首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The Cre‐loxP system is frequently used for site‐specific recombination in animal cells. The equilibrium and specificity of the recombination reaction can be controlled using mutated loxPs. In the present study, we designed an accumulative site‐specific gene integration system using Cre recombinase and mutated loxPs in which the Cre‐mediated cassette exchange reaction is infinitely repeatable for target gene integration into loxP target sites. To evaluate the feasibility and usefulness of this system, a series of integration reactions were repeated and confirmed in vitro using Cre recombinase protein and plasmids. Accumulative gene integration was also performed on the genome of Chinese hamster ovary (CHO) cells. The results indicated that the system was applicable for repeated gene integration of multiple genes to the target sites on both plasmids and CHO cell genomes. This gene integration system provides a novel strategy for gene amplification and for biological analyses of gene function through the genetic modification of cells and organisms. Biotechnol. Bioeng. 2010;105: 1106–1114. © 2009 Wiley Periodicals, Inc.  相似文献   

3.
Transgenic and knockout studies have advanced our understanding of the genetic control of embryonic development over the past decades. However, interpretation of the phenotype of mutant mice is potentially complicated, since the commonly used knockout approach modifies both the fetal and placental genome. To circumvent this problem, we previously developed a placenta‐specific gene manipulation system by lentiviral vector transduction of embryos at the blastocyst stage. In the present study, by combination with the Cre/LoxP system, we successfully demonstrate placenta‐specific gene activation and inactivation in EGFP reporter mice and Ets2 floxed mice, respectively. Transient expression using integrase‐defective lentiviral (IDLV) vectors diminished the toxic effect of Cre expression and solved the dilemma of mosaic recombination with lower concentrations and toxic effects with higher concentrations of Cre recombinase. We also show that placenta‐specific Ets2 disruption causes embryonic lethality and reconfirmed the critical role of Ets2 during placentation. This technology facilitates both gain and loss of gene function analyses in placental development during pregnancy. Since IDLV vectors can efficiently transduce a variety of cell types similarly to wild‐type vectors, our IDLV‐Cre strategy is potentially useful for a wide range of applications. genesis 47:793–798, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
A mammalian body is composed of more than 200 different types of cells. The purification of a certain cell type from tissues/organs enables a wide variety of studies. One popular cell purification method is immunological isolation, using antibodies against specific cell surface antigens. However, this is not a general‐purpose method, since suitable antigens have not been found in certain cell types, including embryonic gonadal somatic cells and Sertoli cells. To address this issue, we established a knock‐in mouse line, named R26 KI, designed to express the human cell surface antigen hCD271 through Cre/loxP‐mediated recombination. First, we used the R26 Kl mouse line to purify embryonic gonadal somatic cells. Gonadal somatic cells were purified from the R26 KI; Nr5a1‐Cre‐transgenic (tg) embryos almost equally as efficiently as from Nr5a1‐hCD271‐tg embryos. Second, we used the R26 KI mouse line to purify Sertoli cells successfully from R26 KI; Amh‐Cre‐tg testes. In summary, we propose that the R26 KI mouse line is a powerful tool for the purification of various cell types. genesis 53:387–393, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

5.
基于Cre重组酶体系的鸡卵清蛋白基因打靶载体的构建   总被引:1,自引:0,他引:1  
张传生  杜立新 《动物学报》2005,51(4):685-690
利用胚胎干细胞基因打靶技术制备转基因鸡是研制鸡输卵管反应器的最佳技术路线。为建立基于Cre/loxp系统的鸡卵清蛋白基因(Ovalbumingene,OV)位点的双交换打靶载体系统,本研究克隆了鸡的OV基因7.8kb片段,并与克隆的内部核糖体进入位点(IRES)、人工合成的含有Cre重组酶识别位点变异体交换盒m2/loxp71EGFPloxp66,一起构建了含有Hsvtk负筛选标记的针对鸡卵清蛋白基因位点的敲入型共表达基因打靶载体pSSCm2/71EGFP66IRESOV7.8;以猪β干扰素基因(βInterferon,IFNβ)为目的基因构建了穿梭载体pMDm2/66MCSIFNMCSLoxp71,经过限制酶酶切及部分测序鉴定,所构建载体结构正确。进一步将它们共转化组成性表达Cre的细菌BM25.8,验证了loxp突变位点对重组反应的有效性  相似文献   

6.
Cre recombinase (Cre)-mediated targeted insertion of a transgene is a powerful technique that can be used to tailor genomes. When combined with somatic cell nuclear transfer it could offer an efficient way to generate transgenic livestock with site-specific genetic modifications that are free of antibiotic selection markers. We have engineered primary bovine fibroblasts to contain a chromosomal acceptor site with incompatible loxP/lox2272 sites for Cre-mediated cassette exchange and show for the first time that Cre-mediated targeting can be applied in these acceptor cells. Molecular characterization of the resulting cell clones revealed Cre-mediated transgene insertion efficiencies of up to 98% when antibiotic selection was used to identify transgene containing cell clones. Most clonal lines also contained random insertions of the targeting and Cre expression plasmids with only about 10% of the clones being exclusively modified by the intended targeted insertion. This targeting efficiency was sufficient to enable the isolation of correctly targeted clones without the help of antibiotic selection. Therefore, this recombinase-mediated insertion strategy has the potential to produce transgenic cattle from antibiotic selection marker-free somatic cells with transgenes inserted into proven genomic loci ensuring reliable expression levels.  相似文献   

7.
To generate a mouse line which allows inducible, Cre/loxP‐dependent recombination in adipocytes, we used RedE/RedT‐mediated recombineering to insert the CreERT2‐transgene, which encodes a fusion protein of Cre and a mutated tamoxifen‐responsive estrogen receptor, into the start codon of the adipocyte‐specific Adipoq gene. Adipoq encodes adiponectin, an adipokine specifically expressed in differentiated adipocytes. Tamoxifen treatment induced almost complete recombination in white adipose tissue of the AdipoqCreERT2 mouse line (97%–99%), while no recombination was seen in vehicle‐treated animals. Recombination in brown adipose tissue was about 15%, whereas other organs and tissues did not undergo recombination. In addition, mice expressing CreERT2 in adipocytes did not show any alterations of metabolic functions like glucose tolerance, lipolysis, or energy expenditure compared to control mice. Therefore the AdipoqCreERT2 mouse line will be a valuable tool for studying the consequences of a temporally controlled deletion of floxed genes in white adipose tissue. genesis 48:618–625, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
Textpresso Site Specific Recombinases ( http://ssrc.genetics.uga.edu/ ) is a text‐mining web server for searching a database of more than 9,000 full‐text publications. The papers and abstracts in this database represent a wide range of topics related to site‐specific recombinase (SSR) research tools. Included in the database are most of the papers that report the characterization or use of mouse strains that express Cre recombinase as well as papers that describe or analyze mouse lines that carry conditional (floxed) alleles or SSR‐activated transgenes/knockins. The database also includes reports describing SSR‐based cloning methods such as the Gateway or the Creator systems, papers reporting the development or use of SSR‐based tools in systems such as Drosophila, bacteria, parasites, stem cells, yeast, plants, zebrafish, and Xenopus as well as publications that describe the biochemistry, genetics, or molecular structure of the SSRs themselves. Textpresso Site Specific Recombinases is the only comprehensive text‐mining resource available for the literature describing the biology and technical applications of SSRs. genesis 47:842–846, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
10.
We have created a mouse model expressing tamoxifen‐inducible Cre recombinase (CreERT2) under the control of the thyroglobulin (Tg) gene promoter to be able to study the role of defined genetic modifications in the regulation of thyroid function. We chose the thyroglobulin promoter, as it is expressed specifically in the thyroid. In order to obtain reliable expression under the control of the Tg promoter, we used a P1 artificial chromosome (PAC) containing a large piece of the Tg promoter. A tamoxifen inducible CreERT2 construct was selected to avoid the possible consequences of the gene deletion for the development of the thyroid gland, and to study the role of gene deletion in the adult thyroid. Transgenic lines (TgCreERT2) carrying this construct were generated and analyzed by crossing the TgCreERT2 mice with the ROSA26LacZ reporter strain. The activity and specificity of the Cre recombinase was tested by staining for β‐galactosidase activity and by immunohistochemistry using an anti‐Cre‐antibody. In the TgCreERT2xROSA26LacZ reporter line, Cre‐mediated recombination occurred specifically in the thyrocytes only after tamoxifen administration, and no significant staining was observed in controls. The recombination efficiency was nearly complete, since almost all thyrocytes showed X‐gal staining. We could also induce the recombination in utero by giving tamoxifen to the pregnant female. In addition, mice expressing TgCreERT2 had no obvious histological changes, hormonal alterations, or different response to growth stimuli as compared to controls. These results demonstrate that the TgCreERT2 mouse line is a powerful tool to study temporally controlled deletion of floxed genes in the thyroid. genesis 52:333–340, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

11.
12.
Summary: Nkx2‐5, one of the earliest cardiac‐specific markers in vertebrate embryos, was used as a genetic locus to knock in the Cre recombinase gene by homologous recombination. Offspring resulting from heterozygous Nkx2‐5/Cre mice mated to ROSA26 (R26R) reporter mice provided a model system for following Nkx2‐5 gene activity by β‐galactosidase (β‐gal) activity. β‐gal activity was initially observed in the early cardiac crescent, cardiomyocytes of the looping heart tube, and in the epithelium of the first pharyngeal arch. In later stage embryos (10.5–13.5 days postcoitum, dpc), β‐gal activity was observed in the stomach and spleen, the dorsum of the tongue, and in the condensing primordium of the tooth. The Nkx2‐5/Cre mouse model should provide a useful genetic resource to elucidate the role of loxP manipulated genetic targets in cardiogenesis and other developmental processes. genesis 31:176–180, 2001. © 2001 Wiley‐Liss, Inc.  相似文献   

13.
Smad7 can be induced by various transforming growth factor‐β superfamily ligands and negatively modulates their signaling, thus acting in a negative, autocrine feedback manner. Previous analyses have demonstrated that although Smad7 is widely expressed, it is predominantly found in the vascular endothelium. Because of the restricted spatiotemporal reporter expression driven via a novel 4.3 kb Smad7 promoter in endocardial cells overlying the hearts atrioventricular (AV) cushions; we hypothesized that a transgenic Cre line would prove useful for the analysis of endocardial cushion and valve formation. Here we describe a mouse line, Smad7Cre, where Cre is robustly expressed within both cardiac outflow and AV endocardial cushions. Additionally, as endocardial cells are thought to contribute at least in part to the formation of the endocardial cushion mesenchyme, we crossed the Smad7Cre mice to the ROSA26eGFP‐DTA diphtheria toxin A‐expressing mice in order to genetically ablate Smad7Cre expressing cells. Ablation of Smad7Cre cells resulted in embryonic lethality by E11.5 and largely acellular endocardial cushions. genesis 47:469–475, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
The present study delineates the in vivo efficiency of two site‐specific recombination systems, VCre/VloxP and SCre/SloxP, in medaka (Oryzias latipes). VCre, SCre, and Cre RNA was microinjected into fertilized medaka eggs belonging to three transgenic lines harboring VloxP, SloxP, and loxP cassette. VCre induced site‐specific recombination specifically at VloxP sequence and SCre at SloxP sequence without any cross‐reactivity. These findings provide two novel alternative recombination systems in vivo in addition to the existing Cre/loxP and Flp/FRT systems, thus enabling sophisticated gene expression in model organisms.  相似文献   

15.
Placental development is a complex and highly controlled process during which trophoblast stem cells differentiate to various trophoblast subtypes. The early embryonic death of systemic gene knockout models hampers the investigation of these genes that might play important roles during placentation. A trophoblast specific Cre mouse model would be of great help for dissecting out the potential roles of these genes during placental development. For this purpose, we generate a transgenic mouse with the Cre recombinase inserted into the endogenous locus of Elf5 gene that is expressed specifically in placental trophoblast cells. To analyze the specificity and efficiency of Cre recombinase activity in Elf5‐Cre mice, we mated Elf5‐Cre mice with Rosa26mT/mG reporter mice, and found that Elf5‐Cre transgene is expressed specifically in the trophoectoderm as early as embryonic day 4.5 (E4.5). By E12.5, the activity of Elf5‐Cre transgene was detected exclusively in all derivatives of trophoblast lineages, including spongiotrophoblast, giant cells, and labyrinth trophoblasts. In addition, Elf5‐Cre transgene was also active during spermatogenesis, from spermatids to mature sperms, which is consistent with the endogenous Elf5 expression in testis. Collectively, our results provide a unique tool to delete specific genes selectively and efficiently in trophoblast lineage during placentation.  相似文献   

16.
17.
The kappa opioid receptor (KOR) has numerous important roles in the nervous system including the modulation of mood, reward, pain, and itch. In addition, KOR is expressed in many non‐neuronal tissues. However, the specific cell types that express KOR are poorly characterized. Here, we report the development of a KOR‐Cre knockin allele, which provides genetic access to cells that express KOR. In this mouse, Cre recombinase (Cre) replaces the initial coding sequence of the Opkr1 gene (encoding the kappa opioid receptor). We demonstrate that the KOR‐Cre allele mediates recombination by embryonic day 14.5 (E14.5). Within the brain, KOR‐Cre shows expression in numerous areas including the cerebral cortex, nucleus accumbens and striatum. In addition, this allele is expressed in epithelium and throughout many regions of the body including the heart, lung, and liver. Finally, we reveal that KOR‐Cre mediates recombination of a subset of bipolar and amacrine cells in the retina. Thus, the KOR‐Cre mouse line is a valuable new tool for conditional gene manipulation to enable the study of KOR. genesis 54:29–37, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

18.
The generation of cell type specific inducible Cre transgenic mice is the most challenging and limiting part in the development of spatio‐temporally controlled knockout mouse models. Here we report the generation and characterization of a B lymphocyte‐specific tamoxifen‐inducible Cre transgenic mouse strain, LC‐1‐hCD19‐CreERT2. We utilized the human CD19 promoter for expression of the tamoxifen‐inducible Cre recombinase (CreERT2) gene, embedded in genomic sequences previously reported to give minimal position effects after transgenesis. Cre recombinase activity was evaluated by cross‐breeding the LC‐1‐hCD19‐CreERT2 strain with a strain containing a floxed gene widely expressed in the hematopoietic system. Cre activity was only detected in the presence of tamoxifen and was restricted to B lymphocytes. The efficacy of recombination ranged from 27 to 61% in the hemizygous and homozygous mice, respectively. In conclusion, the LC‐1‐hCD19‐CreERT2 strain is a powerful tool to study gene function specifically in B lymphocytes at any chosen time point in the lifecycle of the mouse. genesis 47:729–735, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
The integration of the viral DNA into the host genome is one of the essential steps in the HIV replication cycle. This process is mediated by the viral enzyme integrase (IN) and lens epithelium‐derived growth factor (LEDGF/p75). LEDGF/p75 has been identified as a crucial cellular co‐factor of integration that acts by tethering IN to the cellular chromatin. Recently, circular peptides were identified that bind to the C‐terminal domain of IN and disrupt the interaction with LEDGF/p75. Starting from the circular peptides, we identified a short peptidic sequence able to inhibit the LEDGF/p75‐IN interaction at low μM concentration through its binding to the IN binding site of LEDGF/p75. This discovery can lead to the synthesis of peptidomimetics with high anti‐HIV activity targeting the cellular co‐factor LEDGF/p75 and not the viral protein IN. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号