首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Three (9βH)‐pimaranes, 1, 2 , and 3 , and two (9βH)‐17‐norpimaranes, 4 and 5 , belonging to a rare compound class in nature, were obtained from the tubers of Icacina trichantha for the first time. Compound 1 is a new natural product, and 2 – 5 have been previously reported. The structures were elucidated based on NMR and MS data, and optical rotation values. The absolute configurations of (9βH)‐pimaranes were unambiguously established based on X‐ray crystallographic analysis. Full NMR signal assignments for the known compounds 2, 4 , and 5 , which were not available in previous publications, are also reported. All five isolates displayed cytotoxic activities on MDA‐MB‐435 cells (IC50 0.66–6.44 μM ), while 2, 3 , and 4 also exhibited cytotoxicities on HT‐29 cells (IC50 3.00–4.94 μM ).  相似文献   

3.
Because cadmium might interact with proteins and, thus, exert toxicity in organisms, it is vital to understand the molecular mechanism of the interaction between cadmium and biologically relevant proteins as well as the structural and functional changes in these proteins. In this study, the interaction between α‐chymotrypsin (α‐ChT) and cadmium chloride (CdCl2) was investigated by performing enzyme activity determinations, multispectroscopic measurements, isothermal titration calorimetry, and molecular docking studies. It was demonstrated that CdCl 2 binds to α‐ChT mainly via electrostatic forces with (21.0 ± 0.982) binding sites, leading to the increase of α‐helix and the decrease of β‐sheet. The interaction between CdCl 2 and α‐ChT loosened the protein skeleton and increased the molecular volume of α‐ChT. CdCl 2 first binds to the interface of α‐ChT and then interacts with the key residues His 57 or Asp 102 or both in the active sites, leading to the activity inhibition of α‐ChT under the exposure of high CdCl 2 concentrations.  相似文献   

4.
Terpene derivatives converted by microbial biotransformation constitute an important resource for natural pharmaceutical, fragrance, and aroma substances. In the present study, the monoterpene α‐phellandrene was biotransformed by 16 different strains of microorganisms (bacteria, fungi, and yeasts). The transformation metabolites were initially screened by TLC and GC/MS, and then further characterized by NMR spectroscopic techniques. Among the six metabolites characterized, 6‐hydroxypiperitone, α‐phellandrene epoxide, cis‐p‐menth‐2‐en‐1‐ol, and carvotanacetone, which originated from (?)‐(R)‐α‐phellandrene, are reported for the first time in this study. Additionally, the substrate and the metabolite 5‐p‐menthene‐1,2‐diol were subjected to in vitro antibacterial and anticandidal tests. The metabolite showed moderate‐to‐good inhibitory activities (MICs=0.125 to >4 mg/ml) against various bacteria and especially against Candida species in comparison with its substrate (?)‐(R)‐α‐phellandrene and standard antimicrobial agents.  相似文献   

5.
Phytochemical investigation from the tube roots of Butea superba, led to the isolation and identification of a new 2‐aryl‐3‐benzofuranone named superbanone ( 1 ), one benzoin, 2‐hydroxy‐1‐(2‐hydroxy‐4‐methoxyphenyl)‐2‐(4‐methoxyphenyl)ethanone ( 2 ), eight pterocarpans ( 3  –  10 ), and eleven isoflavonoids ( 11  –  21 ). Compound 2 was identified for the first time as a natural product. The structure of the isolated compounds was elucidated using spectroscopic methods, mainly 1D‐ and 2D‐NMR. The isolated compounds and their derivatives were evaluated for α‐glucosidase inhibitory and antimalarial activities. Compounds 3 , 7 , 8 , and 11 showed promising α‐glucosidase inhibitory activity (IC50 = 13.71 ± 0.54, 23.54 ± 0.75, 28.83 ± 1.02, and 12.35 ± 0.36 μm , respectively). Compounds 3 and 11 were twofold less active than the standard drug acarbose (IC50 = 6.54 ± 0.04 μm ). None of the tested compounds was found to be active against Plasmodium falciparum strain 94. On the basis of biological activity results, structure–activity relationships are discussed.  相似文献   

6.
David E. Kenny 《Zoo biology》2001,20(4):245-250
After the loss of an African elephant (Loxodonta africana) in February 1989 at the Denver Zoological Gardens (DZG) with very low circulating serum α‐tocopherol, a long‐term study was initiated with three Asian elephants (Elephas maximus) to evaluate the effect of an oral micellized, water‐soluble, natural source d‐α‐tocopherol supplement. Baseline α‐tocopherol levels were evaluated and found to be approximately 3.75‐fold less than those reported for semi‐free‐ranging Asian Nepalese work camp and free‐ranging African elephants. The DZG elephants were then administered a liquid d‐α‐tocopherol (Emcelle®) at 2.2 IU/kg body weight orally once daily. Serum samples were obtained and analyzed at 1, 2, 8, and 12 months and then annually for 96 months. The oral vitamin E supplement significantly elevated serum levels above baseline and were found to be comparable with levels reported for semi–free‐ranging and free‐ranging elephants. Zoo Biol 20:245–250, 2001. © 2001 Wiley‐Liss, Inc.  相似文献   

7.
Phytochemical investigation of the CHCl3 fraction of Swertia corymbosa resulted in the isolation of a new 3‐allyl‐2,8‐dihydroxy‐1,6‐dimethoxy‐9H‐xanthen‐9‐one ( 1 ), along with four known xanthones, gentiacaulein ( 3 ), norswertianin ( 4 ), 1,3,6,8‐tetrahydroxyxanthone ( 5 ), and 1,3‐dihydroxyxanthone ( 6 ). Structure of compound 1 was elucidated with the aid of IR, UV, NMR, and MS data, and chemical transformation via new allyloxy xanthone derivative ( 2 ). Compounds 1 – 6 exhibited various levels of antioxidant and anti‐α‐glucosidase activities. Absorption and fluorescence spectroscopic studies on 1 – 6 indicated that these compounds could interact with calf thymus DNA (CT‐DNA) through intercalation and with bovine serum albumin (BSA) in a static quenching process. Compound 1 was found to be significantly cytotoxic against human cancer cell lines HeLa, HCT116, and AGS, and weakly active against normal NIH 3T3 cell line.  相似文献   

8.
Investigation on the extracts of Hydnocarpus anthelminthica seeds led to the isolation of three new compounds, anthelminthicins A–C ( 1 – 3 , resp.), and two known ones, namely chaulmoogric acid ( 4 ) and ethyl chaulmoograte ( 5 ). Their structures were determined mainly by using spectroscopic techniques. The absolute configuration at the cyclopentenyl moiety of compound 2 was rationalized by quantum calculations. Base hydrolysis, followed by optical‐rotation comparison, allowed assignment of the configuration of chaulmoogric‐acid moiety of compounds 3 and 5 . Biological assays revealed that compounds 1 – 5 significantly inhibit Mycobacterium tuberculosis (MTB) growth with MIC values of 5.54, 16.70, 4.38, 9.82, and 16.80 μM , respectively. Compound 3 was found to inhibit the pathway between chorismate and para‐aminobenzoic acid (pAba) with a MIC value of 11.3 μM , representing a new example of pAba inhibitor isolated from a natural source. All compounds were not toxic to Candida albicans SC5314 at a concentration up to 100 μM .  相似文献   

9.
Inflammatory cytokines are closely related to pigmentary changes. In this study, the effects of IFN‐γ on melanogenesis were investigated. IFN‐γ inhibits basal and α‐MSH‐induced melanogenesis in B16 melanoma cells and normal human melanocytes. MITF mRNA and protein expressions were significantly inhibited in response to IFN‐γ. IFN‐γ inhibited CREB binding to the MITF promoter but did not affect CREB phosphorylation. Instead, IFN‐γ inhibited the association of CBP and CREB through the increased association between CREB binding protein (CBP) and STAT1. These findings suggest that IFN‐γ inhibits both basal and α‐MSH‐induced melanogenesis by inhibiting MITF expression. The inhibitory action of IFN‐γ in α‐MSH‐induced melanogenesis is likely to be associated with the sequestration of CBP via the association between CBP and STAT1. These data suggest that IFN‐γ plays a role in controlling inflammation‐ or UV‐induced pigmentary changes.  相似文献   

10.
Bioactivity‐guided fractionation of the cytotoxic extract of Aspergillus niger, an endophytic fungus from the Chinese liverwort Heteroscyphus tener (Steph .) Schiffn ., afforded five new naphtho‐γ‐pyrones, rubrofusarin‐6‐Oα‐D ribofuranoside ( 1 ), (R)‐10‐(3‐succinimidyl)‐TMC‐256A1 ( 2 ), asperpyrone E ( 3 ), isoaurasperone A ( 4 ), and isoaurasperone F ( 5 ), as well as four known ones, dianhydroaurasperone C ( 6 ), aurasperone D ( 7 ), asperpyrone D ( 8 ), and asperpyrone A ( 9 ), together with a cytotoxic cyclic pentapeptide, malformin A1 ( 10 ). Their structures were determined by extensive spectroscopic analysis. The absolute configurations of dimeric naphtho‐γ‐pyrones 3 – 9 were also determined by analysis of their respective CD spectra.  相似文献   

11.
Mammalian α4 phosphoprotein, the homolog of yeast Tap42, is a component of the mammalian target‐of‐rapamycin (mTOR) pathway that regulates ribogenesis, the initiation of translation, and cell‐cycle progression. α4 is known to interact with the catalytic subunit of protein phosphatase 2A (PP2Ac) and to regulate PP2A activity. Using α4 as bait in yeast two‐hybrid screening of a human K562 erythroleukemia cDNA library, EDD (E3 isolated by differential display) E3 ubiquitin ligase was identified as a new protein partner of α4. EDD is the mammalian ortholog of Drosophila hyperplastic discs gene (hyd) that controls cell proliferation during development. The EDD protein contains a PABC domain that is present in poly(A)‐binding protein (PABP), suggesting that PABP may also interact with α4. PABP recruits translation factors to the poly(A)‐tails of mRNAs. In the present study, immunoprecipitation/immunoblotting (IP/IB) analyses showed a physical interaction between α4 and EDD in rat Nb2 T‐lymphoma and human MCF‐7 breast cancer cell lines. α4 also interacted with PABP in Nb2, MCF‐7 and the human Jurkat T‐leukemic and K562 myeloma cell lines. COS‐1 cells, transfected with Flag‐tagged‐pSG5‐EDD, gave a (Flag)‐EDD–α4 immunocomplex. Furthermore, deletion mutants of α4 were constructed to determine the binding site for EDD. IP/IB analysis showed that EDD bound to the C‐terminal region of α4, independent of the α4‐PP2Ac binding site. Therefore, in addition to PP2Ac, α4 interacts with EDD and PABP, suggesting its involvement in multiple steps in the mTOR pathway that leads to translation initiation and cell‐cycle progression. J. Cell. Biochem. 110: 1123–1129, 2010. Published 2010 Wiley‐Liss, Inc.  相似文献   

12.
13.
14.
Recent evidence implicates a central role for PI3K signalling in mediating cell survival during the process of neuronal differentiation. Although PI3K activity is stimulated by a wide range of growth factors and cytokines in different cell lines and tissues, activation of this pathway by insulin‐like growth factor I (IGF‐I) most likely represents the main survival signal during neuronal differentiation. IGF‐I is highly expressed during development of the central nervous system, and thus is a critical factor for the development and maturation of the cerebellum. Upon ligand binding, the IGF‐I receptor phosphorylates tyrosine residues in SHC and insulin receptor substrates (IRSs) initiating two main signalling cascades, the MAP kinase and the phosphatidylinositol 3‐kinase (PI3K) pathways. Activated PI3K is composed of a catalytic subunit (p110α or β) associated with one of a large family of regulatory subunits (p85α, p85β, p55γ, p55α, and p50α). To evaluate the contributions of these various regulatory subunits to neuronal differentiation, we have used antibodies specific for each of the PI3K subunits. Using these antisera, we now demonstrate that PI3K subunits are differentially regulated in cerebellar development, and that the expression level of the p55γ regulatory subunit reaches a maximum during postnatal development, decreasing thereafter to low levels in the adult cerebellum. Furthermore, our studies reveal that the distribution of the various PI3K regulatory subunits varies during development of the cerebellum. Interestingly, p55γ is expressed in both glial and neuronal cells; moreover, in Purkinje neurones, this subunit colocalises with the IGF‐IR. © 2001 John Wiley & Sons, Inc. J Neurobiol 47: 39–50, 2001  相似文献   

15.
A new boswellic acid derivative, 11α‐ethoxy‐β‐boswellic acid (EBA; 1 ) and a new ursane‐type triterpene, named nizwanone ( 2 ), were isolated from Omani frankincense Boswellia sacra Flueck . together with two known compounds papyriogenin B and rigidenol. The structures of 1 and 2 were elucidated by detailed spectroscopic analysis using 1H‐ and 13C‐NMR, 1H,1H‐COSY, HMQC, HMBC, and HR‐EI‐MS techniques. The relative configurations of 1 and 2 were assigned by comparative analysis of the NMR spectral data with those of known analogs together with NOESY experiments. Structures of known compounds were identified by comparison with the reported data.  相似文献   

16.
The adaptation of nine species of mites that infest stored products for starch utilization was tested by (1) enzymatic analysis using feces and whole mite extracts, (2) biotests, and (3) inhibition experiments. Acarus siro, Aleuroglyphus ovatus, and Tyroborus lini were associated with the starch‐type substrates and maltose, with higher enzymatic activities observed in whole mite extracts. Lepidoglyphus destructor was associated with the same substrates but had higher activities in feces. Dermatophagoides farinae, Chortoglyphus arcuatus, and Caloglyphus redickorzevi were associated with sucrose. Tyrophagus putrescentiae and Carpoglyphus lactis had low or intermediate enzymatic activity on the tested substrates. Biotests on starch additive diets showed accelerated growth of species associated with the starch‐type substrates. The inhibitor acarbose suppressed starch hydrolysis and growth of the mites. We suggest that the species with higher starch hydrolytic activity in feces were more tolerant to acarbose, and α‐amylase and α‐glucosidase of synanthropic mites are suitable targets for inhibitor‐based strategies of mite control. © 2009 Wiley Periodicals, Inc.  相似文献   

17.
Bisphenol A (BPA) is an endocrine disruptor chemical, which is commonly used in everyday products. Adverse effects of its exposure are reported even at picomolar doses. Effects of picomolar and nanomolar concentrations of BPA on cytotoxicity, nitric oxide (NO) levels, acetylcholinesterase (AChE) gene expression and activity, and tumor necrosis factor‐α (TNF‐α) and caspase‐8 levels were determined in SH‐SY5Y cells. The current study reveals that low‐dose BPA treatment induced cytotoxicity, NO, and caspase‐8 levels in SH‐SY5Y cells. We also evaluated the mechanism underlying BPA‐induced cell death. Ours is the first report that receptor‐interacting serine/threonine‐protein kinase 1–mediated necroptosis is induced by nanomolar BPA treatment in SH‐SY5Y cells. This effect is mediated by altered AChE and decreased TNF‐α levels, which result in an apoptosis‐necroptosis switch. Moreover, our study reveals that BPA is an activator of AChE.  相似文献   

18.
The psychostimulant properties of methamphetamine (METH) are associated with an increase in extracellular dopamine (DA) levels in the brain, via facilitation of DA’s release from pre‐synaptic nerve terminals and inhibition of its reuptake through DA transporter. Recently, we have demonstrated that tumor necrosis factor‐α (TNF‐α) increases DA uptake and inhibits METH dependence. Moreover, we have clarified ‘shati’ identified in the nucleus accumbens of mice treated with METH is involved in METH dependence. In the present study, we investigated the effects of TNF‐α on DA uptake in PC12 cells and established a PC12 cell line transfected with a vector containing shati cDNA to examine the precise mechanism behind the role of shati in DA uptake. Moreover, we examined the relationship between shati and TNF‐α. TNF‐α increased DA uptake via the mitogen‐activated protein kinase kinase pathway and inhibited the METH‐induced decrease in DA uptake in PC12 cells. Transfection of the vector containing shati cDNA into PC12 cells, induced the expression of shati and TNF‐α mRNA, accelerated DA uptake, and inhibited the METH‐induced decrease in DA uptake. These results suggest that the functional roles of shati in METH‐regulated behavioral changes are mediated through inhibition of the METH‐induced decrease in DA uptake via TNF‐α.  相似文献   

19.
The essential oils (EOs) isolated from the leaves and twigs of Juniperus excelsa M.Bieb . growing wild in Lebanon were characterized, and their antimicrobial activity and antiradical capacity were evaluated. The EOs were obtained by hydrodistillation using a Clevenger‐type apparatus and characterized by GC and GC/MS analyses. The antimicrobial activity was evaluated by determining minimal inhibitory concentrations (MICs) against a Gram‐positive and a Gram‐negative bacterium, a yeast, and a dermatophyte with the broth microdilution technique. A total of 28 constituents was identified and accounted for 90.1 and 95.6% of the twig and leaf EO composition, respectively. Both EOs were essentially composed of monoterpene hydrocarbons (46.7 and 59.6% for twig and leaf EOs, resp.) and sesquiterpenes (39.4 and 32.1%, resp.). The main components were α‐pinene, α‐cedrol, and δ‐car‐3‐ene. The J. excelsa EOs did not show any antiradical potential, but revealed interesting in vitro antimicrobial activities against Staphylococcus aureus and Trichophyton rubrum (MICs of 64 and 128 μg/ml, resp.). The three major compounds were tested separately and in combination according to their respective amounts in the oil. δ‐Car‐3‐ene was the most active component and is undoubtedly one of the constituents driving the antifungal activity of J. excelsa essential oil, even though synergies are probably involved.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号