首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
In this paper, a sensitive resonance light scattering (RLS) method for the determination of protein is reported. In the Tris–HCl (pH 7.50) buffer, protein enhanced the RLS intensity of the Y3+–2‐thenoyltrifluoroacetone (TTA)–sodium dodecyl sulphate (SLS) system. The enhanced RLS intensities were in proportion to the concentrations of proteins in the range 8.0 × 10?9–1.0 × 10?5 g/mL for BSA, 1.0 × 10–8–1.0 × 10?5 g/mL for HSA and 1.0 × 10–8–1.0 × 10?6 g/mL for EA, and their detection limits were 5.0, 5.4 and 6.7 ng/mL, respectively. Actual samples were satisfactorily determined. The interaction mechanism was also studied. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
《Luminescence》2004,19(1):21-25
The electrogenerated chemiluminescence (ECL) reaction of lucigenin with isatin was investigated at a platinum electrode in a neutral aqueous solution. The ECL intensity of lucigenin at ?0.65 V was greatly enhanced by isatin, and the ECL intensity was about 50 times higher than that of lucigenin without isatin. The enhanced ECL was believed to be produced by the chemiluminescence reaction between reduced lucigenin and superoxide anion that was generated by the reaction of electrochemically reduced isatin with dissolved oxygen. The conditions for the determination of isatin were optimized. Under the optimized condition, the enhanced ECL intensity vs. isatin concentration was linear in the range 4.8 × 10?7?1.9 × 10?5 g/mL; with a detection limit of 3.3 × 10?8 g/mL, and the relative standard derivation 1.0 × 10?6 g/mL isatin was 3.8%. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
Nucleic acid can greatly enhance the fluorescence intensity of quercetin in HMTA‐HCl (pH 5.5) buffer. The enhanced intensity is in proportion to the concentration of nucleic acids in the range 5.0 × 10?9 to 1.0 × 10?6 g/mL for fsDNA, 5.0 × 10?9 to 7.0 × 10?7 g/mL for ctDNA and 5.0 × 10?9 to 1.0 × 10?6 g/mL for yRNA, and their detection limits (S/N = 3) are 3.5 × 10?9, 7.8 × 10?10 and 2.6 × 10?9 g/mL, respectively. In comparison with most reported fluorescent probes for the determination of nucleic acids, the proposed probe has higher sensitivity and lower toxicity. The interaction investigation indicates that quercetin binds with double‐strand DNA in groove binding mode, resulting in fluorescence enhancement of this system. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
An electrochemiluminescence (ECL) approach for methamphetamine determination was developed based on a glassy carbon electrode modified with a Ru(bpy)32+‐doped silica nanoparticles/Nafion composite film. The monodispersed nanoparticles, which were about 50 nm in size, were synthesized using the water‐in‐oil microemulsion method. The ECL results revealed that Ru(bpy)32+ doped in silica nanoparticles retained its original photo‐ and electrochemical properties. The ECL intensity was found to be proportional to methamphetamine concentration over the range from 1.0 × 10?7 to 1.0 × 10?5 mol L?1, and the detection limit was found to be 2.6 × 10?8 mol L?1. The proposed ECL approach was used to analyze the methamphetamine content in drugs. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
The phenolphthalein‐imprinted polymer was prepared with methacrylic acid as functional monomer and ethylene glycol dimethacrylate as cross‐linker. Taking advantage of the quenching effect of phenolphthalein on the potassium permanganate–HCl–anhydrous alcohol chemiluminescence system, a new model was established to determine phenolphthalein by a highly selective flow injection chemiluminescence method. The traditional flow‐though cell was replaced with a novel flow path using a Y‐shaped polymethyl methacrylate column, through which the three reactants were injected simultaneously. The linear range of this assay was from 1.0 × 10?8 to 1.0 × 10?6 g/mL (= 0.9978). The limit of detection was 8.9 × 10?9 g/mL. The relative standard deviation for the determination of 1.0 × 10?8 g/mL phenolphthalein solution was below 2.9% (= 11). The proposed method was applied to the determination of phenolphthalein in real samples with satisfactory results. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
A highly sensitive and selective resonance scattering spectral assay was proposed for the determination of horseradish peroxidase (HRP), based on its catalytic effect on the H2O2 oxidation of KI to form I3?. The I3? combined respectively with rhodamine (Rh) dye such as rhodamine S (RhS), rhodamine 6G (Rh6G), rhodamine B (RhB) and butyl‐rhodamine B (b‐RhB), to form association particles (Rh‐I3)n. The four Rh systems all exhibit a stronger resonance scattering (RS) peak at 424 nm. For the RhS, Rh6G, RhB and b‐RhB systems, HRP concentration in the range of 3.2 × 10?12 to 4.8 × 10?9, 2 × 10?11 to 3.2 × 10?9, 1.6 × 10?11 to 3.2 × 10?9 and 1.6 × 10?11 to 4 × 10?9 g/mL was linear to its RS intensity at 424 nm, with a detection limit of 2.2 × 10?12, 2.5 × 10?12, 4.4 × 10?12 and 2.6 × 10?12 g/mL, respectively. This RhS system was most sensitive and stable, and was applied for the determination of HRP in the hepatitis B surface antibody labeling HRP and water samples, with satisfactory results. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, a novel and ultrasensitive electrochemiluminescent sensor employing a solvothermal‐synthesized CdS nanorod‐modified pencil graphite electrode (CdS/PGE) for the determination of chlorogenic acid (CA) is fabricated. In the first step, the PGE surface is modified using CdS nanorods. In the next step, the developed electrode is used to detect CA using a electrochemiluminescent (ECL) technique, in which potassium persulfate (K2S2O8) served as a co‐reactant. The possible ECL mechanism is investigated, and the influences of pH and cyclic voltammetric scanning rate on the signal response are studied. The ECL intensity decreases quantitatively in relation to the concentration of the target molecule. Under optimized conditions, the linear correlation between the quenched ECL intensity and the logarithm of CA concentration is observed in the range from 2 × 10?9 to 8 × 10?7 mol L?1 with a limit of detection of 1 × 10?9 mol L?1. This proposed method is applied to the analysis of CA in honeysuckle flower, giving recoveries of 99‐107%. The experimental results demonstrate that this ECL sensor shows good stability and reproducibility.  相似文献   

8.
A novel chemiluminescence method for the determination of 6‐mercaptopurine was established based on 6‐mercaptopurine inhibition of the chemiluminescence emission of potassium permanganate–thioacetamide–sodium hexametaphosphate system. The peak height was proportional to log 6‐mercaptopurine concentration in the range 7.0 × 10?10 to 1.0 × 10?7 g/mL and the detection limit was 1.9 × 10?11 g/mL (S/N = 3). The relative standard deviation was 1.5% for the determination of 8.0 × 10?8 g/mL 6‐mercaptopurine (n = 11). The proposed sensor was successfully applied to the analysis of 6‐mercaptopurine in human serum samples. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
The method is based on the fact that dipyridamole can enhance the chemiluminescence (CL) emission from the redox reaction of bis (2,4,6‐tricholorophenyl) oxalate (TCPO) with H2O2 in the presence of silver nanoparticles (AgNPs). The CL reaction mechanism was discussed. The effect of concentrations of TCPO, H2O2, AgNPs and pH value on the CL reaction were investigated. Under the optimum conditions, the linear dynamic range was 1.0–1000 × 10?9 g/mL and the detection limit (3σ) was 9 × 10?10 g/mL. The relative standard deviation (RSD) was 4.8% for 1.0 × 10?9 g/mL dipyridamole (n = 7). The proposed method has been successfully applied to the determination of dipyridamole tablets and the recovery was 99–103%. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
A simple and sensitive flow injection chemiluminescence method has been developed for the determination of ferulic acid (FA) based on the significant enhancement effect of FA on the CL signal of the N‐bromobutanimide (NBS)–eosin–CrCl3 system in alkaline solution. Under optimum conditions, the enhanced CL intensity is linearly related to the concentration of FA in its pharmaceutical preparations and human plasma samples. The corresponding linear regression equations were established over the 4.0 × 10–10–1.0 × 10–7 g/mL for FA tablets and 2.0 × 10–10–1.0 × 10–7 g/mL for plasma samples. The limit of detection for FA tablets and limit of quantification for plasma samples were 2.8 × 10–10 g/mL (3 σ) and 3.04 × 10–10 g/mL (10 σ), respectively. A complete analysis could be performed within 40 s, including washing and sampling, giving a throughput of ≈90/h. The proposed method was successfully applied to the determination of FA in pharmaceutical preparations and human plasma samples with satisfactory results. The recoveries of pharmaceutical preparations and human plasma samples at three different concentrations were 97.8–102.6% and 96.7–104.0%, respectively. Furthermore, the possible mechanism of CL reactions was also discussed briefly. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Based on the strong enhancement effect of procaterol hydrochloride on the electrochemiluminescence (ECL) of Ru(bpy)32+ (bpy = 2,2′‐bipyridine) in an alkaline H3PO4–NaOH buffer solution on a bare Pt electrode, a simple, rapid and sensitive method was developed for the determination of procaterol hydrochloride. The optimum conditions for the enhanced ECL have been developed in detail in this work. Under optimum conditions, the logarithmic ECL enhancement vs. the logarithmic concentration of procaterol hydrochloride is linear over a wide concentration range of 2.0 × 10?7 to 2.0 × 10?4 M (r =  0.9976), with a limit of detection of 1.1 × 10?8 M (S/N =  3), and a relative standard deviation of 2.1% (n =  7, c =  5.0 × 10?6 M). The proposed method was applied to the determination of this drug in tablets with recoveries of 89.7%–98.5%. In addition, a possible mechanism for the enhanced ECL of Ru(bpy)32+, which is caused by ProH, has also been proposed.  相似文献   

12.
A novel flow‐injection chemiluminescence method was developed for the selective determination of human immunoglobulin G (IgG) in the presence of thiomersal by changing the flow rates of peristaltic pump. The study was based on the independence and additivity of the CL signals of human IgG and thiomersal in the galangin–potassium permanganate–polyphosphoric acid system. In meantime, two equations relating to the concentrations of mixing solutions of human IgG and thiomersal vs the CL intensity were established and solved, on the basis of which the content of thiomersal included in samples was simultaneously determined too. The enhanced CL intensity was in proportion to concerntrations in the range 8.0 × 10?7 to 8.0 × 10?5 g/mL for human IgG and 1.0 × 10?7 to 2.0 × 10?6 g/mL for thiomersal with the detection limits of 5.0 × 10?7 g/mL for human IgG and 6.0 × 10?8 g/mL for thiomersal, respectively. The relative standard deviation for 1.0 × 10?5 g/mL human IgG was 0.8% and for 2.0 × 10?7 g/mL thiomersal it was 2.0% (n = 10). The proposed method was applied to determine three synthetic samples with recoveries of 91.5–109.5%. In addition, the possible chemiluminescence mechanisms are discussed as well. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
The chemiluminescence (CL) behaviour of the luminol–potassium periodate system enhanced by CdTe quantum dots capped with thioglycolic acid (TGA–CdTe QDs) was studied using kinetic experiments, CL spectra, UV–vis absorption spectra and fluorescence spectra. The production of oxygen‐containing reactant intermediates (O2?? and OH?) in the present CL system was verified by CL. The possible CL mechanism was discussed in detail. Furthermore, theophylline (THP) was determined based on its enhancement of the CL intensity of the CdTe QDs–luminol–potassium periodate system coupled with a flow‐injection technique. Under these optimized conditions, the linear range was found to be from 1.0 × 10?8 to 1.0 × 10?5 g/mL with a detection limit of 2.8 × 10?9 g/mL (3σ). The recoveries for the determination of THP in tablets were from 98.2 to 99.6%.  相似文献   

14.
A remarkable method for the highly sensitive detection of phenylalanine and tryptophan based on a chemiluminescence (CL) assay was reported. It was found that fluorescent copper nanoclusters capped with cysteine (Cys‐CuNCs) strongly enhance the weak CL signal resulting from the reaction between luminol and H2O2. Of the amino acids tested, phenylalanine and tryptophan could enhance the above CL system sensitively. Under optimum conditions, this method was satisfactorily described by a linear calibration curve over a range of 1.0 × 10?6 to 2.7 × 10?5 M for phenylalanine and 1.0 × 10?7 to 3.0 × 10?5 M for tryptophan, respectively. The effect of various parameters such as Cys‐CuNC concentration, H2O2 concentration and pH on the intensity of the CL system were also studied. The main experimental advantage of the proposed method was its selectivity for two amino acids compared with others. To evaluate the applicability of the method to the analysis of a real biological sample it was used to determine tryptophan and phenylalanine in human serum and remarkable results were obtained.  相似文献   

15.
Quenching effects of bergenin, based on the electrochemiluminescence (ECL) of the tris(2,2′‐bipyridyl)‐ruthenium(II) (Ru(bpy)32+)/tri‐n‐propylamine (TPrA) system in aqueous solution, is been described. The quenching behavior can be observed with a 100‐fold excess of bergenin over Ru(bpy)32+. In the presence of 0.1 m TPrA, the Stern–Volmer constant (KSV) of the ECL quenching is as high as 1.16 × 104 M?1 for bergenin. The logarithmic plot of the inhibited ECL versus logarithmic plot of the concentration of bergenin was linear over the range 3.0 × 10?6–1.0 × 10?4 mol/L. The corresponding limit of detection was 6.0 × 10?7 mol/L for bergenin (S/N = 3). In the mechanism of quenching it is believed that the competition of the active free radicals between Ru(bpy)32+/TPrA and bergenin was the key factor for the ECL inhibition of the system. Photoluminescence, cyclic voltammetry, coupled with bulk electrolysis, supports the supposition mechanism of the Ru(bpy)32+/TPrA–bergenin system. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Electrogenerated chemiluminescence (ECL) of thiol‐capped CdTe quantum dots (QDs) in aqueous solution was greatly enhanced by PDDA‐protected graphene (P‐GR) film that were used for the sensitive detection of H2O2. When the potential was cycled between 0 and ?2.3 V, two ECL peaks were observed at ?1.1 (ECL‐1) and ?1.4 V (ECL‐2) in pH 11.0, 0.1 M phosphate buffer solution (PBS), respectively. The electron‐transfer reaction between individual electrochemically‐reduced CdTe nanocrystal species and oxidant coreactants (H2O2 or reduced dissolved oxygen) led to the production of ECL‐1. While mass nanocrystals packed densely in the film were reduced electrochemically, assembly of reduced nanocrystal species reacted with coreactants to produce an ECL‐2 signal. ECL‐1 showed higher sensitivity for the detection of H2O2 concentrations than that of ECL‐2. Further, P‐GR film not only enhanced ECL intensity of CdTe QDs but also decreased its onset potential. Thus, a novel CdTe QDs ECL sensor was developed for sensing H2O2. Light intensity was linearly proportional to the concentration of H2O2 between 1.0 × 10?5 and 2.0 x 10‐7 mol L?1 with a detection limit of 9.8 x 10?8 mol L?1. The P‐GR thin‐film modified glassy carbon electrode (GCE) displayed acceptable reproducibility and long‐term stability. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
A sensitive and selective fluorimetric sensor for the assay of ascorbic acid (AA) using silver nanoparticles as emission reagent was investigated. In this study, silver nanoparticles were prepared based on aqueous–gaseous phase reaction of silver nitrate solution and ammonia gas. The nanoparticles were water‐soluble, stable and had a narrow emission band. They were used as a fluorescence probe for the assay of ascorbic acid on its quenching effect on the emission of silver nanoparticles. The principal reason for quenching is likely to be a complexation between ascorbic acid and silver nanoparticles. The quenching mechanism was established by Stern–Volmer law. Under the optimum conditions, the quenched fluorescence intensity was linear with the concentration of ascorbic acid in the range of 4.1 × 10?6 to 1.0 ×10?4 m (= 0.9985) with a detection limit of 1.0 × 10?7 m . The RSD for repeatability of the sensor for the assay of ascorbic acid concentration of 3.0 × 10?5 and 4.0 × 10?6 m was found to be 1.5 and 1.3%, respectively. The proposed method was applied to the determination of ascorbic acid in vegetables and vitamin C tablets. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
A simple and sensitive chemiluminescence (CL) method combined with flow injection technique was developed for the determination of naproxen. It was based upon the weak CL signal arising from the reaction of KIO4 with H2O2 being significantly increased by naproxen in the presence of europium(III) ion. The experimental conditions that affected the CL signal were carefully optimized and the CL reaction mechanism was briefly discussed. Under the optimum conditions, the increment of CL intensity was proportional to the concentration of naproxen ranging from 5.0 × 10?8 to 5.0 × 10?6 g/mL. The detection limit was 1 × 10?8 g/mL naproxen and the relative standard deviation for 5.0 × 10?7 g/mL naproxen solution was 2.1% (n = 11). The proposed method was applied to the determination of naproxen in tablets and in spiked human urine samples with satisfactory results. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
A sensitive and simple flow‐injection chemiluminescence (FI‐CL) method, which was based on the CL intensity generated from the redoxreaction of potassium permanganate (KMnO4)–formaldehyde in vitriol (H2SO4) medium, has been developed, validated and applied for the determination of naphazoline hydrochloride and oxymetazoline hydrochloride. Besides oxidants and sensitizers, the effect of the concentration of H2SO4, KMnO4 and formaldehyde was investigated. Under the optimum conditions, the linear range was 1.0 × 10?2–7.0 mg/L for naphazoline hydrochloride and 5.0 × 10?2–10.0 mg/L for oxymetazoline hydrochloride. During seven repeated inter‐day and intra‐day precision tests of 0.1, 1.0 and 10.0 mg/L samples, the relative standard deviations all corresponded to reference values. The detection limit was 8.69 × 10?3 mg/L for naphazoline hydrochloride and 3.47 × 10?2 mg/L for oxymetazoline hydrochloride (signal‐to‐noise ratio ≤3). This method has been successfully implemented for the determination of naphazoline hydrochloride and oxymetazoline hydrochloride in pharmaceuticals. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
It was found that meloxicam could enhance the chemiluminescence (CL) of the tris(2,2'‐bipyridine) ruthenium(II)–Ce(IV) system in the medium of sulfate acid. Based on this phenomenon a new flow‐injection system with chemiluminescent detection has been proposed for determination of meloxicam. Under optimum conditions, meloxicam had a good linear relationship with the CL intensity in the concentration range of 6.0  10?4 to 1.0 µg/mL and the detection limit was 3.7 × 10?4 µg/mL. The proposed method was applied to detect meloxicam in tablets and a satisfactory recovery was obtained. The possible mechanism for this CL system is also discussed in this paper. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号