首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A local paracrine angiotensin (ANG) system influences the insulin sensitivity and cell differentiation of adipose tissue. The limited view of a merely systemic renin‐angiotensin‐aldosterone‐system with ANG II (1–8) as the main mediator of ANG‐related effects may oversimplify the situation. The aim was to analyze the degradation of ANG by using capillary electrophoresis (CE) techniques. The supernatant of cultured 3T3‐L1 adipocytes was used directly, and some data on degraded peptides were combined with a biological effect. The formation of several peptides such as ANG II (1–8), —III (2–8), —IV (3–8), and ANG (1–7) as degradation products is demonstrated; in addition low levels of ANG (3–7) are identified. The concentrations of the peptides ANG III (2–8) and ANG IV (3–8) (both are AT4 receptor agonists) are modified in the vicinity of adipose tissue cells by amino‐terminal degradation which resulted in ANG (3–8), —(4–8) and —(5–8). ANG IV (3–8) and ANG II (1–8) were biologically highly effective in inhibiting IRAP (insulin regulated aminopeptidase, part of the AT4 receptor). It is observed that ANG (1–7) is the main degradation product derived from ANG I via ANG (1–9) and that ANG III (2–8) is one important regulated peptide for IRAP. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

3.
The role of individual supplements necessary for the long‐term self‐renewal of embryonic stem (ES) cells is poorly characterized in feeder/serum‐free culture systems. This study sought to characterize the relationship between the effects of glucose on ES cell proliferation and fibronectin (FN) synthesis, and to assess the mechanisms responsible for these cellular effects of glucose. Treatment of the two ES cells (ES‐E14TG2a and ES‐R1) with 25 mM glucose (high glucose) increased the expression levels of FN mRNA and protein. In addition, high glucose and ANG II synergistically increased FN expression level, which coincident with data showing that high glucose increased the mRNA expression of angiotensin II (ANG II) type 1 receptor (AT1R), angiotensinogen, and FN, but not ANG II type 2 receptor. High glucose also increased the intracellular calcium (Ca2+) concentration and pan‐protein kinase C (PKC) phosphorylation. Inhibition of the Ca2+/PKC pathway blocked high glucose‐induced FN expression. High glucose or ANG II also synergistically increased transforming growth factor‐beta1 (TGF‐β1) expression, while pretreatment with losartan abolished the high glucose‐induced increase in TGF‐β1 production. Moreover, TGF‐β1‐specific small interfering RNA inhibited high glucose‐induced FN expression and c‐Jun N‐terminal kinase (JNK) activation. The JNK inhibitor SP600125 blocked high glucose‐induced FN expression and inhibited cell cycle regulatory protein expression induced by high glucose or TGF‐β1. In this study, inhibition of AT1R, Ca2+/PKC, TGF‐β1, JNK, FN receptor blocked the high glucose‐induced DNA synthesis, increased the cell population in S phase, and the number of cells. It is concluded that high glucose increases FN synthesis through the ANG II or TGF‐β1 pathways, which in part mediates proliferation of mouse ES cells. J. Cell. Physiol. 223: 397–407, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
Although generally associated with cardiovascular regulation, angiotensin II receptor type 1a (AT1aR) blockade in mouse models and humans has also been associated with enhanced fear extinction and decreased post‐traumatic stress disorder (PTSD) symptom severity, respectively. The mechanisms mediating these effects remain unknown, but may involve alterations in the activities of corticotropin‐releasing factor (CRF)‐expressing cells, which are known to be involved in fear regulation. To test the hypothesis that AT1aR signaling in CRFergic neurons is involved in conditioned fear expression, we generated and characterized a conditional knockout mouse strain with a deletion of the AT1aR gene from its CRF‐releasing cells (CRF‐AT1aR(?/?)). These mice exhibit normal baseline heart rate, blood pressure, anxiety and locomotion, and freeze at normal levels during acquisition of auditory fear conditioning. However, CRF‐AT1aR(?/?) mice exhibit less freezing than wild‐type mice during tests of conditioned fear expression—an effect that may be caused by a decrease in the consolidation of fear memory. These results suggest that central AT1aR activity in CRF‐expressing cells plays a role in the expression of conditioned fear, and identify CRFergic cells as a population on which AT1R antagonists may act to modulate fear extinction.  相似文献   

5.
6.
Angiotensin II (Ang II) plays important roles in ageing‐related disorders through its type 1 receptor (AT1R). However, the role and underlying mechanisms of AT1R in ageing‐related vascular degeneration are not well understood. In this study, 40 ageing rats were randomly divided into two groups: ageing group which received no treatment (ageing control), and valsartan group which took valsartan (selective AT1R blocker) daily for 6 months. 20 young rats were used as adult control. The aorta structure were analysed by histological staining and electron microscopy. Bcl‐2/Bax expression in aorta was analysed by immunohistochemical staining, RT‐PCR and Western blotting. The expressions of AT1R, AT2R and mitogen‐activated protein kinases (MAPKs) were detected. Significant structural degeneration of aorta in the ageing rats was observed, and the degeneration was remarkably ameliorated by long‐term administration of valsartan. With ageing, the expression of AT1R was elevated, the ratio of Bcl‐2/Bax was decreased and meanwhile, an important subgroup of MAPKs, extracellular signal‐regulated kinase (ERK) activity was elevated. However, these changes in ageing rats could be reversed to some extent by valsartan. In vitro experiments observed consistent results as in vivo study. Furthermore, ERK inhibitor could also acquire partial effects as valsartan without affecting AT1R expression. The results indicated that AT1R involved in the ageing‐related degeneration of aorta and AT1R‐mediated ERK activity was an important mechanism underlying the process.  相似文献   

7.
8.
Angiotensin II (Ang II) plays an important role in the onset and development of cardiac remodelling associated with changes of autophagy. Angiotensin1‐7 [Ang‐(1‐7)] is a newly established bioactive peptide of renin–angiotensin system, which has been shown to counteract the deleterious effects of Ang II. However, the precise impact of Ang‐(1‐7) on Ang II‐induced cardiomyocyte autophagy remained essentially elusive. The aim of the present study was to examine if Ang‐(1‐7) inhibits Ang II‐induced autophagy and the underlying mechanism involved. Cultured neonatal rat cardiomyocytes were exposed to Ang II for 48 hrs while mice were infused with Ang II for 4 weeks to induce models of cardiac hypertrophy in vitro and in vivo. LC3b‐II and p62, markers of autophagy, expression were significantly elevated in cardiomyocytes, suggesting the presence of autophagy accompanying cardiac hypertrophy in response to Ang II treatment. Besides, Ang II induced oxidative stress, manifesting as an increase in malondialdehyde production and a decrease in superoxide dismutase activity. Ang‐(1‐7) significantly retarded hypertrophy, autophagy and oxidative stress in the heart. Furthermore, a role of Mas receptor in Ang‐(1‐7)‐mediated action was assessed using A779 peptide, a selective Mas receptor antagonist. The beneficial responses of Ang‐(1‐7) on cardiac remodelling, autophagy and oxidative stress were mitigated by A779. Taken together, these result indicated that Mas receptor mediates cardioprotection of angiotensin‐(1‐7) against Ang II‐induced cardiomyocyte autophagy and cardiac remodelling through inhibition of oxidative stress.  相似文献   

9.
The role of Jak/STAT signaling in heart tissue renin-angiotensin system   总被引:4,自引:0,他引:4  
The involvement of the Renin Angiotensin System (RAS) and the role of its primary effector, angiotensin II (Ang II), in etiology of myocardial hypertrophy and ischemia is well documented. In several animal models, the RAS is activated in cardiac cell types that express the receptor AT1, and/or AT2, through which the Ang II mediated effects are promoted. In this article, we briefly review recent experimental evidence on the critical role of a prominent signaling pathway, the Jak/Stat pathway in activation and maintenance of the local RAS in cardiac hypertrophy and ischemia. Recent studies in our laboratory document that the promoter of the prohormone angiotensinogen (Ang) gene serves as the target site for STAT proteins, thereby linking the Jak/Stat pathway to activation of heart tissue autocrine Ang II loop. Stat5A and Stat6, are selectively activated when the heart is subjected to ischemic injury, whereas activation of Stat3 and Stat5A is involved in myocardial hypertrophy. Blockage of RAS activation by treatment with specific inhibitor promotes a remarkable recovery in functional hemodynamics of the myocardium. Thus, activation of selective sets of Stat proteins constitutes the primary signaling event in the pathogenesis of myocardial hypertrophy and ischemia.  相似文献   

10.
TGR(mREN2)27 is a transgenic rat harboring the murine Ren-2 gene and exhibit fulminant hypertension and marked heart hypertrophy. In order to study the role of angiotensin II in the increase of cardiac mass, these animals were treated with anti-hypertensive and non-antihypertensive doses of the angiotensin II receptor AT1 antagonist Telmisartan for 9 weeks. All doses led to significant reductions of heart hypertrophy detected by the evaluation of the diameter of cardiac muscle bundles. We conclude from this study that cardiac hypertrophy in TGR(mREN2)27 is characterized by an increased volume of cardiomyocytes and an unchanged amount of fibrous tissue and that angiotensin II plays an important role in the mechanisms leading to this phenotype.  相似文献   

11.
Doxorubicin (DOX), one useful chemotherapeutic agent, is limited in clinical use because of its serious cardiotoxicity. Growing evidence suggests that angiotensin receptor blockers (ARBs) have cardioprotective effects in DOX‐induced cardiomyopathy. However, the detailed mechanisms underlying the action of ARBs on the prevention of DOX‐induced cardiomyocyte cell death have yet to be investigated. Our results showed that angiotensin II receptor type I (AT1R) plays a critical role in DOX‐induced cardiomyocyte apoptosis. We found that MAPK signaling pathways, especially ERK1/2, participated in modulating AT1R gene expression through DOX‐induced mitochondrial ROS release. These results showed that several potential heat shock binding elements (HSE), which can be recognized by heat shock factors (HSFs), located at the AT1R promoter region. HSF2 markedly translocated from the cytoplasm to the nucleus when cardiomyocytes were damaged by DOX. Furthermore, the DNA binding activity of HSF2 was enhanced by DOX via deSUMOylation. Overexpression of HSF2 enhanced DOX‐induced cardiomyocyte cell death as well. Taken together, we found that DOX induced mitochondrial ROS release to activate ERK‐mediated HSF2 nuclear translocation and AT1R upregulation causing DOX‐damaged heart failure in vitro and in vivo.  相似文献   

12.
Cardiac hypertrophy is an early hallmark during the clinical course of heart failure and regulated by various signalling pathways. Recently, we observed that mouse embryonic fibroblasts from CD38 knockout mice were significantly resistant to oxidative stress such as H2O2‐induced injury and hypoxia/reoxygenation‐induced injury. In addition, we also found that CD38 knockout mice protected heart from ischaemia reperfusion injury through activating SIRT1/FOXOs‐mediated antioxidative stress pathway. However, the role of CD38 in cardiac hypertrophy is not explored. Here, we investigated the roles and mechanisms of CD38 in angiotensin II (Ang‐II)‐induced cardiac hypertrophy. Following 14 days of Ang‐II infusion with osmotic mini‐pumps, a comparable hypertension was generated in both of CD38 knockout and wild‐type mice. However, the cardiac hypertrophy and fibrosis were much more severe in wild‐type mice compared with CD38 knockout mice. Consistently, RNAi‐induced knockdown of CD38 decreased the gene expressions of atrial natriuretic factor (ANF) and brain natriuretic peptide (BNP) and reactive oxygen species generation in Ang‐II‐stimulated H9c2 cells. In addition, the expression of SIRT3 was elevated in CD38 knockdown H9c2 cells, in which SIRT3 may further activate the FOXO3 antioxidant pathway. The intracellular Ca2+ release induced by Ang‐II markedly decreased in CD38 knockdown H9c2 cells, which might be associated with the decrease of nuclear translocation of NFATc4 and inhibition of ERK/AKT phosphorylation. We concluded that CD38 plays an essential role in cardiac hypertrophy probably via inhibition of SIRT3 expression and activation of Ca2+‐NFAT signalling pathway. Thus, CD38 may be a novel target for treating cardiac hypertrophy.  相似文献   

13.
We recently reported intracrine effects of angiotensin II (ANG II) on cardiac myocyte growth and hypertrophy that were not inhibited by the ANG II type 1 receptor (AT1) antagonist, losartan. To further determine the role of AT1 in intracrine effects, we studied the effect of intracellular ANG II (iANG II) on cell proliferation in native Chinese hamster ovary (CHO) cells and those stably transfected with AT1 receptor (CHO-AT1). CHO-AT1, but not CHO cells, showed enhanced proliferation following exposure to extracellular ANG II (eANG II). However, when transiently transfected with an iANG II expression vector, both cell types showed significantly enhanced proliferation, compared with those transfected with a scrambled peptide. Losartan blocked eANG II-induced cell proliferation, but not that induced by iANG II. To further confirm these findings, CHO and CHO-AT1 cells were stably transfected for iANG II expression (CHO-iA and CHO-AT1-iA, respectively). Cells grown in serum-free medium were counted every 24 h, up to 72 h. CHO-iA and CHO-AT1-iA cells showed a steeper growth curve compared with CHO and CHO-AT1, respectively. These observations were confirmed by Wst-1 assay. The AT1 receptor antagonists losartan, valsartan, telmisartan, and candesartan did not attenuate the faster growth rate of CHO-iA and CHO-AT1-iA cells. eANG II showed an additional growth effect in CHO-AT1-iA cells, which could be selectively blocked by losartan. These data demonstrate that intracrine ANG II can act independent of AT1 receptors and suggest novel intracellular mechanisms of action for ANG II. renin-angiotensin system; angiotensinogen; peptide hormones; nuclear signaling; intracrine  相似文献   

14.
Mechanical stress triggers cardiac hypertrophy and autophagy through an angiotensin II (Ang II) type 1 (AT1) receptor‐dependent mechanism. Low level of high density lipoprotein (HDL) is an independent risk factor for cardiac hypertrophy. This study was designed to evaluate the effect of HDL on mechanical stress‐induced cardiac hypertrophy and autophagy. A 48‐hr mechanical stretch and a 4‐week transverse aortic constriction were employed to induce cardiomyocyte hypertrophy in vitro and in vivo, respectively, prior to the assessment of myocardial autophagy using LC3b‐II and beclin‐1. Our results indicated that HDL significantly reduced mechanical stretch‐induced rise in autophagy as demonstrated by LC3b‐II and beclin‐1. In addition, mechanical stress up‐regulated AT1 receptor expression in both cultured cardiomyocytes and in mouse hearts, whereas HDL significantly suppressed the AT1 receptor. Furthermore, the role of Akt phosphorylation in HDL‐mediated action was assessed using MK‐2206, a selective inhibitor for Akt phosphorylation. Our data further revealed that MK‐2206 mitigated HDL‐induced beneficial responses on cardiac remodelling and autophagy. Taken together, our data revealed that HDL inhibited mechanical stress‐induced cardiac hypertrophy and autophagy through downregulation of AT1 receptor, and HDL ameliorated cardiac hypertrophy and autophagy via Akt‐dependent mechanism.  相似文献   

15.
Mechanical stress can induce cardiac hypertrophy through angiotensin II (AngII) type 1 (AT1) receptor independently of AngII, however, the intracellular mechanisms remain largely indeterminate. Since calcineurin, a Ca2+-dependent phosphatase, plays a critical role in pressure overload-induced cardiac hypertrophy, we therefore, asked whether calcineurin is involved in the AT1 receptor-mediated but AngII-independent cardiac hypertrophy. Mechanical stretch failed to elicit hypertrophic responses in COS7 cells co-transfected with plasmid of AT1 receptor and siRNA of calcineurin. Mechanical stresses for 2 weeks in vivo and for 24 h in vitro significantly induced upregulation of calcineurin expression and hypertrophic responses, such as the increases in cardiomyocytes size and specific gene expressions, in cardiomyocytes of angiotensinogen gene knockout (ATG−/−) mice, both of which were significantly suppressed by a specific calcineurin inhibitor FK506, suggesting a critical role of calcineurin in mechanical stress-induced cardiac hypertrophy in the ATG−/− mice. Furthermore, an AT1 receptor blocker Losartan not only attenuated cardiac hypertrophy but also abrogated upregulation of cardiac calcineurin expression induced by mechanical stresses in the AngII-lacking mice, indicating that calcineurin expression is regulated by AT1 receptor without the involvement of AngII after mechanical stress. These findings collectively suggest that mechanical stress-evoked but AngII-independent activation of AT1 receptor induces cardiac hypertrophy through calcineurin pathway.  相似文献   

16.
The impact of angiotensin (ANG) for peripheral, global effects is well known. Local ANG systems including that of the insulin-releasing β cell are not well investigated. In insulin-secreting cell line (INS-1), AT1 and AT4 receptors for ANG II and IV were demonstrated by Western blots. Only small amounts of ANG II-binding sites of low affinity were observed. ANG II and SARILE displaced binding of 125I-ANG II. ANG II and IV as well as their non-degradable analogs SARILE and Nle-ANG IV increased the glucose-induced insulin release in a bell-shaped way; the maximum effect was at ~1?nM. The increase was antagonized by 1 µM losartan or 10 µM divalinal (AT1 and AT4 receptor antagonists, respectively). The insulin release was accompanied by a 45Ca2+ uptake in the case of ANG II and ANG IV. Divalinal abolished the effect of ANG IV and Nle-ANG IV on this parameter. ANG IV reduced the increase in blood glucose during a glucose tolerance test with corresponding, albeit smaller effects on plasma insulin. Using confocal laser scanning microscopy, transfected insulin-regulated aminopeptidase (IRAP) with AT4 receptors was shown to be accumulated close to the nucleus and the cytosolic membrane, whereas GLUT4 was not detectable. IRAP was inhibited by ANG IV. In conclusion, AT1 and AT4 receptors may be involved in diabetic homeostasis. Effects are mediated by insulin release, which is accompanied by an influx of extracellular Ca2+. The impact of ANG IV/IRAP agonists may be worth being used as antidiabetics.  相似文献   

17.
Persistent left ventricular (LV) dysfunction after reperfused myocardial infarction (RMI) is a significant problem and angiotensin II (AngII) type 1 receptor (AT1R) blockers (ARBs) may limit reperfusion injury involving upregulation of AngII type 2 receptors (AT2R). To determine whether ARBs valsartan and irbesartan limit reperfusion injury and upregulate AT2R protein during RMI, we randomized dogs with anterior RMI (90 min ischemia; 120 min reperfusion) to 4 groups [valsartan (n = 6); irbesartan (n = 9); vehicle controls (n = 8); and sham (n = 6)] and measured serial in vivo hemodynamics, LV systolic and diastolic function, and inhibition of AngII pressor responses to the ARBs, and ex vivo infarct size, and regional AT1R and AT2R protein expression at the end of the reperfusion. Compared to the control group, both ARBs significantly limited the increase in left atrial pressure, promptly limited the deterioration of LV dP/dtmax, dP/dtmin, ejection fraction and diastolic function, limited infarct expansion and thinning, and limited infarct size. Importantly, both ARBs increased AT2R protein in the postischemic reperfused zone, with no change in AT1R protein. There were no changes in the sham group. The results suggest that limitation of myocardial injury associated with AT1R blockade combined with upregulation of AT2R protein expression contributes to the cardioprotective effects of ARBs during RMI. This beneficial effect of ARBs on persistent LV dysfunction after RMI should be evaluated in the clinical setting to determine the relative benefit of ARBs in patients who undergo reperfusion therapy for acute coronary syndromes.  相似文献   

18.
Our published studies show that the distribution of the ANG II type 1 (AT1) receptor (AT1R), expressed as a enhanced yellow fluorescent fusion (YFP) protein (AT1R/EYFP), is altered upon cellular treatment with ANG II or coexpression with intracellular ANG II. AT1R accumulates in nuclei of cells only in the presence of ANG II. Several transmembrane receptors are known to accumulate in nuclei, some as holoreceptors and others as cleaved receptor products. The present study was designed to determine whether the AT1R is cleaved before nuclear transport. A plasmid encoding a rat AT1R labeled at the amino terminus with enhanced cyan fluorescent protein (CFP) and at the carboxy terminus with EYFP was employed. Image analyses of this protein in COS-7 cells, CCF-STTG1 glial cells, and A10 vascular smooth muscle cells show the two fluorescent moieties to be largely spatially colocalized in untreated cells. ANG II treatment, however, leads to a separation of the fluorescent moieties with yellow fluorescence accumulating in more than 30% of cellular nuclei. Immunoblot analyses of extracts and conditioned media from transfected cells indicate that the CFP domain fused to the extracellular amino-terminal AT1R domain is cleaved from the membrane and that the YFP domain, together with the intracellular cytoplasmic carboxy terminus of the AT1R, is also cleaved from the membrane-bound receptor. The carboxy terminus of the AT1R is essential for cleavage; cleavage does not occur in protein deleted with respect to this region. Overexpressed native AT1R (nonfusion) is also cleaved; the intracellular 6-kDa cytoplasmic domain product accumulates to a significantly higher level with ANG II treatment. nuclear angiotensin II type 1 receptor; intracrine; intracellular  相似文献   

19.
Receptor-mediated endocytosis of extracellular ANG II has been suggested to play an important role in the regulation of proximal tubule cell (PTC) function. Using immortalized rabbit PTCs as an in vitro cell culture model, we tested the hypothesis that extracellular ANG II is taken up by PTCs through angiotensin type 1 receptor (AT1; or AT1a) receptor-mediated endocytosis and that inhibition of ANG II endocytosis using a selective AT1 receptor small-interfering RNA (siRNA; AT1R siRNA) or endocytotic inhibitors exerts a physiological effect on total and apical sodium and hydrogen exchanger isoform 3 (NHE-3) protein abundance. Western blots and live cell imaging with FITC-labeled ANG II confirmed that transfection of PTCs with a human specific AT1R siRNA for 48 h selectively knocked down AT1 receptor protein by 76 ± 5% (P < 0.01), whereas transfection with a scrambled siRNA had little effect. In nontransfected PTCs, exposure to extracellular ANG II (1 nM) for 60 min at 37°C increased intracellular ANG II accumulation by 67% (control: 566 ± 55 vs. ANG II: 943 ± 160 pg/mg protein, P < 0.05) and induced mitogen-activated protein kinase extracellular signal-regulated kinase (ERK) 1/2 phosphorylation (163 ± 15% of control, P < 0.01). AT1R siRNA reduced ANG II endocytosis to a level similar to losartan, which blocks cell surface AT1 receptors (557 ± 37 pg/mg protein, P < 0.05 vs. ANG II), or to colchicine, which disrupts cytoskeleton microtubules (613 ± 12 pg/mg protein, P < 0.05 vs. ANG II). AT1R siRNA, losartan, and colchicine all attenuated ANG II-induced ERK1/2 activation and total cell lysate and apical membrane NHE-3 abundance. The scrambled siRNA had no effect on ANG II endocytosis, ERK1/2 activation, or NHE-3 expression. These results suggest that AT1 receptor-mediated endocytosis of extracellular ANG II may regulate proximal tubule sodium transport by increasing total and apical NHE-3 proteins. extracellular signal-regulated kinase 1/2; kidney; sodium transport; receptor internalization; ribonucleic acid interference  相似文献   

20.
Summary The model of angiotensin II (ANG II) developed in our laboratory using a combination of NMR, fluorescence data and molecular graphics [Matsoukas, J.M. et al., J. Biol. Chem., 269 (1994) 5303] served as a template for a systematic superimposition of potent AT1 receptor antagonists with ANG II. The key amino acids in this model, tyrosine, phenylalanine and histidine, form a charge-relay system. The studied ANG II AT1 receptor antagonists were found to accommodate this relay system. The proposed model offers a motivation to synthetic chemists to develop ANG II antagonists that differ from the losartan prototype structure but possess an enhanced biological profile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号