of applying a separation system to mitigate the fermentation inhibition effect and to provide an analysis on the economic impact of removal of acetic acid from corn stover hydrolysate on the overall revenue of the biorefinery is necessary. This study examines the pros and cons associated with implementing LLE column along with the solvent recovery system into a commercial scale bioethanol plant. Using details from the NREL‐developed model of corn stover biorefinery, the capital costs associated with the equipment and the operating cost for the use of solvent were estimated and the results were compared with the profit gain due to higher ethanol production. Results indicate that the additional capital will add 1% to the total capital and manufacturing cost will increase by 5.9%. The benefit arises from the higher ethanol production rate and yield as a consequence of inhibitor extraction and results in a $0.35 per gallon reduction in the minimum ethanol selling price (MESP). © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:971–977, 2016  相似文献   

4.
随着能源紧缺的日益加剧,以及化石燃料燃烧引起的环境问题逐渐突显,氢能作为一种清洁可再生能源越来越受到青睐。生物制氢与热化学及电化学制氢相比其反应条件温和、低耗、绿色,是一项非常有应用前景的技术。生物制氢从广义上可以分为暗发酵和光发酵产氢两种,其中暗发酵微生物可以利用有机废弃物产生氢气以及有机酸等副产物,光合细菌在光照和固氮酶的作用下可以将暗发酵产生的有机酸继续用于产氢,因此两种发酵产氢方式相结合可以提高有机废物的资源化效率。将近年来暗发酵-光发酵两阶段生物制氢技术进行整理分析,从其产氢机理、主要影响因素、暗发酵-光发酵产氢结合方式(两步法、混合培养产氢)几个方面进行阐述,最后指出该技术面临的挑战。  相似文献   

5.
Large‐scale automated transient protein expression in plants requires the synchronization of cultivation and bacterial fermentation, especially if more than one bacterial strain. Therefore, a ready‐to‐use approach that decouples bacterial fermentation and infiltration is developed. It is found that bacterial cultures can easily be reconstituted in infiltration medium at a user‐defined time, optical density, and quantity. This allows the process flow to be staggered, avoiding bottlenecks in process capacity and labor. Using the red fluorescent protein, DsRed, as a model product, the ready‐to‐use preparations achieved the same yields in infiltrated plant biomass as Agrobacterium tumefaciens derived from regular fermentations. It is possible to store the ready‐to‐use stocks at –20 °C and –80 °C for more than two months without loss of activity. Using a consolidated cost model for the current fermentation process, it is found that the ready‐to‐use strategy can reduce operational costs by 20–95% and investment costs by up to 75%, which would otherwise offset the economic advantages of plants over mammalian expression systems during upstream production. Furthermore, the staggered cultivation of plants and bacteria reduces the likelihood of batch failure and thus increases the robustness and flexibility of transient expression for the production of recombinant proteins in plants.  相似文献   

6.
国际生物制氢相关研究的知识图谱分析   总被引:2,自引:0,他引:2  
氢气是一种理想的洁净能源。生物制氢技术具有能耗低、环保等优势,是目前国内外研究的热点。从能源和环境角度考虑,发展生物制氢技术都具有重要的意义。通过ISI Web of Knowledge网络数据库检索2000~2008年8月期间生物制氢的相关研究,利用作者共引分析方法,并绘制了知识图谱。该图谱显示出此研究领域存在两大主流学术群体:群体1,其研究焦点为光解水制氢两大类,包括藻类光合制氢和蓝细菌等光合细胞制氢;群体2,其研究聚集在厌氧发酵制氢研究方面,又分为暗发酵制氢和光发酵制氢。其中厌氧发酵制氢的研究人员比较密集,说明这方面的研究是目前该领域的重点。  相似文献   

7.
To enhance biohydrogen production, Clostridium beijerinckii was co‐cultured with Geobacter metallireducens in the presence of the reduced extracellular electron shuttle anthrahydroquinone‐2, 6‐disulfonate (AH2QDS). In the co‐culture system, increases of up to 52.3% for maximum cumulative hydrogen production, 38.4% for specific hydrogen production rate, 15.4% for substrate utilization rate, 39.0% for substrate utilization extent, and 34.8% for hydrogen molar yield in co‐culture fermentation were observed compared to a pure culture of C. beijerinckii without AH2QDS. G. metallireducens grew in the co‐culture system, resulting in a decrease in acetate concentration under co‐culture conditions and a presumed regeneration of AH2QDS from AQDS. These co‐culture results demonstrate metabolic crosstalk between the fermentative bacterium C. beijerinckii and the respiratory bacterium G. metallireducens and suggest a strategy for industrial biohydrogen production. Biotechnol. Bioeng. 2013; 110: 164–172. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
The production of hydrogen fuels by using sunlight is an attractive and sustainable solution to the global energy and environmental problems. Platinum (Pt) is known as the most efficient co‐catalyst in hydrogen evolution reaction (HER). However, due to its high‐cost and limited‐reserves, it is highly demanded to explore alternative non‐precious metal co‐catalysts with low‐cost and high efficiency. Transition metal disulfides (TMDs) including molybdenum disulfide and tungsten disulfide have been regarded as promising candidates to replace Pt for HER in recent years. Their unique structural and electronic properties allow them to have many opportunities to be designed as highly efficient co‐catalysts over various photo harvesting semiconductors. Recent progress in TMDs as photo‐cocatalysts in solar hydrogen production field is summarized, focusing on the effect of structural matchability with photoharvesters, band edges tunability, and phase transformation on the improvement of hydrogen production activities. Moreover, recent research efforts toward the TMDs as more energy‐efficient and economical co‐catalysts for HER are highlighted. Finally, this review concludes by critically summarizing both findings and current perspectives, and highlighting crucial issues that should be addressed in future research activities.  相似文献   

9.
Poly(γ‐glutamic acid) (γ‐PGA) is a promising biopolymer with many potential industrial and pharmaceutical applications. To reduce the production costs, the effects of yeast extract and L ‐glutamate in the substrate for γ‐PGA production were investigated systematically at shake flask scale. The results showed that lower concentrations of yeast extract (40 g/L) and L ‐glutamate (30 g/L) were beneficial for the cost‐effective production of γ‐PGA in the formulated medium. By maintaining the glucose concentration in the range of 3–10 g/L via a fed‐batch strategy in a 10‐L fermentor, the production of γ‐PGA was greatly improved with the highest γ‐PGA concentration of 101.1 g/L, a productivity of 2.19 g/L·h and a yield of 0.57 g/g total substrate, which is about 1.4‐ to 3.2‐fold higher than those in the batch fermentation. Finally, this high‐density fermentation process was successfully scaled up in a 100‐L fermentor. The present work provides a powerful approach to produce this biopolymer as a bulk chemical in large scale.  相似文献   

10.
发酵生物制氢研究进展   总被引:16,自引:0,他引:16  
综述了近年来发酵生物制氢领域的研究进展?在菌种方面,除了对现有产氢菌种的深入研究外,还采用生物学,分子生物学及生物信息学手段建立产氢菌种库;在氢酶的研究方面,已逐步从基因确定、功能研究拓展到基因工程构建高效产氢菌研究:而在与废弃生物质处理相结合的反应过程方面,研究主要集中在利用不同种类的废弃物的产氢和高效产氢反应器上。此外,还初步总结了目前对发酵制氢可行性和经济性的评价,并对其发展方向提出了新的看法。  相似文献   

11.
In the production of ethanol from lignocellulosic material, pretreatment of the raw material before enzymatic hydrolysis and fermentation is essential to obtain high overall yields of sugar and ethanol. Two‐step steam pretreatment results in higher ethanol yields from softwood than the standard one‐step pretreatment process. However, the difficulty with separation and washing of the material at high pressure between the two pretreatment steps is a major drawback. In this study, a new one‐step pretreatment procedure was investigated, in which the time‐temperature profile was varied during pretreatment. The efficiency of pretreatment was assessed by performing simultaneous saccharification and fermentation on the pretreated slurries. Pretreatment of SO2‐impregnated softwood performed by varying the temperature (190–226°C), the residence time (5–10 min), and the mode of temperature increase (linear or stepwise), resulted in recovery of about 90% of the mannose and glucose present in the raw material. The highest ethanol yield, 75% of theoretical based on the glucan and mannan content of the raw material, was obtained at pretreatment conditions of 190°C for 12 min. Similar ethanol yields were achieved when running the pretreatment as one‐step (190–200°C), two levels of temperature, at shorter residence time (7 min), which results in lower capital costs for the process. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

12.
A process combining dark fermentation and photofermentation for production of hydrogen is interesting due to its potential of producing hydrogen at a high yields. In this study, the hydrogen process is compared to a 2nd generation ethanol process with respect to cost and with the aim of increasing our understanding of the pros and cons and giving a clear picture of the present status of the two processes. The hydrogen production cost was found to be about 20 times higher than the ethanol production cost, 421.7 €/GJ compared to 19.5 €/GJ. The main drawbacks of the hydrogen process are its low productivity, low energy efficiency, and the high cost of buffer and base required to control the pH.  相似文献   

13.
Two bacterial strains used for industrial production of 2‐keto‐L‐gulonic acid (2‐KLG), Ketogulonigenium vulgare 2 and Bacillus thuringiensis 1514, were loaded onto the spacecraft Shenzhou VII and exposed to space conditions for 68 h in an attempt to increase their fermentation productivities of 2‐KLG. An optimal combination of mutants B. thuringiensis 320 and K. vulgare 2194 (KB2194‐320) was identified by systematically screening the pH and 2‐KLG production of 16 000 colonies. Compared with the coculture of parent strains, the conversion rate of L‐sorbose to 2‐KLG by KB2194‐320 in shake flask fermentation was increased significantly from 82·7% to 95·0%. Furthermore, a conversion rate of 94·5% and 2‐KLG productivity of 1·88 g l?1 h?1 were achieved with KB2194‐320 in industrial‐scale fermentation (260 m3 fermentor). An observed increase in cell number of K2194 (increased by 47·8%) during the exponential phase and decrease in 2‐KLG reductase activity (decreased by 46·0%) were assumed to explain the enhanced 2‐KLG production. The results suggested that the mutants KB2194‐320 could be ideal substitutes for the currently employed strains in the 2‐KLG fermentation process and demonstrated the feasibility of using spaceflight to breed high‐yielding 2‐KLG‐producing strains for vitamin C production.

Significance and Impact of the Study

KB2194‐320, a combination of two bacterial strains bred by spaceflight mutation, exhibited significantly improved 2‐KLG productivity and hence could potentially increase the efficiency and reduce the cost of vitamin C production by the two‐step fermentation process. In addition, a new pH indicator method was applied for rational screening of K2, which dramatically improved the efficiency of screening.  相似文献   

14.
High productivity processes are critical for commercial production of cellulosic ethanol. One high productivity process—continuous hydrolysis and fermentation—has been applied in corn ethanol industry. However, little research related to this process has been conducted on cellulosic ethanol production. Here, we report and compare the kinetics of both batch SHF (separate hydrolysis and co‐fermentation) and SSCF (simultaneous saccharification and co‐fermentation) of AFEX? (Ammonia Fiber Expansion) pretreated corn stover (AFEX?‐CS). Subsequently, we designed a SSCF process to evaluate continuous hydrolysis and fermentation performance on AFEX?‐CS in a series of continuous stirred tank reactors (CSTRs). Based on similar sugar to ethanol conversions (around 80% glucose‐to‐ethanol conversion and 47% xylose‐to‐ethanol conversion), the overall process ethanol productivity for continuous SSCF was 2.3‐ and 1.8‐fold higher than batch SHF and SSCF, respectively. Slow xylose fermentation and high concentrations of xylose oligomers were the major factors limiting further enhancement of productivity. Biotechnol. Bioeng. 2013; 110: 1302–1311. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
Economical production of second generation ethanol from Ponderosa pine is of interest due to widespread mountain pine beetle infestation in the western United States and Canada. The conversion process is limited by low glucose and high inhibitor concentrations resulting from conventional low‐solids dilute acid pretreatment and enzymatic hydrolysis. Inhibited fermentations require larger fermentors (due to reduced volumetric productivity) and low sugars lead to low ethanol titers, increasing distillation costs. In this work, multiple effect evaporation (MEE) and nanofiltration (NF) were evaluated to concentrate the hydrolysate from 30 g/l to 100, 150, or 200 g/l glucose. To ferment this high gravity, inhibitor containing stream, traditional batch fermentation was compared with continuous stirred tank fermentation (CSTF) and continuous fermentation with cell recycle (CSTF‐CR). Equivalent annual operating cost (EAOC = amortized capital + yearly operating expenses) was used to compare these potential improvements for a local‐scale 5 MGY ethanol production facility. Hydrolysate concentration via evaporation increased EAOC over the base process due to the capital and energy intensive nature of evaporating a very dilute sugar stream; however, concentration via NF decreased EAOC for several of the cases (by 2 to 15%). NF concentration to 100 g/l glucose with a CSTF‐CR was the most economical option, reducing EAOC by $0.15 per gallon ethanol produced. Sensitivity analyses on NF options showed that EAOC improvement over the base case could still be realized for even higher solids removal requirements (up to two times higher centrifuge requirement for the best case) or decreased NF performance. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:946–956, 2015  相似文献   

16.
Poor hydrogen production performance and low biomass limit the practical application of photo‐fermentation. To improve the immobilization capability of bacteria and hydrogen production performance, activated carbon fibers (ACFs) were modified by acidic, alkaline, and neutral solutions. The modified ACFs were further used in the anaerobic fluidized bed photo‐reactor (AFBPR) to explore its continuous operation characteristics. Results showed that among the three reagents, nitric acid was the most efficient for ACF modification, and the maximum yield and production rate of hydrogen increased between about 33.6% and 65.8% compared to the control. Furthermore, with the optimal influent glutamate concentration (10 mmol L?1) and light intensity (4000 lux), the AFBPR gave efficient and stable performance with hydrogen yield of 2.26 mol H2 mol?1 acetate and hydrogen production rate of 25.8 mL L?1 h?1. The results showed the potential of using the AFBPR with HNO3‐modified ACF carriers for the large‐scale production of bio‐hydrogen.  相似文献   

17.
Most commercial probiotic products intended for pharmaceutical applications consist of combinations of probiotic strains and are available in various forms. The development of co‐culture fermentation conditions to produce probiotics with the correct proportion of viable microorganisms would reduce multiple operations and the associated costs. The aim of this study was to develop a fermentation medium and process to achieve biomass comprising the desired proportion of two probiotic strains in co‐culture. Initially, a quantification medium was developed, and the method was optimized to allow the quantification of each strain's biomass in a mixture. The specific growth rates of Lactobacillus delbrueckii spp. bulgaricus and Lactobacillus plantarum were determined in media with different carbon sources. The inoculum volume was optimized to achieve equal proportion of biomass in co‐culture fermentation in test tubes. Next, fermentation was carried out in a 3‐L bioreactor. A biomass concentration of 2.06 g/L, with L. delbrueckii spp. bulgaricus and L. plantarum in the ratio of 47%:53% (by weight), was achieved with concomitant production of 12.69 g/L of lactic acid in 14 h. The results show that with careful manipulation of process conditions, it is possible to achieve the desired proportion of individual strains in the final biomass produced by co‐culture fermentation. This process may serve as a model to produce multistrain probiotic drugs at industrial scale.  相似文献   

18.
Recent environmental economic developments generate a need for sustainable and cost‐effective (microbial) processes for the production of high‐volume, low‐priced bulk chemicals. As an example, n‐butanol has, as a second‐generation biofuel, beneficial characteristics compared to ethanol in liquid transportation fuel applications. The industrial revival of the classic n‐butanol (ABE) fermentation requires process and strain engineering solutions for overcoming the main process limitations: product toxicity and low space–time yield. Reaction intensification on the biocatalyst, fermentation, and bioprocess level can be based on economic and ecologic evaluations using quantifiable constraints. This review describes the means of process intensification for biotechnological processes. A quantitative approach is then used for the comparison of the massive literature on n‐butanol fermentation. A comprehensive literature study—including key fermentation performance parameters—is presented and the results are visualized using the window of operation methodology. The comparison allowed the identification of the key constraints, high cell densities, high strain stability, high specific production rate, cheap in situ product removal, high n‐butanol tolerance, to operate in situ product removal efficiently, and cheap carbon source. It can thus be used as a guideline for the bioengineer during the combined biocatalyst, fermentation, and bioprocess development and intensification.  相似文献   

19.
β‐Phycoerythrin is a color protein with several applications, from food coloring to molecular labeling. Depending on the application, different purity is required, affecting production cost and price. Different production and purification strategies for B‐phycoerythrin have been developed, the most studied are based on the production using Porphyridium cruentum and purified using chromatographic techniques or aqueous two‐phase systems. The use of the latter can result in a less expensive and intensive recovery of the protein, but there is lack of a proper economic analysis to study the effect of using aqueous two‐phase systems in a scaled‐up process. This study analyzed the production of B‐Phycoerythrin using real data obtained during the scale‐up of a bioprocess using specialized software (BioSolve, Biopharm Services, UK). First, a sensitivity analysis was performed to identify critical parameters for the production cost, then a Monte Carlo analysis to emulate real processes by adding uncertainty to the identified parameters. Next, the bioprocess was analyzed to determine its financial attractiveness and possible optimization strategies were tested and discussed. Results show that aqueous two‐phase systems retain their advantages of low cost and intensive recovery (54.56%); the costs of production per gram calculated (before titer optimization: US$15,709 and after optimization: US$2,374) allowed to obtain profit (in the range of US$millions in a 10‐year period) for a potential company taking this production method by comparing the production cost against commercial prices. The bioprocess analyzed is a promising and profitable method for the generation of a highly purified B‐phycoerythrin. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1472–1479, 2016  相似文献   

20.
为了在生物制氢过程中最大限度提高产氢量和产氢速率,增大底物的利用率以及更好地发挥菌种间的协同作用,联合生物制氢技术成为近年来人们关注的焦点。综述了目前国内外几种联合生物制氢方法的研究现状。并从产氢机理的角度对几种联合制氢技术进行了分析比较,重点强调光合发酵和暗发酵联合生物制氢技术具有广泛的发展前景,并指出其存在的问题和未来的发展趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号