首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
To probe the ontogenetic bases of morphological diversity across galagos, we performed the first clade-wide analyses of growth allometries in 564 adult and non-adult crania from 12 galagid taxa. In addition to evaluating if variation in galago skull form results from the differential extension/truncation of common ontogenetic patterns, scaling trajectories were employed as a criterion of subtraction to identify putative morphological adaptations in the feeding complex. A pervasive pattern of ontogenetic scaling is observed for facial dimensions across galagids, with 2 genera also sharing relative growth trajectories for masticatory proportions (Galago, Galagoides). As the facial growth series and adult data are largely coincidental, interspecific variation may result from character displacement and consequent selection for size differentiation among sister taxa. Derived configurations of the jaw joint and jaw muscle mechanical advantage in Otolemur and Euoticus appear to facilitate increased gape during scraping behaviors. Differences in aspects of masticatory growth and form characterizing these 2 genera highlight selection to uncouple shared ontogenetic patterns, which occurred via transpositions that retained ancestral scaling patterns. Due to the lack of increased robusticity of load-resisting mandibular elements in Otolemur and Euoticus, there is little evidence to suggest that exudativory in galagos results in correspondingly higher masticatory stresses.  相似文献   

2.
A series of 22 craniodental measurements were obtained for the three subspecies of potto (Perodicticus) and angwantibos (Arctocebus). To describe patterns of variation in Perodicticus, a discriminant function analysis (DFA) was performed with adult data. To investigate the ecogeographic correlates of size variation in Perodicticus, adult cranial dimensions were compared with field data on latitudinal and longitudinal coordinates for available specimens as well as altitudinal data for a more limited sample. Ontogenetic series for larger-bodied Perodicticus and smaller-bodied Arctocebus were compared to test the hypothesis that inter- and intrageneric variation in skull form results from the differential extension/truncation of shared patterns of relative growth, and to assess morphological variation in the masticatory complex of sister taxa with differing dietary habits. Analyses of relative growth indicate that skull proportions in Perodicticus subspecies are largely ontogenetically scaled. In comparisons between Perodicticus and Arctocebus, most facial dimensions also are ontogenetically scaled, with all but one of the seven divergent comparisons (interorbital breadth) representing a feature of the masticatory apparatus. The DFA provided independent support for prior classifications of Perodicticus into three taxa. Size differentiation in African lorises appears to be correlated with altitudinal variation (Bergmann's Rule) as well as character displacement. The smallest pottos, P. p. potto, occupy low-lying coastal habitats in western Africa, whereas the larger, eastern forms inhabit higher, presumably colder elevations. The largest potto, P. p. edwardsi, is sympatric throughout most of its range with the smallest and most insectivorous African lorises (Arctocebus). A basis for intrageneric taxonomic variation in Perodicticus is supported by such nonclinal size variation, as well as divergences in the ontogeny of masticatory proportions corresponding to interspecific variation in dietary proclivities.  相似文献   

3.
Facial heights, i.e. the vertical distances between the superior and inferior limits of facial compartments, contribute to the orientation of the viscerocranium in the primate skull. In humans, vertical facial variation is among the main sources of diversity and frequently associated with an integrated suite of other cranio-mandibular traits. Facial heights and kyphosis are also important factors in interspecific variation and models of hominoid evolution. The ontogenetic determination of adult facial orientation and its relation to phylogenetic variation are unclear, but crucial in all previously mentioned respects. We addressed these issues in a sample of 175 humans and chimpanzees with Procrustes based geometric morphometrics, testing hypotheses of interspecific similarity in postnatal ontogenetic trajectories, early versus later ontogenetic facial pattern determination, and a developmental model of morphological integration. We analyzed the contribution of postnatal morphogenesis to adult vertical facial variation by partitioning morphological variation into a portion of pure growth allometry and a non-allometric fraction. A statistically significant difference of growth-allometries revealed that in both species growth established the adult skull proportions by vertical facial expansion, but while in chimpanzees the complete viscerocranium showed reorientation, in humans only the lower face was modified. In both species the results support a hypothesis of early facial pattern determination. A coincident emergence of morphological traits favors a hypothesis of developmental integration of the face, excluding traits of the basi- and neurocranium. Interspecific differences in integration may have implications for evolutionary studies. The present findings indicate that growth establishes the adult skull proportions and integrates principal facial orientation patterns, already there in early postnatal ontogeny.  相似文献   

4.
5.
Melanosuchus niger is a caimanine alligatorid widely distributed in the northern region of South America. This species has been the focus of several ecological, genetic and morphological studies. However, morphological studies have generally been limited to examination of interspecific variation among extant species of South American crocodylians. Here, we present the first study of intraspecific variation in the skull of M. niger using a two‐dimensional geometric morphometric approach. The crania of 52 sexed individuals varying in size were analysed to quantify shape variation and to assign observed shape changes to different types of intraspecific variation, that is, ontogenetic variation and sexual dimorphism. Most of the variation in this species is ontogenetic variation in snout length, skull depth, orbit size and the width of the postorbital region. These changes are correlated with bite force performance and probably dietary changes. However, a comparison with previous functional studies reveals that functional adaptations during ontogeny seem to be primarily restricted to the postrostral region, whereas rostral shape changes are more related to dietary shifts. Furthermore, the skulls of M. niger exhibit a sexual dimorphism, which is primarily size‐related. The presence of non‐size‐related sexual dimorphism has to be tested in future examinations.  相似文献   

6.
Disentangling ontogenetic from interspecific variation is key to understanding biodiversity in the fossil record, yet information on growth in the ceratopsid subfamily Chasmosaurinae is sparse. Here, we describe the partial skull of a juvenile chasmosaurine, attributed to Arrhinoceratops brachyops, within the context of more mature specimens of this species, to better understand the ontogenetic transformations therein. We show that as A. brachyops matured, the postorbital horncores became longer and shifted from a posterior to an anterior inclination, the delta‐shaped frill epiossifications became lower and fused to the underlying frill, and the face became more elongate. In these respects, A. brachyops closely resembled Triceratops, suggesting that these ontogenetic changes may have been common to all long‐horned chasmosaurines. However, an event‐paired cladistic analysis of Chasmosaurinae using a standardized matrix of 24 developmental characters reveals that the relative timing of ontogenetic events in Arrhinoceratops was more like that of Chasmosaurus, particularly in the relatively late reduction in scalloping around the frill margins. Thus, the ontogenetic similarities between Arrhinoceratops and Triceratops appear to be plesiomorphic, partly related to the retention of the elongate postorbital horncores, which are primitive for Ceratopsidae. This study elucidates the otherwise contentious evolutionary relationships of Arrhinoceratops, and highlights the importance of ontogenetic data for resolving phylogenies when morphological data from adults alone are inadequate. © 2015 The Linnean Society of London  相似文献   

7.
We explored the ontogenetic dynamics of the morphological and allometric disparity in the cranium shapes of twelve lacertid lizard species. The analysed species (Darevskia praticola, Dinarolacerta mosorensis, Iberolacerta horvathi, Lacerta agilis, L. trilineata, L. viridis, Podarcis erhardii, P. melisellensis, P. muralis, P. sicula, P. taurica and Zootoca vivipara) can be classified into different ecomorphs: terrestrial lizards that inhabit vegetated habitats (habitats with lush or sparse vegetation), saxicolous and shrub‐climbing lizards. We observed that there was an overall increase in the morphological disparity (MD) during the ontogeny of the lacertid lizards. The ventral cranium, which is involved in the mechanics of jaw movement and feeding, showed higher levels of MD, an ontogenetic shift in the morphospace planes and more variable allometric patterns than more conserved dorsal crania. With respect to ecology, the allometric trajectories of the shrub‐climbing species tended to cluster together, whereas the allometric trajectories of the saxicolous species were highly dispersed. Our results indicate that the ontogenetic patterns of morphological and allometric disparity in the lacertid lizards are modified by ecology and functional constraints and that the identical mechanisms that lead to intraspecific morphological variation also produce morphological divergence at higher taxonomic levels.  相似文献   

8.
A series of 20 craniodental measurements was obtained for two sister taxa: Nycticebus coucang (common slow loris) and N. pygmaeus (pygmy slow loris). Multivariate analysis of variance was performed with adult data to describe patterns of subspecific and specific variation in this genus. The geometric mean of adult cranial dimensions was compared to field data on latitudinal coordinates for available specimens to investigate if size variation in Nycticebus is clinal in nature. Ontogenetic series for larger-bodied N. coucang and smaller-bodied N. pygmaeus were compared to test the hypothesis that species and subspecific variation in skull form results from the differential extension of common patterns of relative growth. A MANOVA provides independent support of Groves's [pp. 44–53 in Proceedings of the Third International Congress on Primatology, Vol. 1 (Basel: S. Karger), 1971] classification of Nycticebus into two species, with four subspecies in the common slow loris and one form of the pygmy slow loris. Within N. coucang, cranial proportions for all four subspecies are ontogenetically scaled, and size differentiation is mainly clinal (Bergmann's Rule). N. c. bengalensis represents the most northerly disposed and the largest form. N. c. javanicus represents the next-largest form and is located in a southerly direction the next-farthest away from the equator. N. c. coucang and N. c. menagensis are both equatorial; however, the latter subspecies is the smallest. A genetic basis for some of the taxonomic variation between N. c. coucang and N. c. menagensis is supported by such nonclinal variation in body size. Variation in the presence/absence of I2 is not size-related but rather tracks geographic proximity and isolating factors which predate the most recent inundation of the Sunda Shelf. Although they inhabit a nonequatorial environment, pygmy slow lorises are the smallest of all Nycticebus. As N. pygmaeus is sympatric with N. c. bengalensis, the largest slow loris, it appears that the evolution of its smaller body size represents a case of character displacement. Unlike N. coucang, skull size becomes significantly smaller in more northern N. pygmaeus. This may also reflect character displacement between sympatric sister taxa underlain by a cline-dependent ecological factor which is marked in more northerly latitudes. On the other hand, the negative correlation between body size and latitude in N. pygmaeus could be due to the influence of nonprimate fauna, such as predators, which themselves evince a similar clinal pattern. Analyses of relative growth indicate that skull proportions in the two species of Nycticebus are ontogenetically scaled in two-thirds of the cases. All but one of the seven comparisons (interorbital breadth) which do not indicate ontogenetic scaling represent part of the masticatory complex. This likely reflects a reorganization of N. pygmaeus maxillomandibular proportions linked to smaller size and changes in diet. Am. J. Primatol. 45:225–243, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

9.
Different types of locomotion in phylogenetically close rodent species can lead to significantly different growth patterns of certain skeletal structures. In the present study, we compared the allometric and phenotypic trajectories of the humerus in semiaquatic (Arvicola sapidus) and fossorial (Arvicola scherman) water vole taxa, using three-dimensional geometric morphometrics, to investigate the relationships between functional and ontogenetic differences. Results revealed shared humerus traits between A. sapidus and A. scherman, specifically an expansion of the epicondylar and deltopectoral crests along postnatal ontogeny. In both species, the humerus of young specimens is more robust than in adults, possibly as a compensatory response for lower bone stiffness. However, significant interspecific differences were detected in all components of allometric and phenotypic trajectories. Noticeably divergent allometric trajectories were observed, probably as a result of different functional pressures exerted on this bone. Important differences in the form of the adult humerus between taxa were also found, particularly in features located in muscle insertion zones. Furthermore, the allometric regression revealed certain shape variation not associated with size in A. scherman, suggesting mechanical stress produced by the persistent digging activity during adulthood. A. scherman is a chisel-tooth digger that shares several traits in the humerus morphology with scratch-digger rodent species. Nevertheless, these shared characteristics are less pronounced in fossorial water voles, which is congruent with the different implications of the forelimb in the digging activity in these two types of diggers.  相似文献   

10.
As with many other amphibians, Triturus species are characterized by a biphasic life cycle with abrupt changes in the cranial skeleton during metamorphosis. The post-metamorphic shape changes of the cranial skeleton were investigated using geometric morphometric techniques in six species: Triturus alpestris, T. vulgaris, T. dobrogicus, T. cristatus, T. carnifex, and T. karelinii. The comparative analysis of ontogenetic trajectories revealed that these species have a conserved developmental rate with divergent ontogenetic trajectories of the ventral skull shape that mainly reflect phylogenetic relatedness. A striking exception in the ontogenetic pattern was possibly found in T. dobrogicus, characterized by a marked increase in the developmental rate compared to the other newt species. The size-related shape changes explained a large proportion of shape change during post-metamorphic growth within each species, with marked positive allometric growth of skull elements related to foraging.  相似文献   

11.
304 skulls of Cape hare (Lepus capensis) were collected from two climatically distinct localities in northern China. With eye lens weight as a continuous age variable, postnatal growth patterns of 25 cranial linear measurements in relation to sex, growth season and region were analysed to understand the morphological basis of life history adaptation. In almost all the skull measurements, no significant differences were found between either sex or growth seasons. Principal component analysis revealed that facial elements accounted for the greatest proportion of skull morphological variation. Von Bertalanffy function was applied to describe growth trajectories of the skull elements. Based on this model, the growth rates of skull elements and the age at which they reached a certain proportion (95%) of asymptotes were compared. The results showed that skull growth exhibited an allometric pattern, with neural components attaining their final size more rapidly (at about 2–3 months old in tympanic bulla and 4–6 months old in others) than did the facial, which continued to grow well into postnatal life (at 6–10 months old). The earlier establishment of neurocranial morphology was associated with a fully developed central nervous system, which may play a key role in improving the survival of animals during the early phase of life. There was a regional difference in developmental rate of the hare skull. For all the skull parameters, northern hares had a more rapid rate of cranial growth compared to the southern, i.e. skull elements of juveniles from northern population were relatively larger at comparable ages and achieved adult size 0.5–4.0 months earlier than those from the south. In adult hares, however, no significant regional differences in any of the skull parameters were present. Adaptive explanations for the regional difference in ontogenetic pattern of skull morphology include age‐specific thermoregulation constraint, season‐related food availability and age‐dependent predation pressure. Based on the findings of this study, it is suggested that the postnatal growing period represents a crucial time of life, and that improvement of survivorship when young by growth adaptation forms an important aspect of the hare's life history strategies. © 2003 The Linnean Society of London, Biological Journal of the Linnean Society, 2003, 78 , 343–353.  相似文献   

12.
The late Campanian-early Maastrichtian site of Lo Hueco (Cuenca, Spain) has provided a set of well-preserved crocodyliform skull and lower jaw remains, which are described here and assigned to a new basal eusuchian taxon, Lohuecosuchus megadontos gen. et sp. nov. The reevaluation of a complete skull from the synchronous site of Fox-Amphoux (Department of Var, France) allows us to define a second species of this new genus. Phylogenetic analysis places Lohuecosuchus in a clade exclusively composed by European Late Cretaceous taxa. This new clade, defined here as Allodaposuchidae, is recognized as the sister group of Hylaeochampsidae, also comprised of European Cretaceous forms. Allodaposuchidae and Hylaeochampsidae are grouped in a clade identified as the sister group of Crocodylia, the only crocodyliform lineage that reaches our days. Allodaposuchidae shows a vicariant distribution pattern in the European Late Cretaceous archipelago, with several Ibero-Armorican forms more closely related to each other than with to Romanian Allodaposuchus precedens.  相似文献   

13.
Prosaurolophus maximus Brown is a saurolophine hadrosaurid known from numerous complete, articulated skulls from the Dinosaur Park Formation (Campanian, Alberta, Canada) that range in size by approximately half a metre in total skull length. Therefore, it is an important taxon for understanding patterns of growth and variation in saurolophines. This study describes the cranial anatomy of P. maximus from the type locality of Dinosaur Provincial Park (Dinosaur Park Formation: Campanian) on the basis of ten articulated skulls, quantitatively examines its range of osteological variation, and provides the first hypothesized ontogenetic series for this taxon. A second species, Prosaurolophus blackfeetensis Horner, was named on the basis of geologically younger material from Montana (Two Medicine Formation: Campanian) that is diagnosed by putative morphological differences in the nasal crest. However, considerable nasal crest variation in the sample from the Dinosaur Park Formation does not permit quantitative differentiation of P. blackfeetensis from P. maximus. Furthermore, a species‐level phylogenetic analysis of saurolophines that includes both P. maximus and P. blackfeetensis as originally defined recovers them as sister taxa that do not differ morphologically in the character matrix. Based on both the morphometric and phylogenetic data, this study supports the hypothesis that P. blackfeetensis is a junior synonym of P. maximus, thereby substantially increasing its temporal range to 1.6 million years, and a concomitant period of morphological stasis in this taxon. © 2013 The Linnean Society of London  相似文献   

14.
Ornithischia is a morphologically and taxonomically diverse clade of dinosaurs that originated during the Late Triassic and were the dominant large‐bodied herbivores in many Cretaceous ecosystems. The early evolution of ornithischian dinosaurs is poorly understood, as a result in part of a paucity of fossil specimens, particularly during the Triassic. The most complete Triassic ornithischian dinosaur yet discovered is Eocursor parvus from the lower Elliot Formation (Late Triassic: Norian–Rhaetian) of Free State, South Africa, represented by a partial skull and relatively complete postcranial skeleton. Here, the anatomy of Eocursor is described in detail for the first time, and detailed comparisons are provided to other basal ornithischian taxa. Eocursor is a small‐bodied taxon (approximately 1 m in length) that possesses a plesiomorphic dentition consisting of unworn leaf‐shaped crowns, a proportionally large manus with similarities to heterodontosaurids, a pelvis that contains an intriguing mix of plesiomorphic and derived character states, and elongate distal hindlimbs suggesting well‐developed cursorial ability. The ontogenetic status of the holotype material is uncertain. Eocursor may represent the sister taxon to Genasauria, the clade that includes most of ornithischian diversity, although this phylogenetic position is partially dependent upon the uncertain phylogenetic position of the enigmatic and controversial clade Heterodontosauridae. © 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 160 , 648–684.  相似文献   

15.
To understand the origins of novelty and the evolution of biological diversity, it is important to investigate the processes that generate phenotypic variation from genotypic variation. A number of path‐breaking studies have revealed the genetic basis for phenotypic differences between distantly related taxa, but how qualitative change is produced during the early stages of divergence is largely unexplored. Here, we focus on striking differences in jaw morphology exhibited by three closely related sympatric pupfish species (genus Cyprinodon) from San Salvador Island, Bahamas as a basis for investigating the genetic sources of morphological variation in recently diverged species. San Salvador Island pupfish are trophically diverse and display derived jaw morphologies distinct from any other species in the genus. We illustrate these qualitative morphological differences between species with 3D‐reconstructed CT‐images and camera lucida drawings of the skulls of wild‐caught fish. Quantitative data representing the size of individual bony skull elements in wild fish show how qualitatively novel morphologies arise as a consequence of changes to the size and shape of individual skull elements, particularly the dentary, premaxilla, and maxilla bones associated with the oral jaws. Consistent with these comparative data is that the growth rate of individual bony skull elements, measured on a developmental time series of lab‐reared fish, differs between species. Our data provide a critical foundation for future studies developing San Salvador Cyprinodon pupfishes as a model system to understand the evolution and development of novel morphologies at the species level. J. Morphol. 277:935–947, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

16.
Previous attempts to resolve plesiosaurian phylogeny are reviewed and a new phylogenetic data set of 66 taxa (67% of ingroup taxa examined directly) and 178 characters (eight new) is presented. We recover two key novel results: a monophyletic Plesiosauridae comprising Plesiosaurus dolichodeirus, Hydrorion brachypterygius, Microcleidus homalospondylus, Occitanosaurus tournemirensis and Seeleyosaurus guilelmiimperatoris; and five plesiosaurian taxa recovered outside the split between Plesiosauroidea and Pliosauroidea. These taxa are Attenborosaurus conybeari, ‘Plesiosaurusmacrocephalus and a clade comprising Archaeonectrus rostratus, Macroplata tenuiceps and BMNH 49202. Based on this result, a new name, Neoplesiosauria, is erected for the clade comprising Plesiosauroidea and Pliosauroidea. Taxon subsamples of the new dataset are used to simulate previous investigations of global plesiosaurian relationships. Based on these simulations, most major differences between previous global phylogenetic hypotheses can be attributed to differences in taxon sampling. These include the position of Leptocleididae and Polycotylidae and the monophyly or paraphyly of Rhomaleosauridae. On this basis we favour the results recovered by our, larger analysis. Leptocleididae and Polycotylidae are sister taxa, forming a monophyletic clade within Plesiosauroidea, indicating that the large‐headed, short‐necked ‘pliosauromorph’ body plan evolved twice within Plesiosauria. Rhomaleosauridae forms the monophyletic sister taxon of Pliosauridae within Pliosauroidea. Problems are identified with previous phylogenetic definitions of plesiosaurian clades and new, stem‐based definitions are presented that should maintain their integrity over a range of phylogenetic hypotheses. New, rank‐free clade names Cryptoclidia and Leptocleidia are erected to replace the superfamilies Cryptoclidoidea and Leptocleidoidea. These were problematic as they were nested within the superfamily Plesiosauroidea. The incongruence length difference test indicates no significant difference in levels of homoplasy between cranial and postcranial characters.  相似文献   

17.
Based on well‐preserved belemnites, the ontogenetic trajectories of septal spacing between succeeding chambers were analysed. In the examined species (Passaloteuthis laevigata, Parapassaloteuthis zieteni and Pseudohasitites longiformis) that come from Buttenheim, Germany, and Lixhausen, France, the ontogenetic trajectories of septal spacing follow exponentially increasing trends with no decreasing phase of septal crowding during the earliest ontogenetic stage. The absence of a decreasing trend at the earliest ontogenetic stage is a unique character in contrast with those in modern cuttlefish and ancient and modern nautiloids, in which the decreasing trends are related to hatching events. These ontogenetic septal spacing trends suggest that the belemnite hatchlings had only a protoconch with no chamber. These belemnite hatchlings with no chamber and therefore small embryonic shell diameter are similar to those of ammonoids. Significant difference in a statistical test that compared the protoconch size between the two localities, might suggest that there was limited transportation at the embryonic stage, although it could also just indicate differences in regional environmental conditions, age and/or degree of time averaging which might differ between the examined taxa.  相似文献   

18.
Assessments of temporal bone morphology have played an important role in taxonomic and phylogenetic evaluations of fossil taxa, and recent three‐dimensional analyses of this region have supported the utility of the temporal bone for testing taxonomic and phylogenetic hypotheses. But while clinical analyses have examined aspects of temporal bone ontogeny in humans, the ontogeny of the temporal bone in non‐human taxa is less well documented. This study examines ontogenetic allometry of the temporal bone in order to address several research questions related to the pattern and trajectory of temporal bone shape change during ontogeny in the African apes and humans. We further apply these data to a preliminary analysis of temporal bone ontogeny in Australopithecus afarensis. Three‐dimensional landmarks were digitized on an ontogenetic series of specimens of Homo sapiens, Pan troglodytes, Pan paniscus, and Gorilla gorilla. Data were analyzed using geometric morphometric methods, and shape changes throughout ontogeny in relation to size were compared. Results of these analyses indicate that, despite broadly similar patterns, African apes and humans show marked differences in development of the mandibular fossa and tympanic portions of the temporal bone. These findings indicate divergent, rather than parallel, postnatal ontogenetic allometric trajectories for temporal bone shape in these taxa. The pattern of temporal bone shape change with size exhibited by A. afarensis showed some affinities to that of humans, but was most similar to extant African apes, particularly Gorilla. Am J Phys Anthropol 151:630–642, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

19.
In an attempt to investigate differences between the most widely discussed hypotheses of early tetrapod relationships, we assembled a new data matrix including 90 taxa coded for 319 cranial and postcranial characters. We have incorporated, where possible, original observations of numerous taxa spread throughout the major tetrapod clades. A stem‐based (total‐group) definition of Tetrapoda is preferred over apomorphy‐ and node‐based (crown‐group) definitions. This definition is operational, since it is based on a formal character analysis. A PAUP* search using a recently implemented version of the parsimony ratchet method yields 64 shortest trees. Differences between these trees concern: (1) the internal relationships of aistopods, the three selected species of which form a trichotomy; (2) the internal relationships of embolomeres, with Archeria crassidisca and Pholiderpeton scutigerum collapsed in a trichotomy with a clade formed by Anthracosaurus russelli and Pholiderpeton attheyi; (3) the internal relationships of derived dissorophoids, with four amphibamid species forming an unresolved node with a clade consisting of micromelerpetontids and branchiosaurids and a clade consisting of albanerpetontids plus basal crown‐group lissamphibians; (4) the position of albenerpetontids and Eocaecilia micropoda, which form an unresolved node with a trichotomy subtending Karaurus sharovi, Valdotriton gracilis and Triadobatrachus massinoti;(5) the branching pattern of derived diplocaulid nectrideans, with Batrachiderpeton reticulatum and Diceratosaurus brevirostris collapsed in a trichotomy with a clade formed by Diplocaulus magnicornis and Diploceraspis burkei. The results of the original parsimony run ‐ as well as those retrieved from several other treatments of the data set (e.g. exclusion of postcranial and lower jaw data;character reweighting; reverse weighting) ‐ indicate a deep split of early tetrapods between lissamphibian‐ and amniote‐related taxa. Colosteids, Crassigyrinus, Whatcheeria and baphetids are progressively more crownward stemtetrapods. Caerorhachis, embolomeres, gephyrostegids, Solenodonsaurus and seymouriamorphs are progressively more crownward stem‐amniotes. Eucritta is basal to temnospondyls, with crown‐lissamphibians nested within dissorophoids. Westlothiana is basal to Lepospondyli, but evidence for the monophyletic status of the latter is weak. Westlothiana and Lepospondyli form the sister group to diadectomorphs and crown‐group amniotes. Tuditanomorph and microbrachomorph microsaurs are successively more closely related to a clade including proximodistally: (1) lysorophids; (2) Acherontiscus as sister taxon to adelospondyls; (3) scincosaurids plus diplocaulids; (4) urocordylids plus aïstopods. A data set employing cranial characters only places microsaurs on the amniote stem, but forces remaining lepospondyls to appear as sister group to colosteids on the tetrapod stem in several trees. This arrangement is not significantly worse than the tree topology obtained from the analysis of the complete data set. The pattern of sister group relationships in the crownward part of the temnospondyl‐lissamphibian tree re‐emphasizes the important role of dissorophoids in the lissamphibian origin debate. However, no specific dissorophoid can be identiffed as the immediate sister taxon to crown‐group lissamphibians. The branching sequence of various stem‐group amniotes reveals a coherent set of internested character‐state changes related to the acquisition of progressively more terrestrial habits in several Permo‐Carboniferous forms.  相似文献   

20.
The fossil record provides compelling examples of heterochrony at macroevolutionary scales such as the peramorphic giant antlers of the Irish elk. Heterochrony has also been invoked in the evolution of the distinctive cranial frill of ceratopsian dinosaurs such as Triceratops. Although ceratopsian frills vary in size, shape, and ornamentation, quantitative analyses that would allow for testing hypotheses of heterochrony are lacking. Here, we use geometric morphometrics to examine frill shape variation across ceratopsian diversity and within four species preserving growth series. We then test whether the frill constitutes an evolvable module both across and within species, and compare growth trajectories of taxa with ontogenetic growth series to identify heterochronic processes. Evolution of the ceratopsian frill consisted primarily of progressive expansion of its caudal and caudolateral margins, with morphospace occupation following taxonomic groups. Although taphonomic distortion represents a complicating factor, our data support modularity both across and within species. Peramorphosis played an important role in frill evolution, with acceleration operating early in neoceratopsian evolution followed by progenesis in later diverging cornosaurian ceratopsians. Peramorphic evolution of the ceratopsian frill may have been facilitated by the decoupling of this structure from the jaw musculature, an inference that predicts an expansion of morphospace occupation and higher evolutionary rates among ceratopsids as indeed borne out by our data. However, denser sampling of the meager record of early‐diverging taxa is required to test this further.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号