首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Our study aimed to evaluate the protective role and mechanisms of bone marrow mesenchymal stem cells (BMSCs) in hypoxic photoreceptors and experimental retinal detachment. The cellular morphology, viability, apoptosis and autophagy of hypoxic 661w cells and cells cocultured with BMSCs were analysed. In retinal detachment model, BMSCs were intraocularly transplanted, and then, the retinal morphology, outer nuclear layer (ONL) thickness and rhodopsin expression were studied as well as apoptosis and autophagy of the retinal cells. The hypoxia-induced apoptosis of 661w cells obviously increased together with autophagy levels increasing and peaking at 8 hours after hypoxia. Upon coculturing with BMSCs, hypoxic 661w cells had a better morphology and fewer apoptosis. After autophagy was inhibited, the apoptotic 661w cells under the hypoxia increased, and the cell viability was reduced, even in the presence of transplanted BMSCs. In retina-detached eyes transplanted with BMSCs, the retinal ONL thickness was closer to that of the normal retina. After transplantation, apoptosis decreased significantly and retinal autophagy was activated in the BMSC-treated retinas. Increased autophagy in the early stage could facilitate the survival of 661w cells under hypoxic stress. Coculturing with BMSCs protects 661w cells from hypoxic damage, possibly due to autophagy activation. In retinal detachment models, BMSC transplantation can significantly reduce photoreceptor cell death and preserve retinal structure. The capacity of BMSCs to reduce retinal cell apoptosis and to initiate autophagy shortly after transplantation may facilitate the survival of retinal cells in the low-oxygen and nutrition-restricted milieu after retinal detachment.  相似文献   

2.
脂肪组织几乎遍布于动物体全身,在整个生命过程中有极强的可塑性. 近年研究表明,运用相似的分离方法,可从人、小鼠、大鼠、兔和猪等物种脂肪组织中分离获得脂肪间充质干细胞. 与骨髓来源的间充质干细胞相比,它具有相似的表面标记和分化潜能;在合适的诱导条件下,这种细胞能分别向3个胚层的细胞分化,如成肌细胞、心肌细胞、软骨细胞、成骨细胞、脂肪细胞、神经细胞、血管内皮细胞和肝细胞等;脂肪间充质干细胞具有来源丰富,取材安全方便和扩增速率高的特点,使其在细胞治疗和组织工程方面具有更广阔的应用前景.  相似文献   

3.
该研究旨在探讨小鼠骨髓间充质干细胞(bone marrow mesenchymal stem cells,BMSCs)通过miR-130b对上皮钠通道(epithelial sodium channel,ENaC)的影响。将分离与培养的小鼠BMSCs接种到Transwell小室中,然后与H441细胞进行共培养。利用CCK-8试剂盒检测BMSCs对H441细胞生存能力的影响;采用Western blot技术检测BMSCs对共培养的H441细胞中γ-ENaC蛋白水平的影响;qRT-PCR技术检测与BMSCs共培养的H441细胞中miR-130b表达情况,然后将此microRNA转染到普通培养的H441细胞中,在蛋白水平进一步验证其对H441细胞中γ-ENaC的影响。实验结果表明,BMSCs能够增强H441细胞的生存能力;同时BMSCs能分别增加共培养的H441细胞中γ-ENaC的蛋白水平以及miR-130b的转录水平;Western blot实验进一步证实,miR-130b转染至H441细胞后能够增加其γ-ENaC的蛋白表达。由此我们推测,BMSCs能够增强H441细胞的生存能力并且可能通过miR-130b发挥其对γ-ENaC的蛋白水平调控作用。  相似文献   

4.
Osteoarthritis (OA) is a common joint disease in the middle and old age group with obvious cartilage damage, and the regeneration of cartilage is the key to alleviating or treating OA. In stem cell therapy, bone marrow stem cell (BMSC) has been confirmed to have cartilage regeneration ability. However, the role of stem cells in promoting articular cartilage regeneration is severely limited by their low homing rate. Stromal cell‐derived factor‐1α (SDF‐1α) plays a vital role in MSC migration and involves activation, mobilization, homing and retention. So, we aim to develop SDF‐1α‐loaded microbubbles MB(SDF‐1α), and to verify the migration of BMSCs with the effect of ultrasound combined with MB(SDF‐1α) in vitro and in vivo. The characteristics of microbubbles and the content of SDF‐1α were examined in vitro. To evaluate the effect of ultrasound combined with chemotactic microbubbles on stem cell migration, BMSCs were injected locally and intravenously into the knee joint of the OA model, and the markers of BMSCs in the cartilage were detected. We successfully prepared MB(SDF‐1α) through covalent bonding with impressive SDF‐1α loading efficacy loading content. In vitro study, ultrasound combined with MB(SDF‐1α) group can promote more stem cell migration with highest migrating cell counts, good cell viability and highest CXCR4 expression. In vivo experiment, more BMSCs surface markers presented in the ultrasound combined with MB(SDF‐1α) group with or without exogenous BMSCs administration. Hence, ultrasound combined with MB(SDF‐1α) could promote the homing of BMSCs to cartilage and provide a novel promising therapeutic approach for OA.  相似文献   

5.
Cultured adherent bone marrow stromal cells (BMSCs) are capable of forming ectopic hematopoietic microenvironments (HMEs) in immunodeficient mice. However, the cell surface phenotype of the native bone marrow stem/progenitor cell that gives rise to BMSCs that support hematopoiesis remains poorly defined. We recently reported the derivation of human BMSC-like cells (CD133BMSCs) by magnetic cell sorting against Prominin-1 (CD133), an epitope expressed by embryonic, fetal, and adult stem cells. Here we demonstrate that CD133BMSCs are capable of forming ectopic HMEs. Cultured adherent CD133BMSCs derived from sorted CD133-positive cells lacked CD133 expression, but were uniformly positive for CD146, an epitope recently described to identify self-renewing osteoprogenitor cells that could transfer the HME. CD133BMSCs were genetically-tagged by lentivirus, expanded, and seeded into HA/TCP/fibrin constructs that were implanted subcutaneously. After 60 days, CD133BMSCs produced human osteocytes, osteoblasts, adipocytes, and reticular cells that supported murine hematopoiesis. CD133BMSCs that were not transduced with lentivirus also formed HMEs. Control constructs seeded with human dermal fibroblasts formed connective tissue, but failed to form HMEs. Our data indicate that CD133 expression identifies a native human bone marrow stem/progenitor cell that gives rise to BMSCs capable of forming the HME.  相似文献   

6.
Methods utilizing stem cells hold tremendous promise for tissue engineering applications; however, many issues must be worked out before these therapies can be routinely applied. Utilization of external cues for preimplantation expansion and differentiation offers a potentially viable approach to the use of stem cells in tissue engineering. The studies reported here focus on the response of murine neural stem cells encapsulated in alginate hydrogel beads to alternating current electric fields. Cell viability and differentiation was studied as a function of electric field magnitude and frequency. We applied fields of frequency (0.1–10) Hz, and found a marked peak in neural stem cell viability under oscillatory electric fields with a frequency of 1 Hz. We also found an enhanced propensity for astrocyte differentiation over neuronal differentiation in the 1 Hz cultures, as compared to the other field frequencies we studied. Published 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

7.
Tissue engineering (TE) of long tracheal segments is conceptually appealing for patients with inoperable tracheal pathology. In tracheal TE, stem cells isolated from bone marrow or adipose tissue have been employed, but the ideal cell source has yet to be determined. When considering the origin of stem cells, cells isolated from a source embryonically related to the trachea may be more similar. In this study, we investigated the feasibility of isolating progenitor cells from pleura and pericard as an alternative cells source for tracheal tissue engineering. Porcine progenitor cells were isolated from pleura, pericard, trachea and adipose tissue and expanded in culture. Isolated cells were characterized by PCR, RNA sequencing, differentiation assays and cell survival assays and were compared to trachea and adipose-derived progenitor cells. Progenitor-like cells were successfully isolated and expanded from pericard and pleura as indicated by gene expression and functional analyses. Gene expression analysis and RNA sequencing showed a stem cell signature indicating multipotency, albeit that subtle differences between different cell sources were visible. Functional analysis revealed that these cells were able to differentiate towards chondrogenic, osteogenic and adipogenic lineages. Isolation of progenitor cells from pericard and pleura with stem cell features is feasible. Although functional differences with adipose-derived stem cells were limited, based on their gene expression, pericard- and pleura-derived stem cells may represent a superior autologous cell source for cell seeding in tracheal tissue engineering.  相似文献   

8.
Mesenchymal stem cells and precursor cells are ideal candidates for tendon and ligament tissue engineering; however, for the stem cell-based approach to succeed, these cells would be required to proliferate and differentiate into tendon/ligament fibroblasts on the tissue engineering scaffold. Among the various fiber-based scaffolds that have been used in tendon/ligament tissue engineering, hybrid fibrous scaffolds comprising both microfibers and nanofibers have been recently shown to be particularly promising. With the nanofibrous coating presenting a biomimetic surface, the scaffolds can also potentially mimic the natural extracellular matrix in function by acting as a depot for sustained release of growth factors. In this study, we demonstrate that basic fibroblast growth factor (bFGF) could be successfully incorporated, randomly dispersed within blend-electrospun nanofibers and released in a bioactive form over 1 week. The released bioactive bFGF activated tyrosine phosphorylation signaling within seeded BMSCs. The bFGF-releasing nanofibrous scaffolds facilitated BMSC proliferation, upregulated gene expression of tendon/ligament-specific ECM proteins, increased production and deposition of collagen and tenascin-C, reduced multipotency of the BMSCs and induced tendon/ligament-like fibroblastic differentiation, indicating their potential in tendon/ligament tissue engineering applications.  相似文献   

9.
In a previous study, we found that at low concentrations, safrole oxide (SFO) could induce vascular endothelial cell (VEC) transdifferentiation into neuron-like cells; however, whether SFO could induce bone-marrow mesenchymal stem cell (BMSC) neural differentiation was unknown. Here, we found that SFO could effectively induce BMSC neural differentiation in the presence of serum and fibroblast growth factor 2 and did not affect cell viability at low concentrations. The levels of neuron-specific enolase and neurofilament-L were increased greatly, but that of glial fibrillary acidic protein was absent with SFO treatment for 48 h. Furthermore, SFO could increase the level of heat shock protein 70 (Hsp70), an important factor in neuronal differentiation. Knockdown of Hsp70 by its small interfering RNA blocked SFO-induced BMSC differentiation. Thus, SFO is a novel inducer of BMSC differentiation to neuron-like cells and Hsp70 is implicated in the differentiation process. We provide a new tool for obtaining neuron-like cells from BMSCs and for further investigating the new effect of Hsp70 on BMSC neuronal differentiation.  相似文献   

10.
目的探讨骨髓间充质干细胞(BMSCs)移植对急性肝功能衰竭(ALF)大鼠肝组织中miRNA-155和TNF-α表达的影响,以及与BMSCs疗效间的关系。方法将SD大鼠随机分为健康对照组、ALF组、BMSCs治疗组和BMSCs预防组,其中ALF组予以900 mg/kg D-GalN+10μg/kg脂多糖腹腔注射建立模型;BMSCs治疗组在900 mg/kg D-GalN+10μg/kg脂多糖腹腔注射后2 h,予以尾静脉注射BMSCs 5.0×10^6;BMSCs预防组在900 mg/kg D-GalN+10μg/kg脂多糖腹腔注射前予以尾静脉注射BMSCs 5.0×10^6;健康对照组予以0.9﹪氯化钠溶液1 ml腹腔注射。给药7 h后每组处死大鼠,检测大鼠血清ALT和AST,ELISA法检测TNF-α水平,实时定量PCR检测肝组织miRNA-155、TNF-αmRNA。各组间肝功指标差异采用方差分析,同时观察每组大鼠的24 h生存率,并用卡方检验比较各组生存率的差异。结果 D-GalN/脂多糖诱导7 h后,与ALF组相比,BMSCs预防和BMSCs治疗组大鼠ALT、AST、TNF-α水平均有所降低(P〈0.01);同时两组肝组织TNF-αmRNA和miRNA-155表达水平均有下调(P〈0.01);但两组间相比较差异无统计学意义。ALF组大鼠肝组织miRNA-155上调和TNF-αmRNA诱导呈正相关(r=0.734,P=0.001)。BMSCs预防组和BMSCs治疗组miRNA-155和TNF-αmRNA的部分逆转亦呈正相关(r值分别为0.687和0.590,P值分别为0.004和0.006)。给药后24 h,健康对照组、ALF组、BMSCs治疗组和BMSCs预防组大鼠死亡率组间比较差异有统计学意义(c2=19.078,P〈0.01)。结论在BMSCs干预大鼠ALF发病过程中,可以部分逆转上调的肝组织miRNA-155和TNF-α,且存在协同性,提示BMSCs治疗ALF可能通过对肝组织miRNA-155和TNF-α的调控发生作用。  相似文献   

11.
Bone tissue engineering(BTE) is now a promising re-search issue to improve the drawbacks from traditional bone grafting procedure such as limited donor sources and possible complications. Stem cells are one of the major factors in BTE due to the capability of self re-newal and multi-lineage differentiation. Unlike embry-onic stem cells, which are more controversial in ethical problem, adult mesenchymal stem cells are considered to be a more appropriate cell source for BTE. Bone marrow mesenchymal stem cells(BMSCs) are the ear-liest-discovered and well-known stem cell source using in BTE. However, the low stem cell yield requiring long expansion time in vitro, pain and possible morbidities during bone marrow aspiration and poor proliferation and osteogenic ability at old age impede its' clinical ap-plication. Afterwards, a new stem cell source coming from adipose tissue, so-called adipose-derived stemcells(ASCs), is found to be more suitable in clinical ap-plication because of high stem cells yield from lipoaspi-rates, faster cell proliferation and less discomfort and morbidities during harvesting procedure. However, the osteogenic capacity of ASCs is now still debated be-cause most papers described the inferior osteogenesis of ASCs than BMSCs. A better understanding of the osteogenic differences between ASCs and BMSCs is crucial for future selection of cells in clinical application for BTE. In this review, we describe the commonality and difference between BMSCs and ASCs by cell yield, cell surface markers and multiple-differentiation poten-tial. Then we compare the osteogenic capacity in vitro and bone regeneration ability in vivo between BMSCs and ASCs based on the literatures which utilized both BMSCs and ASCs simultaneously in their articles. The outcome indicated both BMSCs and ASCs exhibited the osteogenic ability to a certain extent both in-vitro and in-vivo. However, most in-vitro study papers verified the inferior osteogenesis of ASCs; conversely, in-vivo research reviews revealed more controversies in this issue. We expect the new researchers can have a quick understanding of the progress in this filed and design a more comprehensive research based on this review.  相似文献   

12.
Bone marrow-derived mesenchymal stem cells(BMSCs) play a critical role in the osseointegration of bone and orthopedic implant. However, osseointegration between the Ti-based implants and the surrounding bone tissue must be improved due to titanium's inherent defects. Surface modification stands out as a versatile technique to create instructive biomaterials that can actively direct stem cell fate. Here, we summarize the current approaches to promoting BMSC osteogenesis on the surface of titanium and its alloys. We will highlight the utilization of the unique properties of titanium and its alloys in promoting tissue regeneration, and discuss recent advances in understanding their role in regenerative medicine. We aim to provide a systematic and comprehensive review of approaches to promoting BMSC osteogenesis on the orthopedic implant surface.  相似文献   

13.
Cell therapy with bone marrow stem cells (BMSCs) remains a viable option for tissue repair and regeneration. A major challenge for cell therapy is the limited cell survival after implantation. This study was to investigate the effect of oxidized low‐density lipoprotein (ox‐LDL, naturally present in human blood) on BMSC injury and the effect of MG53, a tissue repair protein, for the improvement of stem cell survival. Rat bone marrow multipotent adult progenitor cells (MAPCs) were treated with ox‐LDL, which caused significant cell death as reflected by the increased LDH release to the media. Exposure of MAPCs to ox‐LDL led to entry of fluorescent dye FM1‐43 measured under confocal microscope, suggesting damage to the plasma membrane. Ox‐LDL also generated reactive oxygen species (ROS) as measured with electron paramagnetic resonance spectroscopy. While antioxidant N‐acetylcysteine completely blocked ROS production from ox‐LDL, it failed to prevent ox‐LDL‐induced cell death. When MAPCs were treated with the recombinant human MG53 protein (rhMG53) ox‐LDL induced LDH release and FM1‐43 dye entry were significantly reduced. In the presence of rhMG53, the MAPCs showed enhanced cell survival and proliferation. Our data suggest that membrane damage induced by ox‐LDL contributed to the impaired survival of MAPCs. rhMG53 treatment protected MAPCs against membrane damage and enhanced their survival which might represent a novel means for improving efficacy for stem cell‐based therapy for treatment of diseases, especially in setting of hyperlipidemia.  相似文献   

14.
Exosomes are served as substitutes for stem cell therapy, playing important roles in mediating heart repair during myocardial infarction injury. Evidence have indicated that lipopolysaccharide (LPS) pre‐conditioning bone marrow‐derived mesenchymal stem cells (BMSCs) and their secreted exosomes promote macrophage polarization and tissue repair in several inflammation diseases; however, it has not been fully elucidated in myocardial infarction (MI). This study aimed to investigate whether LPS‐primed BMSC‐derived exosomes could mediate inflammation and myocardial injury via macrophage polarization after MI. Here, we found that exosomes derived from BMSCs, in both Exo and L‐Exo groups, increased M2 macrophage polarization and decreased M1 macrophage polarization under LPS stimulation, which strongly depressed LPS‐dependent NF‐κB signalling pathway and partly activated the AKT1/AKT2 signalling pathway. Compared with Exo, L‐Exo had superior therapeutic effects on polarizing M2 macrophage in vitro and attenuated the post‐infarction inflammation and cardiomyocyte apoptosis by mediating macrophage polarization in mice MI model. Consequently, we have confidence in the perspective that low concentration of LPS pre‐conditioning BMSC‐derived exosomes may develop into a promising cell‐free treatment strategy for clinical treatment of MI.  相似文献   

15.
For the development of innovative cell-based liver directed therapies, e.g. liver tissue engineering, the use of stem cells might be very attractive to overcome the limitation of donor liver tissue. Liver specific differentiation of embryonic, fetal or adult stem cells is currently under investigation. Different types of fetal liver (stem) cells during development were identified, and their advantageous growth potential and bipotential differentiation capacity were shown. However, ethical and legal issues have to be addressed before using fetal cells. Use of adult stem cells is clinically established, e.g. transplantation of hematopoietic stem cells. Other bone marrow derived liver stem cells might be mesenchymal stem cells (MSC). However, the transdifferentiation potential is still in question due to the observation of cellular fusion in several in vivo experiments. In vitro experiments revealed a crucial role of the environment (e.g. growth factors and extracellular matrix) for specific differentiation of stem cells. Co-cultured liver cells also seemed to be important for hepatic gene expression of MSC. For successful liver cell transplantation, a novel approach of tissue engineering by orthotopic transplantation of gel-immobilized cells could be promising, providing optimal environment for the injected cells. Moreover, an orthotopic tissue engineering approach using bipotential stem cells could lead to a repopulation of the recipients liver with healthy liver and biliary cells, thus providing both hepatic functions and biliary excretion. Future studies have to investigate, which stem cell and environmental conditions would be most suitable for the use of stem cells for liver regeneration or tissue engineering approaches.  相似文献   

16.
骨髓间充质干细胞又称为骨髓源性间充质干细胞,是指存在于骨髓基质细胞系统中的一类干细胞,具有高度稳定的体外扩增能力和多向分化潜能等特点。骨髓间充质干细胞因其取材方便,易于分离和培养,以及在适当条件下可诱导分化为皮肤、骨骼、内脏、血液、神经等多种组织细胞的独特优势,目前被广泛应用于药物开发、免疫调节、组织修复、器官重建等多个研究领域。近年来,骨髓间充质干细胞作为种子细胞在组织工程领域有着非常诱人的潜在应用前景。本文就骨髓间充质干细胞在组织工程学研究中应用的最新进展作一综述。  相似文献   

17.
Insulin‐like growth factor binding protein 4 (IGFBP‐4) was reported to trigger cellular senescence and reduce cell growth of bone marrow mesenchymal stem cells (BMSCs), but its contribution to neurogenic differentiation of BMSCs remains unknown. In the present study, BMSCs were isolated from the femur and tibia of young rats to investigate effects of IGFBP‐4 on BMSC proliferation and growth of neurospheres derived from BMSCs. Bone marrow mesenchymal stem cell proliferation was assessed using CCK‐8 after treatment with IGFBP‐4 or blockers of IGF‐IR and β‐catenin. Phosphorylation levels of Akt, Erk, and p38 in BMSCs were analysed by Western blotting. Bone marrow mesenchymal stem cells were induced into neural lineages in NeuroCult medium; the number and the size of BMSC‐derived neurospheres were counted after treatment with IGFBP‐4 or the blockers. It was shown that addition of IGFBP‐4 inhibited BMSC proliferation and immunodepletion of IGFBP‐4 increased the proliferation. The blockade of IGF‐IR with AG1024 increased BMSC proliferation and reversed IGFBP‐4‐induced proliferation inhibition; however, blocking of β‐catenin with FH535 did not. p‐Erk was significantly decreased in IGFBP‐4‐treated BMSCs. IGFBP‐4 promoted the growth of neurospheres derived from BMSCs, as manifested by the increases in the number and the size of the derived neurospheres. Both AG1024 and FH535 inhibited the formation of NeuroCult‐induced neurospheres, but FH535 significantly inhibited the growth of neurospheres in NeuroCult medium with EGF, bFGF, and IGFBP‐4. The data suggested that IGFBP‐4 inhibits BMSC proliferation through IGF‐IR pathway and promotes growth of BMSC‐derived neurospheres via stabilizing β‐catenin.  相似文献   

18.
骨髓间充质干细胞具有自我复制、未分化的特点,并可在不同条件下分化为中胚层起源的多种细胞,是一种成体多能干细胞。就组织工程而言,良好的种子细胞是组织工程技术的关键,骨髓间充质干细胞的性质决定了其在骨组织工程领域中的重要地位。此外,骨骼系统属于机体的运动系统,承担体重是骨骼的重要功能之一;而且,人体内几乎所有的细胞都会受到力学因素的影响,故有必要研究力学因素对骨髓间充质干细胞诱导分化为成骨细胞的作用,为骨髓间充质干细胞的体外扩增、诱导分化及培养提供一种新途径。  相似文献   

19.
The aim of this study is to investigate the feasibility of using well defined, serum‐free freezing solutions with a reduced level of dimethylsulfoxide (DMSO) of 7.5, 5, and 2.5% (v/v) in the combination with polyethylene glycol (PEG) or trehalose to cryopreserve human bone marrow‐derived mesenchymal stem cells (hBMSCs), a main source of stem cells for cell therapy and tissue engineering. The standard laboratory freezing protocol of around 1°C/min was used in the experiments. The efficiency of 1,2‐propandiol on cryopreservation of hBMSCs was explored. We measured the post‐thawing cell viability and early apoptotic behaviors, cell metabolic activities, and growth dynamics. Cell morphology and osteogenic, adipogenic and chondrogenic differentiation capability were also tested after cryopreservation. The results showed that post‐thawing viability of hBMSCs in 7.5% DMSO (v/v), 2.5% PEG (w/v), and 2% bovine serum albumin (BSA) (w/v) was comparable with that obtained in conventional 10% DMSO, that is, 82.9 ± 4.3% and 82.7 ± 3.7%, respectively. In addition, 5% DMSO (v/v) with 5% PEG (w/v) and 7.5% 1,2‐propandiol (v/v) with 2.5% PEG (w/v) can provide good protection to hBMSCs when 2% albumin (w/v) is present. Enhanced cell viability was observed with the addition of albumin to all tested freezing solutions. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号