首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study demonstrated the feasibility of a biological denitrification process using immobilized Pseudomonas stutzeri. The microbial cellulose (MC) from Acetobacter xylinum was used as the support material for immobilization of the bacterium. Nitrate removal took place mainly in the anoxic system. The effects of various operating conditions such as the initial nitrate concentration, pH, and carbon source on biological denitrification were demonstrated experimentally. The system demonstrated a high capacity for reducing nitrate concentrations under optimum conditions. The denitrification rate increased up to a maximal value of 1.6 kg NO3-N m−3 day−1 with increasing nitrate loading rate. Because of its porosity and purity, MC may be considered as appropriate supports for adsorbed immobilized cells. The simplicity of immobilization and high efficiency in operation are the main advantages of such systems. To date, the immobilization of microorganisms onto MC has not been carried out. The results of this research shows that a pilot bioreactor containing P. stutzeri immobilized on MC exhibited efficient denitrification with a relatively low retention time.  相似文献   

2.
1. Anthropogenic activities have increased reactive nitrogen availability, and now many streams carry large nitrate loads to coastal ecosystems. Denitrification is potentially an important nitrogen sink, but few studies have investigated the influence of benthic organic carbon on denitrification in nitrate‐rich streams. 2. Using the acetylene‐block assay, we measured denitrification rates associated with benthic substrata having different proportions of organic matter in agricultural streams in two states in the mid‐west of the U.S.A., Illinois and Michigan. 3. In Illinois, benthic organic matter varied little between seasons (5.9–7.0% of stream sediment), but nitrate concentrations were high in summer (>10 mg N L−1) and low (<0.5 mg N L−1) in autumn. Across all seasons and streams, the rate of denitrification ranged from 0.01 to 4.77 μg N g−1 DM h−1 and was positively related to stream‐water nitrate concentration. Within each stream, denitrification was positively related to benthic organic matter only when nitrate concentration exceeded published half‐saturation constants. 4. In Michigan, streams had high nitrate concentrations and diverse benthic substrata which varied from 0.7 to 72.7% organic matter. Denitrification rate ranged from 0.12 to 11.06 μg N g−1 DM h−1 and was positively related to the proportion of organic matter in each substratum. 5. Taken together, these results indicate that benthic organic carbon may play an important role in stream nitrogen cycling by stimulating denitrification when nitrate concentrations are high.  相似文献   

3.
1. Although it is well known that sediments can be hot spots for nitrogen transformation in streams, many previous studies have confined measurements of denitrification and nitrate retention to shallow sediments (<5 cm deep). We determined the extent of nitrate processing in deeper sediments of a sand plains stream (Emmons Creek) by measuring denitrification in core sections to a depth of 25 cm and by assessing vertical nitrate profiles, with peepers and piezometers, to a depth of 70 cm. 2. Denitrification rates of sediment slurries based on acetylene block were higher in shallower core sections. However, core sections deeper than 5 cm accounted for 68% of the mean depth‐integrated denitrification rate. 3. Vertical hydraulic gradient and vertical profiles of pore water chloride concentration suggested that deep ground water upwelled through shallow sediments before discharging to the stream channel. The results of a two‐source mixing model based on chloride concentrations suggested that the hyporheic zone was very shallow (<5 cm) in Emmons Creek. 4. Vertical profiles showed that nitrate concentration in shallow ground water was about 10–60% of the nitrate concentration of deep ground water. The mean nitrate concentrations of deep and shallow ground water were 2.17 and 0.73 mg NO3‐N L?1, respectively. 5. Deep ground water tended to be oxic (6.9 mg O2 L?1) but approached anoxia (0.8 mg O2 L?1) after passing through shallow, organic carbon‐rich sediments, which suggests that the decline in the nitrate concentrations of upwelling ground water was because of denitrification. 6. Collectively, our results suggest that there is substantial nitrate removal occurring in deep sediments, below the hyporheic zone, in Emmons Creek. Our findings suggest that not accounting for nitrate removal in deep sediments could lead to underestimates of nitrogen processing in streams and catchments.  相似文献   

4.
1. Groundwater nitrate contamination has become a worldwide problem as increasing amounts of nitrogen fertilisers are used in agriculture. Alluvial groundwater is uniquely juxtaposed between soils and streams. Hydrological connections among these subsystems regulate nutrient cycling. 2. We measured denitrification using an in situ acetylene‐block assay in a nitrate‐contaminated portion of the Garonne River catchment along a gradient of surface water–ground water mixing during high (snowmelt) and low flow. 3. During high flow (mid‐April to early June) the water table rose an average of 35 cm and river water penetrated the subsurface to a great extent in monitoring wells. Denitrification rates averaged 5.40 μgN2O L?1 min?1 during the high flow period, nearly double the average rate (2.91 μgN2O L?1 min?1) measured during base flow. This was driven by a strong increase in denitrification in groundwater under native riparian vegetation. Nitrate concentrations were significantly lower during high flow compared with base flow. Riparian patches had higher dissolved organic carbon concentrations that were more aromatic compared with the gravel bar patch closest to the river. 4. Multiple linear regression showed that the rate of denitrification was best predicted by the concentration of low molecular weight organic acids. These molecules are probably derived from decomposition of soil organic matter and are an important energy source for anaerobic respiratory processes like denitrification. The second best predictor was per cent surface water, reflecting higher denitrification rates during spring when hydrological connection between surface water and ground water was greatest. 5. Our results indicate that, while denitrification rates in Garonne River alluvium were spatially and temporally variable, denitrification was a significant NO3 sink during transport from the NO3‐contaminated floodplain to the river. DOC availability and river–floodplain connectivity were important factors influencing observed spatial and temporal patterns.  相似文献   

5.
Biological denitrification using a pure culture of Alcaligenes denitrificans was investigated in a closed rotating biological contactor, which operated with a hydraulic retention time of 2 h, a carbon/nitrogen ratio of 2:1, with a dissolved O2 concentration below 6 mg l–1 and under three different phosphate concentrations. Alcaligenes denitrificans was not repressed by O2 limitation and the removal of nitrate was about 30% more efficient at the intermediate phosphate concentration (20 mg P l–1).  相似文献   

6.
【目的】探究不同菌浓度和亚铁浓度条件下,Acidovorax sp. strain BoFeN1介导的厌氧亚铁氧化耦合硝酸盐还原过程的动力学和次生矿物。【方法】构建包含菌BoFeN1、硝酸盐、亚铁的厌氧培养体系,测试硝酸根、亚硝酸根、乙酸根、亚铁等浓度,并收集次生矿物,采用XRD、SEM进行矿物种类和形貌表征。【结果】在微生物介导硝酸盐还原耦合亚铁氧化的体系中,高菌浓度促进硝酸盐还原,对亚铁氧化也有一定促进作用;高浓度亚铁在低菌浓度下氧化反应速率和程度降低,但是在高菌浓度下无明显影响;亚铁浓度越高次生矿物结晶度越高,但对硝酸盐还原具有一定抑制作用。在微生物介导亚硝酸盐还原耦合亚铁氧化的体系中,高的菌浓度和亚铁浓度都会促进亚硝酸盐还原,但亚铁氧化的次生矿物会对亚硝酸盐的微生物还原产生较强的抑制作用,次生矿物的种类和结晶度主要受亚铁浓度影响。【结论】硝酸盐还原主要是生物反硝化作用,亚硝酸盐还原包含生物反硝化和化学反硝化两部分,在硝酸盐体系中亚铁氧化与次生矿物生成是受生物和化学反硝化作用的共同影响,但亚硝酸盐体系中亚铁氧化与次生矿物生成主要是受化学反硝化作用影响。该研究可为深入理解厌氧微生物介导铁氮耦合反应机制提供基础数据和理论支撑。  相似文献   

7.
1. Riparian zones function as important ecotones that reduce nitrate concentration in groundwater and inputs into streams. In the boreal forest of interior Alaska, permafrost confines subsurface flow through the riparian zone to shallow organic horizons, where plant uptake of nitrate and denitrification are typically high. 2. In this study, riparian zone nitrogen retention was examined in a high permafrost catchment (approximately 53% of land area underlain by permafrost) and a low permafrost catchment (approximately 3%). To estimate the contribution of the riparian zone to catchment nitrogen retention, we analysed groundwater chemistry using an end‐member mixing model. 3. Stream nitrate concentration was over twofold greater in the low permafrost catchment than the high permafrost catchment. Riparian groundwater was not significantly different between catchments, averaging 13 μm overall. Nitrogen retention, measured using the end‐member mixing model, averaged 0.75 and 0.22 mmol N m?2 day?1 in low and high permafrost catchments, respectively, over the summer. The retention rate of nitrogen in the riparian zone was 10–15% of the export in stream flow. 4. Our results indicate that the riparian zone functions as an important sink for groundwater nitrate and dissolved organic carbon (DOC). However, differences in stream nitrate and DOC concentrations between catchments cannot be explained by solute inputs from riparian groundwater to the stream and differences between streams are probably attributable to deeper groundwater inputs or flows from springs that bypass the riparian zone.  相似文献   

8.
Summary In the combined ion exchange/biological denitrification process for nitrate removal from ground water anion exchange resins are regenerated in a closed circuit by way of an upflow sludge blanket denitrification reactor. The regenerant (a concentrated sodium bicarbonate solution) is recirculated through the ion exchanger in the r generation mode and the denitrification reactor. In the closed system sulfate accumulates to very high concentrations. For that reason it was examined under what process conditions sulfate reduction occurs in an upflow sludge blanket denitrification reactor, when the influent contains high sulfate concentrations (5.45 g SO 4 2- /l) and high sodium bicarbonate concentrations (19.8 g NaHCO3/l) in addition to nitrate and methanol. It appeared that at a hydraulic residence time of 5 h sulfide production started, when the nitrate loading rate was 20% of the denitrification reactor capacity and methanol was added in excess. The excess of methanol was converted into acetate after nitrate was depleted. Conversion of methanol into acetate was a function of the hydraulic residence time. At hydraulic residence times above 8 h this conversion was complete. Also in batch experiments it was observed that excess of methanol was converted into acetate, and that sulfate reduction started when nitrate was depleted. From all experiments it is clear that, provided that methanol is added in good relation to the quantity of nitrate that has to be denitrified, acetate will not be produced and sulfate reduction will not occur in the denitrification reactor, even in the presence of very high sulfate concentrations.  相似文献   

9.
Denitrification in floodplains is a major issue for river- and groundwater quality. In the Upper Rhine valley, floodplain forests are about to be restored to serve as flood retention areas (polders). Besides flood attenuation in downstream areas, improvement of water quality became recently a major goal for polder construction. Redox potential monitoring was suggested as a means to support assessment of nitrogen elimination in future floodplains by denitrification during controlled flooding. To elucidate the relationship between redox potential and denitrification, experiments with floodplain soils and in situ measurements were done. Floodplain soil of two depth profiles from a hardwood forest of the Upper Rhine valley was incubated anaerobically with continuous nitrate supply. Reduction of nitrate was followed and compared with redox potential and organic matter content. The redox potential under denitrifying conditions ranged from 10 to 300 mV. Redox potential values decreased with increasing nitrate reduction rates and increasing organic matter content. Furthermore, a narrow correlation between organic matter and nitrate reduction was observed. Experiments were intended to help interpreting redox potentials generated under in situ conditions as exemplified by in situ observations for the year 1999. Results obtained by experiments and in situ observations showed that monitoring of redox potential could support management of the flooding regime to optimize nitrogen retention by denitrification in future flood retention areas.  相似文献   

10.
11.
Heterotrophic nitrification and aerobic and anaerobic denitrification byAlcaligenes faecalis strain TUD were studied in continuous cultures under various environmental conditions. Both nitrification and denitrification activities increased with the dilution rate. At dissolved oxygen concentrations above 46% air saturation, hydroxylamine, nitrite and nitrate accumulated, indicating that both the nitrification and denitrification were less efficient. The overall nitrification activity was, however, essentially unaffected by the oxygen concentration. The nitrification rate increased with increasing ammonia concentration, but was lower in the presence of nitrate or nitrite. When present, hydroxylamine, was nitrified preferentially. Relatively low concentrations of acetate caused substrate inhibition (KI=109 M acetate). Denitrifying or assimilatory nitrate reductases were not detected, and the copper nitrite reductase, rather than cytochrome cd, was present. Thiosulphate (a potential inhibitor of heterotrophic nitrification) was oxidized byA. faecalis strain TUD, with a maximum oxygen uptake rate of 140–170nmol O2·min-1·mg prot-1. Comparison of the behaviour ofA. faecalis TUD with that of other bacteria capable of heterotrophic nitrification and aerobic denitrification established that the response of these organisms to environmental parameters is not uniform. Similarities were found in their responses to dissolved oxygen concentrations, growth rate and ammonia concentration. However, they differed in their responses to externally supplied nitrite and nitrate.  相似文献   

12.
The process of leachate denitrification by populations of nitrifying and denitrifying bacteria was investigated. Leachate, derived from a local municipal landfill site, was nitrified in a continuously operating packed-bed biofilm reactor and thereafter denitrified in an activated sludge bioreactor. To follow the progress of nitrogen elimination, ammonium, nitrite and nitrate concentrations were determined at all stages of the process. While the nitrite and nitrate concentrations were measured by conventional colorimetric methods, computer controlled coulometric titration with in situ generated hypobromite was used for ammonium determination, which had previously been selectively separated from the sample matrix by gas dialysis. The detection range of the method was from 1 × 10?6 to 1 × 10?3 M ammonium (relative standard deviation (RSD) = 2%, n = 6). No interference of the complex sample matrix was found in ammonium determination. The average ammonium concentration in the leachate was 409 mg/l (standard deviation (SD) = 142 mg/l, n = 55). The ammonium concentrations decreased to 1–5 mg/l during nitrification under continuous operating conditions. Increased ammonium concentrations after nitrification correlated with a decrease in the efficiency of nitrogen elimination by up to 45% due to the build-up of high concentrations of nitrite. The concentration of sulphides, another source of pollution of the leachate, was also determined by triangle programmed coulometric titration. The average concentration of sulphides in the leachate was 221 mg/l (SD = 374 mg/l; n = 55). The sulphide concentrations decreased to concentrations below the detection limit of the coulometric titration (2 × 10?6M) during nitrification.  相似文献   

13.
The denitrification capacity of sediment from a hypereutrophic lake   总被引:1,自引:0,他引:1  
SUMMARY.
  • 1 In sediment from Wintergreen Lake, Michigan, denitrification was not detectable by the acetylene inhibition method at in situ nitrate concentrations. When nitrate was added to sediment slurries, denitrification capacities up to 18.8μg N g-1 h-1 were measured. The denitrification capacities decreased with increasing sediment depth and distance from shore.
  • 2 The high denitrification capacities in these sediments which under natural conditions had no supply of nitrate and oxygen suggested that denitrifies with alternative mechanisms for anaerobic energy conversion were present. Nitrous oxide was a significant portion of the N-gas produced immediately after the nitrate addition. Small amounts (4–5% of the total N-gas production) of nitric oxide accumulated in the early phase of nitrate reduction. Presumably after depletion of nitrate and nitrite both N2O and NO were further reduced to N2.
  • 3 About 70%r of the added nitrate was denitrified, and the remainder was assumed to have been reduced to ammonium.
  相似文献   

14.
15.
A mixed bacterial culture was acclimated to the removal of high nitrate-N concentrations (100–750 mg NO3 -N L−1) from salty wastewaters. The experiments were carried out under anoxic conditions in the presence of 0.5, 1.5 and 3% (w/v) NaCl at different temperatures. The acclimated mixed bacterial culture was attached to quartz sand and zeolite. Denitrification was monitored in a continuous-flow bioreactor at different hydraulic retention times (HRT). Nitrate removal with cells attached to quartz sand and zeolite was completed at HRT of 167 h and 25 h respectively. Then brine denitrification with bacterial cells attached to zeolite was monitored for 85 days. Under the increased nitrate loading rate, nitrate removal was above 90%. Furthermore, during denitrification, not more than 0.5 mg NO2 -N L−1 could be produced. It can be concluded that nitrate removal with the cells attached to zeolite is economically and operationally a promising solution to denitrification of brine wastewaters.  相似文献   

16.
Ultra scale‐down (USD) approach is a powerful tool to predict large‐scale process performance by using very small amounts of material. In this article, we present a method to mimic flux and transmission performance in a labscale crossflow operation by an USD rotating disc filter (RDF). The Pellicon 2 labscale system used for evaluation of the mimic can readily be related to small pilot and industrial scale. Adopted from the pulsed sample injection technique by Ghosh and Cui (J Membr Sci. 2000;175:5‐84), the RDF has been modified by building in inserts to allow the flexibility of the chamber volume, so that only 1.5 mL of processing material is required for each diafiltration experiment. The reported method enjoys the simplicity of dead‐end mode operation with accurate control of operation conditions that can mimic well the crossflow operation in large scale. Wall shear rate correlations have been established for both the labscale cassette and the USD device, and a mimic has been developed by operating both scales under conditions with equivalent averaged shear rates. The studies using E. coli lysate show that the flux vs. transmembrane pressure profile follows a first‐order model, and the transmission of antibody fragment (Fab′) is independent of transmembrane pressure. Predicted flux and transmission data agreed well with the experimental results of a labscale diafiltration where the cassette resistance was considered. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

17.
A bioreactor for the removal of nitrate nitrogen (NO3-N) from industrial effluent is described which is comprised of a glass column (60 cm × 6 cm) packed with alginate beads containing denitrifying organisms Pseudomonas stutzeri and Comamonas testosteroni. The effluent containing high concentrations of nitrate (600–950 mg l–1) from the fertilizer industry and fusel oil (methanol as a major component) as organic carbon were used in the process. The reactor is operated in the continuous mode by injecting the pretreated nitrate-containing effluent at the top of the column. The Hydraulic retention time (HRT) was adjusted by changing the flow rates. When nitrate-containing wastewater was treated with immobilized cells, the nitrate removal rate reached a maximum 1.66 ± 0.07 Kg NO3-N m–3d–1 at an influent NO3-N concentration of 850 mg NO3M-N l–1within 12 h. The denitrification activity of the immobilized cells was compared with that of the free cells.  相似文献   

18.
The extent to which in-stream processes alter or remove nutrient loads in agriculturally impacted streams is critically important to watershed function and the delivery of those loads to coastal waters. In this study, patch-scale rates of in-stream benthic processes were determined using large volume, open-bottom benthic incubation chambers in a nitrate-rich, first to third order stream draining an area dominated by tile-drained row-crop fields. The chambers were fitted with sampling/mixing ports, a volume compensation bladder, and porewater samplers. Incubations were conducted with added tracers (NaBr and either 15N[NO3 ?], 15N[NO2 ?], or 15N[NH4 +]) for 24–44 h intervals and reaction rates were determined from changes in concentrations and isotopic compositions of nitrate, nitrite, ammonium and nitrogen gas. Overall, nitrate loss rates (220–3,560 μmol N m?2 h?1) greatly exceeded corresponding denitrification rates (34–212 μmol N m?2 h?1) and both of these rates were correlated with nitrate concentrations (90–1,330 μM), which could be readily manipulated with addition experiments. Chamber estimates closely matched whole-stream rates of denitrification and nitrate loss using 15N. Chamber incubations with acetylene indicated that coupled nitrification/denitrification was not a major source of N2 production at ambient nitrate concentrations (175 μM), but acetylene was not effective for assessing denitrification at higher nitrate concentrations (1,330 μM). Ammonium uptake rates greatly exceeded nitrification rates, which were relatively low even with added ammonium (3.5 μmol N m?2 h?1), though incubations with nitrite demonstrated that oxidation to nitrate exceeded reduction to nitrogen gas in the surface sediments by fivefold to tenfold. The chamber results confirmed earlier studies that denitrification was a substantial nitrate sink in this stream, but they also indicated that dissolved inorganic nitrogen (DIN) turnover rates greatly exceeded the rates of permanent nitrogen removal via denitrification.  相似文献   

19.
SUMMARY. Denitrification experiments under anaerobic and aerated conditions were carried out in the laboratory with Lake Kinneret water and with pure cultures of the denitrifying bacteria Pseudomonas aeruginosa 2 Kin isolated from the lake. Although losses of nitrogen in Lake Kinneret due to denitrification have been found to occur during periods when dissolved oxygen exceeded 5 mg l?1 it was found that under aerated conditions glucose as a carbon source must be added in order to get denitrification in the laboratory. Disappearance of nitrogen during the experiments was due to denitrification as shown by the nitrogen balance calculated for each sampling. The ATP content showed that no proliferation of cells took place during the experiment. The rate of denitrification was strongly influenced by and was directly proportional to nitrate concentrations. Temperature has a very slight effect on the denitrification rate. Q10 for the range 15–30°C was 1.35. The role of denitrification in the nitrogen balance of Lake Kinneret is discussed.  相似文献   

20.
The acetylene block technique was used to assay denitrification in undisturbed sediment cores of an intertidal mud flat. Nitrogen loss due to this process was estimated at 1 to 41 kg of N/hectare (ha) per year. Anaerobic nitrate-saturated slurry of the same sediment had a denitrification capacity of 1,026 kg of N/ha per year. The acetylene block technique failed at low nitrate concentrations, so that denitrification at average in situ nitrate concentrations could not be determined. Denitrification followed zero-order kinetics at nitrate concentrations high enough to allow successful blockage of N2O reduction. Thus, an estimate of in situ rates based on kinetic parameters and in situ nitrate concentrations was impossible. No denitrification was observed in a slurry of the top 1.5 cm under aerated conditions and nitrate saturation. In undisturbed sediment, significant denitrification occurred in few discrete sites within a matrix of undetectable or low activity. Despite numerous errors contributing to the uncertainty of the estimate of in situ rates, the result obtained by this method was considered more valuable than the determination of denitrification capacities. Methods which include severe changes of physical and chemical parameters may frequently lead to overestimates of denitrification rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号