首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dynamics of the actin cytoskeleton spatial organization and transepithelial electric resistance (TEER) in the MDCK1 cell monolayer exposed to arginine–vasopressin (AVP) and forskolin, a protein kinase A (PKA) activator, have been studied. These physiologically active substances are shown to depolymerize filamentous actin in MDCK1 cells (in both the apical and basal cytoplasm) and, concurrently, to considerably decrease the TEER of the cell monolayer. A decrease in TEER suggests an increase in the ion current through the cell monolayer. Correspondingly, the created ion gradient stimulates AVP-sensitive water flow. To clarify the routes of ions and water in MDCK monolayer, the localization of claudin-1 and -2 in tight junctions of ATCC (American Type Culture Collection) MDCK (a low TEER) and MDCK1 (a high TEER) cells was studied by immunofluorescence assay. Claudin-1 and -2 are detectable in the tight junctions of ATCC MDCK cells; however, the tight junctions of MDCK1 cells contain only claudin-1, whereas poreforming claudin-2 is absent. The exposure of MDCK1 cells to forskolin fails to change the distribution of the studied claudins, thereby suggesting that a decrease in TEER caused by forskolin is associated with a change in transcellular, rather than paracellular, permeability of the monolayer  相似文献   

2.
Na,K-ATPase regulates avariety of transport functions in epithelial cells. In cultures ofhuman retinal pigment epithelial (RPE) cells, inhibition of Na,K-ATPaseby ouabain and K+ depletion decreased transepithelialelectrical resistance (TER) and increased permeability of tightjunctions to mannitol and inulin. Electrophysiological studiesdemonstrated that the decrease in TER was due to an increase inparacellular shunt conductance. At the light microscopy level, thisincreased permeability was not accompanied by changes in thelocalization of the tight junction proteins ZO-1, occludin, andclaudin-3. At the ultrastructural level, increased tight junctionpermeability correlated with a decrease in tight junction membranecontact points. Decreased tight junction membrane contact points andincreased tight junction permeability were reversible inK+-repletion experiments. Confocal microscopy revealed thatin control cells, Na,K-ATPase was localized at both apical andbasolateral plasma membranes. K+ depletion resulted in alarge reduction of apical Na,K-ATPase, and after K+repletion the apical Na,K-ATPase recovered to control levels. Theseresults suggest a functional link exists between Na,K-ATPase and tightjunction function in human RPE cells.

  相似文献   

3.
Efficient delivery of therapeutics across the neuroprotective blood–brain barrier (BBB) remains a formidable challenge for central nervous system drug development. High‐fidelity in vitro models of the BBB could facilitate effective early screening of drug candidates targeting the brain. In this study, we developed a microfluidic BBB model that is capable of mimicking in vivo BBB characteristics for a prolonged period and allows for reliable in vitro drug permeability studies under recirculating perfusion. We derived brain microvascular endothelial cells (BMECs) from human induced pluripotent stem cells (hiPSCs) and cocultured them with rat primary astrocytes on the two sides of a porous membrane on a pumpless microfluidic platform for up to 10 days. The microfluidic system was designed based on the blood residence time in human brain tissues, allowing for medium recirculation at physiologically relevant perfusion rates with no pumps or external tubing, meanwhile minimizing wall shear stress to test whether shear stress is required for in vivo‐like barrier properties in a microfluidic BBB model. This BBB‐on‐a‐chip model achieved significant barrier integrity as evident by continuous tight junction formation and in vivo‐like values of trans‐endothelial electrical resistance (TEER). The TEER levels peaked above 4000 Ω · cm2 on day 3 on chip and were sustained above 2000 Ω · cm2 up to 10 days, which are the highest sustained TEER values reported in a microfluidic model. We evaluated the capacity of our microfluidic BBB model to be used for drug permeability studies using large molecules (FITC‐dextrans) and model drugs (caffeine, cimetidine, and doxorubicin). Our analyses demonstrated that the permeability coefficients measured using our model were comparable to in vivo values. Our BBB‐on‐a‐chip model closely mimics physiological BBB barrier functions and will be a valuable tool for screening of drug candidates. The residence time‐based design of a microfluidic platform will enable integration with other organ modules to simulate multi‐organ interactions on drug response. Biotechnol. Bioeng. 2017;114: 184–194. © 2016 Wiley Periodicals, Inc.  相似文献   

4.
Infectious agents such as lipopolysaccharides (LPS) challenge the functional properties of the alveolar‐capillary barrier (ACB) in the lung. In this study, we analyse the site‐specific effects of LPS on the ACB and reveal the effects on the individual cell types and the ACB as a functional unit. Monocultures of H441 epithelial cells and co‐cultures of H441 with endothelial cells cultured on Transwells® were treated with LPS from the apical or basolateral compartment. Barrier properties were analysed by the transepithelial electrical resistance (TEER), by transport assays, and immunostaining and assessment of tight junctional molecules at protein level. Furthermore, pro‐inflammatory cytokines and immune‐modulatory molecules were evaluated by ELISA and semiquantitative real‐time PCR. Liquid chromatography–mass spectrometry‐based proteomics (LS‐MS) was used to identify proteins and effector molecules secreted by endothelial cells in response to LPS. In co‐cultures treated with LPS from the basolateral compartment, we noticed a significant reduction of TEER, increased permeability and induction of pro‐inflammatory cytokines. Conversely, apical treatment did not affect the barrier. No changes were noticed in H441 monoculture upon LPS treatment. However, LPS resulted in an increased expression of pro‐inflammatory cytokines such as IL‐6 in OEC and in turn induced the reduction of TEER and an increase in SP‐A expression in H441 monoculture, and H441/OEC co‐cultures after LPS treatment from basolateral compartment. LS‐MS‐based proteomics revealed factors associated with LPS‐mediated lung injury such as ICAM‐1, VCAM‐1, Angiopoietin 2, complement factors and cathepsin S, emphasizing the role of epithelial–endothelial crosstalk in the ACB in ALI/ARDS.  相似文献   

5.
Polarized Ca2+ signals in secretory epithelial cells are determined by compartmentalized localization of Ca2+ signaling proteins at the apical pole. Recently the ER Ca2+ sensor STIM1 (stromal interaction molecule 1) and the Orai channels were shown to play a critical role in store‐dependent Ca2+ influx. STIM1 also gates the transient receptor potential‐canonical (TRPC) channels. Here, we asked how cell stimulation affects the localization, recruitment and function of the native proteins in polarized cells. Inhibition of Orai1, STIM1, or deletion of TRPC1 reduces Ca2+ influx and frequency of Ca2+ oscillations. Orai1 localization is restricted to the apical pole of the lateral membrane. Surprisingly, cell stimulation does not lead to robust clustering of native Orai1, as is observed with expressed Orai1. Unexpectedly, cell stimulation causes polarized recruitment of native STIM1 to both the apical and lateral regions, thus to regions with and without Orai1. Accordingly, STIM1 and Orai1 show only 40% colocalization. Consequently, STIM1 shows higher colocalization with the basolateral membrane marker E‐cadherin than does Orai1, while Orai1 showed higher colocalization with the tight junction protein ZO1. TRPC1 is expressed in both apical and basolateral regions of the plasma membrane. Co‐IP of STIM1/Orai1/IP3 receptors (IP3Rs)/TRPCs is enhanced by cell stimulation and disrupted by 2‐aminoethoxydiphenyl borate (2APB). The polarized localization and recruitment of these proteins results in preferred Ca2+ entry that is initiated at the apical pole. These findings reveal that in addition to Orai1, STIM1 likely regulates other Ca2+ permeable channels, such as the TRPCs. Both channels contribute to the frequency of [Ca2+] oscillations and thus impact critical cellular functions.  相似文献   

6.
In this paper, we describe a method for primary culture of a well differentiated electrically tight rabbit vocal fold epithelial cell multilayer and the measurement of transepithelial electrical resistance (TEER) for the evaluation of epithelial barrier function in vitro. Rabbit larynges were harvested and enzymatically treated to isolate vocal fold epithelial cells and to establish primary culture. Vocal fold epithelial cells were co-cultured with mitomycin C-treated feeder cells on collagen-coated plates. After 10–14 days in primary culture, cells were passaged and cultured until they achieved 70–90% confluence on collagen-coated plates. Epithelial cells were then passaged onto collagen-coated cell culture inserts using 4.5 cm2 membrane filters (1.0 μm pore size) with 10% fetal bovine serum or 30 μg/mL bovine pituitary extract to investigate the effects of growth-promoting additives on TEER. Additional experiments were performed to investigate optimal seeding density (1.1, 2.2, 4.4, or 8.9 × 105 cells/cm2), the effect of co-culture with feeder cells, and the effect of passage number on epithelial barrier function. Characterization of in vitro cultures was performed using hematoxylin and eosin staining and immunostaining for vocal fold epithelial cell markers and tight junctions. Results revealed higher TEER in cells supplemented with fetal bovine serum compared to bovine pituitary extract. TEER was highest in cells passaged at a seeding density of 2.2 × 104 cells/cm2, and TEER was higher in cells at passage two than passage three. Ultrastructural experiments revealed a well-differentiated epithelial cell multilayer, expressing the epithelial cell markers CK13, CK14 and the tight junction proteins occludin and ZO-1.  相似文献   

7.
The influence of docosahexaenoic acid (DHA)- and eicosapentaenoic acid (EPA)-enriched phosphatidylcholine (PC) on the permeability, transport and uptake of phospholipids was evaluated in Caco-2 cells. The cells were grown on permeable polycarbonate transwell filters, thus allowing separate access to the apical and basolateral chambers. The monolayers of the cells were used to measure lucifer yellow permeability and transepithelial electrical resistance (TEER). Transcellular transportation of diphenylhexatriene (DPH) labeled-PC small unilamellar vesicles (SUV) from the apical to basolateral chamber, and uptake of the same SUV was monitored in the cell monolayers. Cell-membrane perturbation was evaluated to measure the release of lactate dehydrogenase and to determine the cell viability with sodium 2-(4-iodophenyl)-3-(4-nitrophenyl) -5-(2, 4-disulfophenyl)-2H-tetrazolium dye reduction assay. The lucifer yellow flux was 1.0 and 1.5 nmol/h/cm2 with 50 μM PC, and 17.0 and 23.0 nmol/h/cm2 with 100 μM PC when monolayers of Caco-2 cells were treated with DHA- and EPA-enriched PC, respectively. TEER decreased to 24 and 27% with 50 and 100 μM DHA-enriched PC, and to 25 and 30% with 50 and 100 μM EPA-enriched PC, respectively. Our results show that DHA- and EPA-enriched PC increases tight junction permeability across the Caco-2 cell monolayer whereas soy PC has no effect on tight junction permeability. Transportation and uptake of DHA- and EPA-enriched PC SUV differed significantly (P < 0.01) from those of soy PC SUV at all doses. We found that PC SUV transported across Caco-2 monolayer and was taken up by Caco-2 cells with very slight injury of the cell membrane up to 100 μM PC. Lactate dehydrogenase release and cell viability did not differ significantly between the treatment and control, emphasizing that injury was minimal. Our results suggest that DHA- and EPA-enriched PC enhance the permeability, transport and uptake of PC SUV across monolayers of Caco-2 cells. (Mol Cell Biochem xxx: 1–9, 2005)  相似文献   

8.
Glucocorticoid hormones stimulate adherens and tight junction formation in Con8 mammary epithelial tumor cells through a multistep process in which the membrane organization of structural apical junction proteins and tight junction sealing is controlled by specific signal transduction components. We have previously shown that dexamethasone stimulation of apical junction formation requires down-regulation of the small GTPase RhoA. Here we identified Rnd3/RhoE, a GTPase-deficient Rho family member and RhoA antagonist, as a key regulator of apical junction dynamics. Exogenously expressed Rnd3/RhoE co-localized with actin at the cell periphery and induced the localization of the adherens junction protein beta-catenin and the tight junction protein ZO-1 to sites of cell-cell contact, and led to the formation of highly sealed tight junctions. Treatment with glucocorticoids was not required to achieve complete apical junction remodeling. Consistent with Rnd3/RhoE acting as an antagonist of RhoA, expression of Rnd3/RhoE rescued the disruptive effects of constitutively active RhoA on apical junction organization. Our results demonstrate a new role for the Rho family member Rnd3/RhoE in regulating the assembly of the apical junction complex and tight junction sealing.  相似文献   

9.
The distribution of SGLT1 and GLUT2 hexose transporters, fibrillar actin, and tight junction proteins, as well as glucose absorption, have been considered in Caco2 cell cultures incubated in solutions with different hexose concentrations. Fibrillar actin is concentrated on microvilli closely to a tight junction. The actin distribution does not depend on glucose concentration. There is no SGLT1 association with brush border actin, and the transporter localization does not depend on hexose concentration. GLUT2 is localized in the basal part of Caco2 cells loaded with a low hexose concentration (2.5 mM). The transporter is colocalized with microvilli actin in the apical part of the cells loaded with a high hexose concentration (25 mM). The tight junction proteins occludin and claudin 1, 3, and 4 do not depend on glucose concentration. Claudin 2 protein was not revealed in Caco2 cells. Caco2 cell culture is a suitable model for studying hexose transport in small intestine epithelium.  相似文献   

10.
Transporting living complex cellular constructs through the mail while retaining their full viability and functionality is challenging. During this process, cells often suffer from exposure to suboptimal life‐sustaining conditions (e.g. temperature, pH), as well as damage due to shear stress. We have developed a transport device for shipping intact cell/tissue constructs from one facility to another that overcomes these obstacles. Our transport device maintained three different cell lines (Caco2, A549, and HepG2 C3A) individually on transwell membranes with high viability (above 97%) for 48 h under simulated shipping conditions without an incubator. The device was also tested by actual overnight shipping of blood brain barrier constructs consisting of human induced pluripotent brain microvascular endothelial cells and rat astrocytes on transwell membranes to a remote facility (approximately 1200 miles away). The blood brain barrier constructs arrived with high cell viability and were able to regain full barrier integrity after equilibrating in the incubator for 24 h; this was assessed by the presence of continuous tight junction networks and in vivo‐like values for trans‐endothelial electrical resistance (TEER). These results demonstrated that our cell transport device could be a useful tool for long‐distance transport of membrane‐bound cell cultures and functional tissue constructs. Studies that involve various cell and tissue constructs, such as the “Multi‐Organ‐on‐Chip” devices (where multiple microscale tissue constructs are integrated on a single microfluidic device) and studies that involve microenvironments where multiple tissue interactions are of interest, would benefit from the ability to transport or receive these constructs. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1257–1266, 2017  相似文献   

11.
In the epithelia and endothelia, tight junctions regulate the movement of several substances through the paracellular pathway, maintaining several gradients between apical and basal compartments including osmolality and hydrostatic pressure. In this study, we show that the change of hydrostatic pressure gradient affected tight junctions as well as actin cytoskeleton, cell height and transcellular ion transport. Hydrostatic pressure gradient from basolateral to apical side increased transepithelial conductance and altered claudin-1 localization within several tens of minutes. These changes were promptly restored by the elimination of hydrostatic pressure gradient. Hydrostatic pressure gradient also induced dynamic changes in the actin structure and cell height. We further found that hydrostatic pressure gradient from basolateral to apical side stimulates transcellular Cl transport. Our present findings indicate that the epithelial cell structures and functions are regulated by the hydrostatic pressure gradient which is generated and maintained by the epithelia themselves.  相似文献   

12.
We morphologically and physiologically characterized Madin–Darby canine kidney (MDCK) cell and mouse principal cell of kidney in cortical collecting duct (mpkCCD) via hopping probe ion conductance microscopy, transepithelial electrical resistance (TEER) measurements, and single-channel recordings. The specific membrane structures of microvilli and tight junctions were clearly observed in MDCK and mpkCCD cell monolayers. The electrophysiological functions of epithelial Na+ channel in MDCK and mpkCCD cells were further characterized by measuring amiloride-sensitive TEER values for the whole-cell monolayer and detecting the ion channel activities with patch clamping. Our results provide more morphological and functional information to help better utilize these two mammalian CCD cell lines for mechanism studies of sodium absorption and reabsorption in the distal nephron.  相似文献   

13.
Coyne CB  Bergelson JM 《Cell》2006,124(1):119-131
Group B coxsackieviruses (CVBs) must cross the epithelium as they initiate infection, but the mechanism by which this occurs remains uncertain. The coxsackievirus and adenovirus receptor (CAR) is a component of the tight junction and is inaccessible to virus approaching from the apical surface. Many CVBs also interact with the GPI-anchored protein decay-accelerating factor (DAF). Here, we report that virus attachment to DAF on the apical cell surface activates Abl kinase, triggering Rac-dependent actin rearrangements that permit virus movement to the tight junction. Within the junction, interaction with CAR promotes conformational changes in the virus capsid that are essential for virus entry and release of viral RNA. Interaction with DAF also activates Fyn kinase, an event that is required for the phosphorylation of caveolin and transport of virus into the cell within caveolar vesicles. CVBs thus exploit DAF-mediated signaling pathways to surmount the epithelial barrier.  相似文献   

14.

Background  

Epithelial tight junction (TJ) and adherens junction (AJ) form the apical junctional complex (AJC) which regulates cell-cell adhesion, paracellular permeability and cell polarity. The AJC is anchored on cytoskeletal structures including actin microfilaments and microtubules. Such cytoskeletal interactions are thought to be important for the assembly and remodeling of apical junctions. In the present study, we investigated the role of microtubules in disassembly of the AJC in intestinal epithelial cells using a model of extracellular calcium depletion.  相似文献   

15.
Distribution of SGLT1 and GLUT2 hexose transporters as well as that of fibrillar actin and tight junction proteins in cultured Caco2 cells incubated in medium with different hexose concentrations has been considered. Glucose absorption by the cells from incubation medium has been determined. Fibrillar actin was concentrated in the microvilli and closely to tight junction. The actin distribution was not dependent on the glucose concentration. There was no SGLT1 association with brush border actin and the transporter localization was not dependent on the concentration of hexose. GLUT2 was localized in the basal part of Caco2 cells after low concentration hexose load (2.5 mM). The transporter was colocalized with microvilli actin in the apical part of the cells after high concentration hexose load (25 mM). The tight junction proteins, occludin and claudin 1, 3, 4 were not dependent on glucose concentration. Claudin 2 was not detected in Caco2 cells. Caco2 cell culture can be used as a model for studying of hexose transport in small intestine epithelium.  相似文献   

16.
Tight junctions are crucial for maintaining the polarity and vectorial transport functions of epithelial cells. We and others have shown that Na-K-ATPase plays a key role in the organization and permeability of tight junctions in mammalian cells and analogous septate junctions in Drosophila. However, the mechanism by which Na-K-ATPase modulates tight junctions is not known. In this study, using a well-differentiated human pancreatic epithelial cell line HPAF-II, we demonstrate that Na-K-ATPase is present at the apical junctions and forms a complex with protein phosphatase-2A, a protein known to be present at tight junctions. Inhibition of Na-K-ATPase ion transport function reduced protein phosphatase-2A activity, hyperphosphorylated occludin, induced rearrangement of tight junction strands, and increased permeability of tight junctions to ionic and nonionic solutes. These data suggest that Na-K-ATPase is required for controlling the tight junction gate function.  相似文献   

17.
The establishment of tight junctions and cell polarity is an essential process in all epithelia. Endotubin is an integral membrane protein found in apical endosomes of developing epithelia when tight junctions and epithelial polarity first arise. We found that the disruption of endotubin function in cells in culture by siRNA or overexpression of the C‐terminal cytoplasmic domain of endotubin causes defects in organization and function of tight junctions. We observe defects in localization of tight junction proteins, reduced transepithelial resistance, increased lanthanum penetration between cells and reduced ability of cells to form cysts in three‐dimensional culture. In addition, in cells overexpressing the C‐terminal domain of endotubin, we observe a delay in re‐establishing the normal distribution of endosomes after calcium switch. These results suggest that endotubin regulates trafficking of polarity proteins and tight junction components out of the endosomal compartment, thereby providing a critical link between a resident protein of apical endosomes and tight junctions.  相似文献   

18.
Summary Analysis of vectorial ion transport and protein trafficking in transformed cystic fibrosis (CF) epithelial cells has been limited because the cells tend to lose their tight junctions with multiple subcultures. To elucidate ion transport and protein trafficking in CF epithelial cells, a polar cell line with apical and basolateral compartments will facilitate analysis of the efficacy of different gene therapy strategies in a “tight epithelium”in vitro. This study investigates the genotypic and phenotypic properties of a CF nasal polyp epithelial, ΔF508 homozygote, cell line that has tight junctions pre-crisis. The cells (ΣCFNPE14o-) were transformed with an origin-of-replication defective SV40 plasmid. They develop transepithelial resistance in Ussing chambers and are defective in cAMP-dependent Cl transport as measured by efflux of radioactive Cl, short circuit current (Isc), or whole-cell patch clamp. Stimulation of the cells by bradykinin, histamine, or ATP seems to activate both K+- and Ca+2-dependent Cl transport. Measurement of36Cl efflux following stimulation with A23187 and ionomycin indicate a Ca+2-dependent Cl transport. Volume regulatory capacity of the cells is indicated by cell swelling conductance. Expression of the CF transmembrane conductance regulator mRNA was indicated by RT-PCR amplification. When cells are grown at 26° C for 48 h there is no indication of cAMP-dependent Cl as has been previously indicated in heterologous expression systems. Antibodies specific for secretory cell antigens indicate the presence of antigens found in goblet, serous, and mucous cells; in goblet and serous cells; or in goblet and mucous cells; but not antigens found exclusively in mucous or serous cells. Gene complementation studies with an episomal vector containing wild-type CF transmembrane conductance regulator cDNA showed correction of the cAMP-dependent Cl transport defect. This cell line contributes unique phenotypic features to the store of transformed CF epithelial cells already available.  相似文献   

19.
The tight junction is the most apical intercellular junction of epithelial cells and regulates transepithelial permeability through the paracellular pathway. To examine possible functions for the tight junction-associated protein ZO-1, C-terminally truncated mutants and a deletion mutant of ZO-1 were epitope tagged and stably expressed in corneal epithelial cell lines. Only full-length ZO-1 and one N-terminal truncation mutant targeted to cell borders; other mutants showed variable cytoplasmic distributions. None of the mutants initially disrupted the localization of endogenous ZO-1. However, long-term stable expression of two of the N-terminal mutants resulted in a dramatic change in cell shape and patterns of gene expression. An elongated fibroblast-like shape replaced characteristic epithelial cobblestone morphology. In addition, vimentin and smooth muscle actin expression were up-regulated, although variable cytokeratin expression remained, suggesting a partial transformation to a mesenchymal cell type. Concomitant with the morphological change, the expression of the integral membrane tight junction protein occludin was significantly down-regulated. The localizations of endogenous ZO-1 and another family member, ZO-2, were disrupted. These findings suggest that ZO-1 may participate in regulation of cellular differentiation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号