首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract Many peptidases are thought to require non-active site interaction surfaces, or exosites, to recognize and cleave physiological substrates with high specifi city and catalytic effi ciency. However, the existence and function of protease exosites remain obscure owing to a lack of effective methods to identify and characterize exosite-interacting substrates. To address this need, we modifi ed the cellular libraries of peptide substrates (CLiPS) methodology to enable the discovery of exosite-interacting peptide ligands. Invariant cleavage motifs recognized by the active sites of thrombin and caspase-7 were displayed on the outer surface of bacteria adjacent to a candidate exosite-interacting peptide. Exosite peptide libraries were then screened for ligands that accelerate cleavage of the active site recognition motif using two-color fl ow cytometry. Exosite CLiPS (eCLiPS) identifi ed exosite-binding peptides for thrombin that were highly similar to a critical exosite interaction motif in the thrombin substrate, proteaseactivated receptor 1. Protease activity probes incorporating exosite-binding peptides were cleaved ten-fold faster than substrates without exosite ligands, increasing their sensitivity to thrombin activity in vitro. For comparison, screening with caspase-7 yielded peptides that modestly enhanced (two-fold) substrate cleavage rates. The eCLiPS method provides a new tool to profi le the ligand specifi city of protease exosites and to develop improved substrates.  相似文献   

2.
A recombinant dengue 2 virus NS2B-NS3 protease (NS means non-structural virus protein) was compared with human furin for the capacity to process short peptide substrates corresponding to seven native substrate cleavage sites in the dengue viral polyprotein. Using fluorescence resonance energy transfer peptides to measure kinetics, the processing of these substrates was found to be selective for the Dengue protease. Substrates containing two or three basic amino acids (Arg or Lys) in tandem were found to be the best, with Abz-AKRRSQ-EDDnp being the most efficiently cleaved. The hydrolysis of dipeptide substrates Bz-X-Arg-MCA where X is a non-natural basic amino acid were also kinetically examined, the best substrates containing aliphatic basic amino acids. Our results indicated that proteolytic processing by dengue NS3 protease, tethered to its activating NS2B co-factor, was strongly inhibited by Ca2+ and kosmotropic salts of the Hofmeister's series, and significantly influenced by substrate modifications between S4 and S6'. Incorporation of basic non-natural amino acids in short peptide substrates had significant but differential effects on Km and k(cat), suggesting that further dissection of their influences on substrate affinity might enable the development of effective dengue protease inhibitors.  相似文献   

3.
Quantitative and folding reporters are adequate tools to optimize recombinant protein expression in various host organisms, including Escherichia coli. To determine the yield of soluble active protease from the tobacco etch virus (TEV), we developed a single-molecule assay based on the fluorogenic substrate ANA-QS-MCA. This substrate consists of a 10 amino acid peptide (ENLYFQSGTK) containing the proteolytic cleavage sequence of the TEV protease. The peptide works as a linker N-terminally tagged with a fluorescent donor group (7-Methoxycoumarin-4-yl)acetyl (MCA) and C-terminally tagged with the acceptor group 5-Amino-2-nitrobenzoic acid (ANA). Fluorescence can be observed after specific cleavage of the substrate at the Gln-Ser bond by active TEV protease. Purified His-tagged TEV protease was used for in vitro analysis. Through determination of proteolytic activity in living E. coli cells and through application of Confocal Laser-Scanning-Microscopy we demonstrate that the peptide is well suited to in vivo expression analysis. This provides an effective tool to monitor the accumulation of active recombinant TEV protease in crude extracts and intact cells.  相似文献   

4.
Tobacco etch virus (TEV) protease is a cysteine protease exhibiting stringent sequence specificity. The enzyme is widely used in biotechnology for the removal of the affinity tags from recombinant fusion proteins. Crystal structures of two TEV protease mutants as complexes with a substrate and a product peptide provided the first insight into the mechanism of substrate specificity of this enzyme. We now report a 2.7A crystal structure of a full-length inactive C151A mutant protein crystallised in the absence of peptide. The structure reveals the C terminus of the protease bound to the active site. In addition, we determined dissociation constants of TEV protease substrate and product peptides using isothermal titration calorimetry for various forms of this enzyme. Data suggest that TEV protease could be inhibited by the peptide product of autolysis. Separate modes of recognition for native substrates and the site of TEV protease self-cleavage are proposed.  相似文献   

5.
Plants lack aspartate-specific cell death proteases homologous to animal caspases. Instead, a subtilisin-like serine-dependent plant protease named phytaspase shown to be involved in the accomplishment of programmed death of plant cells is able to hydrolyze a number of peptide-based caspase substrates. Here, we determined the substrate specificity of rice (Oryza sativa) phytaspase by using the positional scanning substrate combinatorial library approach. Phytaspase was shown to display an absolute specificity of hydrolysis after an aspartic acid residue. The preceding amino acid residues, however, significantly influence the efficiency of hydrolysis. Efficient phytaspase substrates demonstrated a remarkable preference for an aromatic amino acid residue in the P3 position. The deduced optimum phytaspase recognition motif has the sequence IWLD and is strikingly hydrophobic. The established pattern was confirmed through synthesis and kinetic analysis of cleavage of a set of optimized peptide substrates. An amino acid motif similar to the phytaspase cleavage site is shared by the human gastrointestinal peptide hormones gastrin and cholecystokinin. In agreement with the established enzyme specificity, phytaspase was shown to hydrolyze gastrin-1 and cholecystokinin at the predicted sites in vitro, thus destroying the active moieties of the hormones.  相似文献   

6.
Tobacco vein mottling virus (TVMV) is a member of the Potyviridae, one of the largest families of plant viruses. The TVMV genome is translated into a single large polyprotein that is subsequently processed by three virally encoded proteases. Seven of the nine cleavage events are carried out by the NIa protease. Its homolog from the tobacco etch virus (TEV) is a widely used reagent for the removal of affinity tags from recombinant proteins. Although TVMV protease is a close relative of TEV protease, they exhibit distinct sequence specificities. We report here the crystal structure of a catalytically inactive mutant TVMV protease (K65A/K67A/C151A) in complex with a canonical peptide substrate (Ac‐RETVRFQSD) at 1.7‐Å resolution. As observed in several crystal structures of TEV protease, the C‐terminus (~20 residues) of TVMV protease is disordered. Unexpectedly, although deleting the disordered residues from TEV protease reduces its catalytic activity by ~10‐fold, an analogous truncation mutant of TVMV protease is significantly more active. Comparison of the structures of TEV and TVMV protease in complex with their respective canonical substrate peptides reveals that the S3 and S4 pockets are mainly responsible for the differing substrate specificities. The structure of TVMV protease suggests that it is less tolerant of variation at the P1′ position than TEV protease. This conjecture was confirmed experimentally by determining kinetic parameters kcat and Km for a series of oligopeptide substrates. Also, as predicted by the cocrystal structure, we confirm that substitutions in the P6 position are more readily tolerated by TVMV than TEV protease.  相似文献   

7.
Understanding the active site preferences of an enzyme is critical to the design of effective inhibitors and to gaining insights into its mechanisms of action on substrates. While the subsite specificity of thrombin is understood, it is not clear whether the enzyme prefers individual amino acids at each subsite in isolation or prefers to cleave combinations of amino acids as a motif. To investigate whether preferred peptide motifs for cleavage could be identified for thrombin, we exposed a phage-displayed peptide library to thrombin. The resulting preferentially cleaved substrates were analyzed using the technique of association rule discovery. The results revealed that thrombin selected for amino acid motifs in cleavage sites. The contribution of these hypothetical motifs to substrate cleavage efficiency was further investigated using the B1 IgG-binding domain of streptococcal protein G as a model substrate. Introduction of a P(2)-P(1)' LRS thrombin cleavage sequence within a major loop of the protein led to cleavage of the protein by thrombin, with the cleavage efficiency increasing with the length of the loop. Introduction of further P(3)-P(1) and P(1)-P(1)'-P(3)' amino acid motifs into the loop region yielded greater cleavage efficiencies, suggesting that the susceptibility of a protein substrate to cleavage by thrombin is influenced by these motifs, perhaps because of cooperative effects between subsites closest to the scissile peptide bond.  相似文献   

8.
The activity of the avian myeloblastosis virus (AMV) or the human immunodeficiency virus type 1 (HIV-1) protease on peptide substrates which represent cleavage sites found in the gag and gag-pol polyproteins of Rous sarcoma virus (RSV) and HIV-1 has been analyzed. Each protease efficiently processed cleavage site substrates found in their cognate polyprotein precursors. Additionally, in some instances heterologous activity was detected. The catalytic efficiency of the RSV protease on cognate substrates varied by as much as 30-fold. The least efficiently processed substrate, p2-p10, represents the cleavage site between the RSV p2 and p10 proteins. This peptide was inhibitory to the AMV as well as the HIV-1 and HIV-2 protease cleavage of other substrate peptides with Ki values in the 5-20 microM range. Molecular modeling of the RSV protease with the p2-p10 peptide docked in the substrate binding pocket and analysis of a series of single-amino acid-substituted p2-p10 peptide analogues suggested that this peptide is inhibitory because of the potential of a serine residue in the P1' position to interact with one of the catalytic aspartic acid residues. To open the binding pocket and allow rotational freedom for the serine in P1', there is a further requirement for either a glycine or a polar residue in P2' and/or a large amino acid residue in P3'. The amino acid residues in P1-P4 provide interactions for tight binding of the peptide in the substrate binding pocket.  相似文献   

9.
The number of known proteases is increasing at a tremendous rate as a consequence of genome sequencing projects. Although one can guess at the functions of these novel enzymes by considering sequence homology to known proteases, there is a need for new tools to rapidly provide functional information on large numbers of proteins. We describe a method for determining the cleavage site specificity of proteolytic enzymes that involves pooled sequencing of peptide library mixtures. The method was used to determine cleavage site motifs for six enzymes in the matrix metalloprotease (MMP) family. The results were validated by comparison with previous literature and by analyzing the cleavage of individually synthesized peptide substrates. The library data led us to identify the proteoglycan neurocan as a novel MMP-2 substrate. Our results indicate that a small set of libraries can be used to quickly profile an expanding protease family, providing information applicable to the design of inhibitors and to the identification of protein substrates.  相似文献   

10.
Multiple proteases in a system hydrolyze target substrates, but recent evidence indicates that some proteases will degrade other proteases as well. Cathepsin S hydrolysis of cathepsin K is one such example. These interactions may be uni‐ or bi‐directional and change the expected kinetics. To explore potential protease‐on‐protease interactions in silico, a program was developed for users to input two proteases: (1) the protease‐ase that hydrolyzes (2) the substrate, protease. This program identifies putative sites on the substrate protease highly susceptible to cleavage by the protease‐ase, using a sliding‐window approach that scores amino acid sequences by their preference in the protease‐ase active site, culled from MEROPS database. We call this PACMANS, Protease‐Ase Cleavage from MEROPS ANalyzed Specificities, and test and validate this algorithm with cathepsins S and K. PACMANS cumulative likelihood scoring identified L253 and V171 as sites on cathepsin K subject to cathepsin S hydrolysis. Mutations made at these locations were tested to block hydrolysis and validate PACMANS predictions. L253A and L253V cathepsin K mutants significantly reduced cathepsin S hydrolysis, validating PACMANS unbiased identification of these sites. Interfamilial protease interactions between cathepsin S and MMP‐2 or MMP‐9 were tested after predictions by PACMANS, confirming its utility for these systems as well. PACMANS is unique compared to other putative site cleavage programs by allowing users to define the proteases of interest and target, and can also be employed for non‐protease substrate proteins, as well as short peptide sequences.  相似文献   

11.
Affinity tags have become indispensable tools for protein expression and purification. Yet, because they have the potential to interfere with structural and functional studies, it is usually desirable to remove them from the target protein. The stringent sequence specificity of the tobacco etch virus (TEV) protease has made it a useful reagent for this purpose. However, a potential limitation of TEV protease is that it is believed to require a Gly or Ser residue in the P1' position of its substrates to process them with reasonable efficiency. Consequently, after an N-terminal affinity tag is removed by TEV protease, the target protein will usually retain a non-native Ser or Gly residue on its N-terminus, and in some cases this may affect its biological activity. To investigate the stringency of the requirement for Gly or Ser in the P1' position of a TEV protease recognition site, we constructed 20 variants of a fusion protein substrate with an otherwise optimal recognition site, each containing a different amino acid in the P1' position. The efficiency with which these fusion proteins were processed by TEV protease was compared both in vivo and in vitro. Additionally, the kinetic parameters K(M) and k(cat) were determined for a representative set of peptide substrates with amino acid substitutions in the P1' position. The results indicate that many side-chains can be accommodated in the P1' position of a TEV protease recognition site with little impact on the efficiency of processing.  相似文献   

12.
Clostridium botulinum neurotoxins (BoNTs) cause the life-threatening disease botulism through the inhibition of neurotransmitter release by cleaving essential SNARE proteins. There are seven serologically distinctive types of BoNTs and many subtypes within a serotype have been identified. BoNT/A5 is a recently discovered subtype of type A botulinum neurotoxin which possesses a very high degree of sequence similarity and identity to the well-studied A1 subtype. In the present study, we examined the endopeptidase activity of these two BoNT/A subtypes and our results revealed significant differences in substrate binding and cleavage efficiency between subtype A5 and A1. Distinctive hydrolysis efficiency was observed between the two toxins during cleavage of the native substrate SNAP-25 versus a shortened peptide mimic. N-terminal truncation studies demonstrated that a key region of the SNAP-25, including the amino acid residues at 151 through 154 located in the remote binding region of the substrate, contributed to the differential catalytic properties between A1 and A5. Elevated binding affinity of the peptide substrate resulted from including these important residues and enhanced BoNT/A5's hydrolysis efficiency. In addition, mutations of these amino acid residues affect the proteolytic performance of the two toxins in different ways. This study provides a better understanding of the biological activity of these toxins, their performance characteristics in the Endopep-MS assay to detect BoNT in clinical samples and foods, and is useful for the development of peptide substrates.  相似文献   

13.
Most protease-substrate assays rely on short, synthetic peptide substrates consisting of native or modified cleavage sequences. These assays are inadequate for interrogating the contribution of native substrate structure distal to a cleavage site that influences enzymatic cleavage or for inhibitor screening of native substrates. Recent evidence from HIV-1 isolates obtained from individuals resistant to protease inhibitors has demonstrated that mutations distal to or surrounding the protease cleavage sites in the Gag substrate contribute to inhibitor resistance. We have developed a protease-substrate cleavage assay, termed the cleavage enzyme- cytometric bead array (CE-CBA), which relies on native domains of the Gag substrate containing embedded cleavage sites. The Gag substrate is expressed as a fluorescent reporter fusion protein, and substrate cleavage can be followed through the loss of fluorescence utilizing flow cytometry. The CE-CBA allows precise determination of alterations in protease catalytic efficiency (k(cat)/K(M)) imparted by protease inhibitor resistance mutations in protease and/or gag in cleavage or noncleavage site locations in the Gag substrate. We show that the CE-CBA platform can identify HIV-1 protease present in cellular extractions and facilitates the identification of small molecule inhibitors of protease or its substrate Gag. Moreover, the CE-CBA can be readily adapted to any enzyme-substrate pair and can be utilized to rapidly provide assessment of catalytic efficiency as well as systematically screen for inhibitors of enzymatic processing of substrate.  相似文献   

14.
The hydrolysis of a series of depsipeptides demonstrates that the zinc neutral endopeptidases of bacteria are active esterases. Esters such as BzGly-OPhe-Ala, BzGly-OLeu-Ala, and FA-Gly-OLeu-NH2 are hydrolyzed at rates three- to eightfold slower than are their exact peptide analogues, when hydrolyzed by thermolysin, Bacillus subtilis neutral protease and the neutral protease from Aeromonas proteolytica. Ester hydrolysis by zinc neutral proteases follows the characteristic preference for hydrophobic amino acids adjacent to the site of cleavage, discerned from the hydrolysis of peptide substrates. Removal of zinc from thermolysin abolishes the esterase activity of the native enzyme. Among the metals examined, only Co2+ and Zn2+ restore esterase activity to any significant extent, Co2+ restoring 50% and Zn2+ 100% of the native thermolysin activity. The hydrolysis of esters and peptides by thermolysin does not differ with respect to either the binding or catalytic steps. Substrate specificity, pH-rate profiles, inhibitor, and deuterium isotope effects are identical for both types of substrates.  相似文献   

15.
The efficiency and high specificity of tobacco etch virus (TEV) protease has made it widely used for cleavage of recombinant fusion proteins. However, the production of TEV protease in E. coli is hampered by low solubility. We have subjected the gene encoding TEV protease to directed evolution to improve the yield of soluble protein. Libraries of mutated genes obtained by error-prone PCR and gene shuffling were introduced into the Gateway cloning system for facilitated transfer between vectors for screening, purification, or other applications. Fluorescence based in vivo solubility screening was carried out by cloning the libraries into a plasmid encoding a C-terminal GFP fusion. Mutant genes giving rise to high GFP fluorescence intensity indicating high levels of soluble TEV-GFP were subsequently transferred to a vector providing a C-terminal histidine tag for expression, purification, and activity tests of mutated TEV. We identified a mutant, TEV(SH), in which three amino acid substitutions result in a five-fold increase in the yield of purified protease with retained activity.  相似文献   

16.
An assay using fluorogenic peptides based on the monomer/excimer fluorescence features of pyrene was developed to measure the proteolytic activity of trypsin, a serine protease. Two pyrene moieties were incorporated into the respective N- and C-terminus of the peptides as (pyrene)-C-Xaa-C-(pyrene), where Xaa represents amino acid residues of 5-, 6-, 7-, or 8-mer containing the cleavage site of trypsin. The proteolytic cleavage of the substrates led to an increase in monomer fluorescence and a decrease in excimer fluorescence of pyrene. Kinetic parameters (k(cat) and K(m)) for the enzymatic hydrolysis of the substrates were successfully determined. The parameters are dependent on the chain length of the substrate and optimal catalytic activity was obtained with substrates that consisted of 9 or 10 amino acid residues. The present assay system is sensitive and the preparation of the substrate is very simple. We suggest that this method may be suitable for high-throughput screening and also applicable to the characterization of other proteases.  相似文献   

17.
The NS3 (dengue virus non-structural protein 3) serine protease of dengue virus is an essential component for virus maturation, thus representing an attractive target for the development of antiviral drugs directed at the inhibition of polyprotein processing. In the present study, we have investigated determinants of substrate specificity of the dengue virus NS3 protease by using internally quenched fluorogenic peptides containing Abz (o-aminobenzoic acid; synonymous to anthranilic acid) and 3-nitrotyrosine (nY) representing both native and chimaeric polyprotein cleavage site sequences. By using this combinatorial approach, we were able to describe the substrate preferences and determinants of specificity for the dengue virus NS2B(H)-NS3pro protease. Kinetic parameters (kcat/K(m)) for the hydrolysis of peptide substrates with systematic truncations at the prime and non-prime side revealed a length preference for peptides spanning the P4-P3' residues, and the peptide Abz-RRRRSAGnY-amide based on the dengue virus capsid protein processing site was discovered as a novel and efficient substrate of the NS3 protease (kcat/K(m)=11087 M(-1) x s(-1)). Thus, while having confirmed the exclusive preference of the NS3 protease for basic residues at the P1 and P2 positions, we have also shown that the presence of basic amino acids at the P3 and P4 positions is a major specificity-determining feature of the dengue virus NS3 protease. Investigation of the substrate peptide Abz-KKQRAGVLnY-amide based on the NS2B/NS3 polyprotein cleavage site demonstrated an unexpected high degree of cleavage efficiency. Chimaeric peptides with combinations of prime and non-prime sequences spanning the P4-P4' positions of all five native polyprotein cleavage sites revealed a preponderant effect of non-prime side residues on the K(m) values, whereas variations at the prime side sequences had higher impact on kcat.  相似文献   

18.
Site-specific proteases are important tools for in vitro and in vivo cleavage of proteins. They are widely used for diverse applications, like protein purification, assessment of protein–protein interactions or regulation of protein localization, abundance or activity. Here, we report the development of a procedure to select protease variants with altered specificity based on the well-established Saccharomyces cerevisiae adenine auxotrophy-dependent red/white colony assay. We applied this method on the tobacco etch virus (TEV) protease to obtain a protease variant with altered substrate specificity at the P1’ Position. In vivo experiments with tester substrates showed that the mutated TEV protease still efficiently recognizes the sequence ENLYFQ, but has almost lost all bias for the amino acid at the P1’ Position. Thus, we generated a site-specific protease for synthetic approaches requiring in vivo generation of proteins or peptides with a specific N-terminal amino acid.  相似文献   

19.
20.
The use of low grade starting material for the generation of peptides with bioactivity properties is of interest. The proteins from the potato starch industry byproduct is a promising source, as several health benefits may be associated with their hydrolysates. The efficiency of selected proteases (Novo Pro‐D, Alcalase, Flavourzyme, and Papain), exhibiting different substrate specificities and cleavage action modes, to hydrolyze potato protein isolate (patatin and protease inhibitors) was investigated. Novo Pro‐D resulted in the lowest degree of hydrolysis, whereas Alcalase, Flavourzyme, and Papain exhibited a high catalytic efficiency for the hydrolysis of potato proteins. The degree of hydrolysis behaved in a concentration dependent manner. However, the end‐product profile (peptides and free amino acids) was dependent not only on the protease specificity, its cleavage action mode (endo/exo) and the availability of the intermediate substrates but also on the contribution of the protease inhibitors to the reaction kinetics through their inhibitory effects. Indeed, the dependence of the exo‐activity on the catalytic efficiency of the endo‐action of protease was shown to be significant. Papain generated more unique peptide sequences with homology assessment matching several potato proteins when compared with Flavourzyme. This can be attributed to the high exo‐peptidase activity of Flavourzyme resulting in the generation of shorter peptides which were difficult to match. Flavourzyme produced more peptides originated from patatin fraction, whereas Papain resulted in the release of more peptides corresponding to the protease inhibitor fractions. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:420–429, 2016  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号