首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Changes in metabolism and cellular physiology of facultative anaerobes during oxygen exposure can be substantial, but little is known about how these changes connect with electrical current output from an operating microbial fuel cell (MFC). A high‐throughput voltage based screening assay (VBSA) was used to correlate current output from a MFC containing Shewanella oneidensis MR‐1 to carbon source (glucose or lactate) utilization, culture conditions, and biofilm coverage over 250 h. Lactate induced an immediate current response from S. oneidensis MR‐1, with both air‐exposed and anaerobic anodes throughout the duration of the experiments. Glucose was initially utilized for current output by MR‐1 when cultured and maintained in the presence of air. However, after repeated additions of glucose, the current output from the MFC decreased substantially while viable planktonic cell counts and biofilm coverage remained constant suggesting that extracellular electron transfer pathways were being inhibited. Shewanella maintained under an anaerobic atmosphere did not utilize glucose consistent with literature precedents. Operation of the VBSA permitted data collection from nine simultaneous S. oneidensis MR‐1 MFC experiments in which each experiment was able to demonstrate organic carbon source utilization and oxygen dependent biofilm formation on a carbon electrode. These data provide the first direct evidence of complex cellular responses to electron donor and oxygen tension by Shewanella in an operating MFC at select time points. Biotechnol. Bioeng. 2009;103: 524–531. Published 2009 Wiley Periodicals, Inc.  相似文献   

2.
Development of a solar-powered microbial fuel cell   总被引:1,自引:0,他引:1  
Aims: To understand factors that impact solar‐powered electricity generation by Rhodobacter sphaeroides in a single‐chamber microbial fuel cell (MFC). Methods and Results: The MFC used submerged platinum‐coated carbon paper anodes and cathodes of the same material, in contact with atmospheric oxygen. Power was measured by monitoring voltage drop across an external resistance. Biohydrogen production and in situ hydrogen oxidation were identified as the main mechanisms for electron transfer to the MFC circuit. The nitrogen source affected MFC performance, with glutamate and nitrate‐enhancing power production over ammonium. Conclusions: Power generation depended on the nature of the nitrogen source and on the availability of light. With light, the maximum point power density was 790 mW m?2 (2·9 W m?3). In the dark, power output was less than 0·5 mW m?2 (0·008 W m?3). Also, sustainable electrochemical activity was possible in cultures that did not receive a nitrogen source. Significance and Impact of the Study: We show conditions at which solar energy can serve as an alternative energy source for MFC operation. Power densities obtained with these one‐chamber solar‐driven MFC were comparable with densities reported in nonphotosynthetic MFC and sustainable for longer times than with previous work on two‐chamber systems using photosynthetic bacteria.  相似文献   

3.
An expression plasmid was constructed in order to carry out heterologous expression of the gene of the NAD+-dependent formate dehydrogenase (FDH) from methylotrophic bacterium Moraxella sp. in the cells of Shewanella oneidensis MR-1 under aerobic and anaerobic conditions. In both modes of cell cultivation, recombinant FDH activity was revealed in the cell lysate of the transformants. In the medium with la? tate as a carbon source, the rate of anaerobic respiration determined as the rate of conversion of fumarate (the electron acceptor) to succinate was higher in the transformant with recombinant FDH. Anaerobic cultivation of the FDH-containing transformant of S. oneidensis MR-1 in a microbial fuel cell (MFC) revealed increased current density.  相似文献   

4.
Aims: This study aimed to characterize microbial community dynamics in aerated cow manure slurry at different aeration intensities. Methods and Results: Batch aerobic treatments were set up in 5‐l jar fermentor, each containing 3 l of manure slurry; the slurries were subjected to low, medium and high (50, 150 and 250 ml min?1, respectively) aeration for 9 days. Microbial community composition was determined using terminal restriction fragment length polymorphism and a clone library targeting 16S rRNA genes. High and medium aeration accelerated organic carbon degradation in parallel with the degree of aeration intensity; however, 90% of the initial total organic carbon was retained during low‐aeration treatment. During the active stages of organic carbon decomposition, clones belonging to the class Bacilli accumulated. Moreover, Bacilli accumulation occurred earlier under high aeration than under medium aeration. Conclusions: Organic matter degradation was mainly governed by a common microbial assemblage consisting of many lineages belonging to the class Bacilli. The timing of community development differed depending on aeration intensity. Significance and Impact of the Study: This study reports on changes in several environmentally important parameters and the principal microbial assemblage during the pollution‐reducing phase of cattle manure aeration treatment.  相似文献   

5.
Aim: To evaluate the bioenergy generation and the microbial community structure from palm oil mill effluent using microbial fuel cell. Methods and Results: Microbial fuel cells enriched with palm oil mill effluent (POME) were employed to harvest bioenergy from both artificial wastewater containing acetate and complex POME. The microbial fuel cell (MFC) showed maximum power density of 3004 mW m?2 after continuous feeding with artificial wastewater containing acetate substrate. Subsequent replacement of the acetate substrate with complex substrate of POME recorded maximum power density of 622 mW m?2. Based on 16S rDNA analyses, relatively higher abundance of Deltaproteobacteria (88·5%) was detected in the MFCs fed with acetate artificial wastewater as compared to POME. Meanwhile, members of Gammaproteobacteria, Epsilonproteobacteria and Betaproteobacteria codominated the microbial consortium of the MFC fed with POME with 21, 20 and 18·5% abundances, respectively. Conclusions: Enriched electrochemically active bacteria originated from POME demonstrated potential to generate bioenergy from both acetate and complex POME substrates. Further improvements including the development of MFC systems that are able to utilize both fermentative and nonfermentative substrates in POME are needed to maximize the bioenergy generation. Significance and Impact of the Study: A better understanding of microbial structure is critical for bioenergy generation from POME using MFC. Data obtained in this study improve our understanding of microbial community structure in conversion of POME to electricity.  相似文献   

6.
Electrogenicity of Shewanella oneidensis MR-1 mutants FRS1 and FRB1 with reducing activity 30–40% higher than in the original strain was studied in various microbial fuel cells (MFC) developed in the course of the work. The voltage and current density developed by the mutants were 1.7 times higher than in the case of S. oneidensis MR-1. A correlation was found between reducing activity of the cells and the voltage and current density developed in MFC. The possibility for enhanced bioelectricity production in MFC by genetic modification of S. oneidensis MR-1 was demonstrated.  相似文献   

7.
Aims: To investigate the effects of inoculation strategy and cultivation approach on the performance of microbial fuel cell (MFC). Methods and Results: A dual‐chamber sediment fuel cell was set up fed with glucose under batch condition. At day 30, the supernatant consortium was partly transferred and used as inoculum for the evaluation of cultivation approach. Power output gradually increased to 9·9 mW m?2 over 180 days, corresponding to coulombic efficiency (CE) of 29·6%. Separated biofilms attached anode enabled power output and CE dramatically up to 100·9 mW m?2 and over 50%, respectively, whereas the residual sediment catalysed MFC gave a poor performance. MFC catalysed by in situ supernatant consortium demonstrated more than twice higher power than MFC catalysed by the supernatant consortium after Fe(OH)3 cultivation. However, the re‐generation of biofilms from the latter largely enhanced the cell performance. Conclusions: MFC exhibited a more efficient inducement of electroactive consortium than Fe(OH)3 cultivation. MFC performance varied depending on different inoculation strategies. Significance and Impact of the Study: This is the first time to study cultivation approach affecting electricity generation. In addition, anodic limitations of mass and electron transfer were discussed through MFC catalysed by sediment‐based bio‐matrix.  相似文献   

8.
A compact, three‐in‐one, flow‐through, porous, electrode design with minimal electrode spacing and minimal dead volume was implemented to develop a microbial fuel cell (MFC) with improved anode performance. A biofilm‐dominated anode consortium enriched under a multimode, continuous‐flow regime was used. The increase in the power density of the MFC was investigated by changing the cathode (type, as well as catholyte strength) to determine whether anode was limiting. The power density obtained with an air‐breathing cathode was 56 W/m3 of net anode volume (590 mW/m2) and 203 W/m3 (2160 mW/m2) with a 50‐mM ferricyanide‐based cathode. Increasing the ferricyanide concentration and ionic strength further increased the power density, reaching 304 W/m3 (3220 mW/m2, with 200 mM ferricyanide and 200 mM buffer concentration). The increasing trend in the power density indicated that the anode was not limiting and that higher power densities could be obtained using cathodes capable of higher rates of oxidation. The internal solution resistance for the MFC was 5–6 Ω, which supported the improved performance of the anode design. A new parameter defined as the ratio of projected surface area to total anode volume is suggested as a design parameter to relate volumetric and area‐based power densities and to enable comparison of various MFC configurations. Published 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

9.
随着全球大气氮沉降的明显增加,将有可能显著影响我国西部地区受氮限制的亚高山森林生态系统。土壤微生物是生态系统的重要组成部分,是土壤物质循环和能量流动的重要参与者。由于生态系统类型、土壤养分、氮沉降背景值等的差异,土壤呼吸和土壤生物量碳氮对施氮的响应存在许多不确定性。而施氮会不会促进亚高山森林生态系统中土壤呼吸和微生物对土壤碳氮的固定?基于此假设,选择了川西60年生的四川红杉(Larix mastersiana)亚高山针叶林为研究对象,通过4个水平的土壤施氮控制试验(CK:0 g m~(-2) a~(-1)、N1:2 g m~(-2)a~(-1)、N2:5 g m~(-2) a~(-1)、N3:10 g m~(-2)a~(-1)),监测了土壤呼吸及土壤微生物生物量碳氮在一个生长季的动态情况。结果表明:施氮对土壤呼吸各指标和土壤微生物碳氮都有极显著的影响,施氮能促进土壤全呼吸、自养呼吸、异养呼吸通量和土壤微生物生物量碳氮的增长,施氮使土壤呼吸通量提高了11%—15%,土壤微生物量碳提高了5%—9%,土壤微生物量氮提高了23%—34%。在中氮水平下(5 g m~(-2) a~(-1))对土壤呼吸的促进最显著。相关分析发现,土壤呼吸与微生物生物量碳氮和微生物代谢商极呈显著正相关,微生物量碳氮与土壤温度呈极显著的正相关,与土壤湿度呈极显著负相关。通过一般线性回归拟合土壤呼吸速率与土壤10 cm温湿度的关系,发现土壤呼吸速率与土壤温度呈极显著的正相关,与土壤湿度极显著负相关(P0.001),中氮水平下土壤温度敏感性系数Q_(10)值(7.10)明显高于对照(4.26)。  相似文献   

10.
Ammonium recovery using a two chamber microbial fuel cell (MFC) was investigated at high ammonium concentration. Increasing the ammonium concentration (from 0.07 to 4 g ammonium-nitrogen/L) by addition of ammonium chloride did not affect the performance of the MFC. The obtained current densities by DC-voltammetry were higher than 6 A/m2 for both operated MFCs. Also continuous operation at lower external resistance (250 Ω) showed an increased current density (0.9 A/m2). Effective ammonium recovery can be achieved by migrational ion flux through the cation exchange membrane to the cathode chamber, driven by the electron production from degradation of organic substrate. The charge transport was proportional to the concentration of ions. Nonetheless, a concentration gradient will influence the charge transport. Furthermore, a charge exchange process can influence the charge transport and therefore the recovery of specific ions.  相似文献   

11.
Shewanella oneidensis exhibits a remarkable versatility in anaerobic respiration, which largely relies on its diverse respiratory pathways. Some of these are expressed in response to the existence of their corresponding electron acceptors (EAs) under aerobic conditions. However, little is known about respiration and the impact of non-oxygen EAs on the physiology of the microorganism when oxygen is present. Here we undertook a study to elucidate the basis for nitrate and nitrite inhibition of growth under aerobic conditions. We discovered that nitrate in the form of NaNO3 exerts its inhibitory effects as a precursor to nitrite at low concentrations and as an osmotic-stress provider (Na+) at high concentrations. In contrast, nitrite is extremely toxic, with 25 mM abolishing growth completely. We subsequently found that oxygen represses utilization of all EAs but nitrate. To order to utilize EAs with less positive redox potential, such as nitrite and fumarate, S. oneidensis must enter the stationary phase, when oxygen respiration becomes unfavorable. In addition, we demonstrated that during aerobic respiration the cytochrome bd oxidase confers S. oneidensis resistance to nitrite, which likely functions via nitric oxide (NO).  相似文献   

12.
Electricity production and modeling of microbial fuel cell (MFC) from continuous beer brewery wastewater was studied in this paper. A single air-cathode MFC was constructed, carbon fiber was used as anode and diluted brewery wastewater (COD = 626.58 mg/L) as substrate. The MFC displayed an open-circuit voltage of 0.578 V and a maximum power density of 9.52 W/m3 (264 mW/m2). Using the model based on polarization curve, various voltage losses were quantified. At current density of 1.79 A/m2, reaction kinetic loss and mass transport loss both achieved to 0.248 V; while ohmic loss was 0.046 V. Results demonstrated that it was feasible and stable for producing bioelectricity from brewery wastewater; while the most important factors which influenced the performance of the MFC are reaction kinetic loss and mass transport loss.  相似文献   

13.
Construction of efficient performance of microbial fuel cells (MFCs) requires certain practical considerations. In the single chamber microbial fuel cell, there is no border between the anode and the cathode, thus the diffusion of the dissolved oxygen has a contrary effect on the anodic respiration and this leads to the inhibition of the direct electron transfer from the biofilm to the anodic surface. Here, a fed-batch single chambered microbial fuel cells are constructed with different distances 3 and 6?cm (anode- cathode spacing), while keeping the working volume is constant. The performance of each MFC is individually evaluated under the effects of vitamins & minerals with acetate as a fed load. The maximum open circuit potential during testing the 3 and 6?cm microbial fuel cells is about 946 and 791?mV respectively. By decreasing the distance between the anode and the cathode from 6 to 3?cm, the power density is decreased from 108.3?mW?m?2 to 24.5?mW?m?2. Thus, the short distance in membrane-less MFC weakened the cathode and inhibited the anodic respiration which affects the overall performance of the MFC efficiency. The system is displayed a maximum potential of 564 and 791?mV in absence & presence of vitamins respectively. Eventually, the overall functions of the acetate single chamber microbial fuel cell can be improved by the addition of vitamins & minerals and increasing the distance between the cathode and the anode.  相似文献   

14.
A 120-day aerobic incubation experiment was conducted to study the effects of pig slurry application on soil microbial activity. Pig slurry was added to soil at rates of 0 (control treatment), 150 and 300 m3 ha−1. Soil samples were taken after 0, 7, 14, 30, 45, 60, and 120 days of incubation and analyzed for total organic C and microbial biomass C contents, and basal respiration. Most of the organic C applied to soil with pig slurry was readily decomposed within 30 days. During the first phase (0 to 14–30 days), the addition of pig slurry to the soil, especially at the larger rate, increased microbial biomass C content, microbial biomass C/total organic C ratio, basal respiration, and metabolic quotient. The microbial growth and the increase of their activity that these results reflected were not persistent, since the initially measured values in pig slurry-amended soils decreased and reached those of the control soil in a relatively short time.  相似文献   

15.
Four experimental columns were employed in this study to investigate their performance under wastewater treatment conditions. One column was set-up as a biological aerated filter and the remaining three were set-up as microbial fuel cells (MFCs), two of which were connected to an external load whereas the third was left open circuit. The performance of the columns under several flow rates and leachate strengths was studied in terms of BOD5 removal efficiencies and electricity generation, when a fixed resistive load was connected. Results obtained demonstrated that it is possible to generate electricity and simultaneously treat landfill leachate in MFC columns. Energy generation in MFC columns improved with increasing flow rates from 24 to 192 mL/h, while BOD5 removal efficiency levels reached a maximum at 48 mL/h and dropped to relatively low values at higher flow rates. The maximum removal efficiencies were obtained at a loading rate of 0.81 kg BOD5/m3 d for columns C1, C2 and C4 and 1.81 kg BOD5/m3 d for column C3. Electrical output levels and BOD5 concentrations at the MFC columns showed a linear relationship, which allows the system to be used as a BOD5 sensor. Part of the BOD removal was not associated with power generation and was attributed to the presence of alternative end terminal electron acceptors and volatilisation. The MFC columns could reach the same or even higher removal efficiencies than those from the biological aerated filter with the advantage of producing energy and saving cost of aeration. To the best of the authors’ knowledge, this is the first study that compares the MFC technology with other conventional treatment systems for removing pollutants from wastewater.  相似文献   

16.
Bioelectricity production from a phytoplankton, Chlorella vulgaris, and a macrophyte, Ulva lactuca was examined in single chamber microbial fuel cells (MFCs). MFCs were fed with the two algae (as powders), obtaining differences in energy recovery, degradation efficiency, and power densities. C. vulgaris produced more energy generation per substrate mass (2.5 kWh/kg), but U. lactuca was degraded more completely over a batch cycle (73 ± 1% COD). Maximum power densities obtained using either single cycle or multiple cycle methods were 0.98 W/m2 (277 W/m3) using C. vulgaris, and 0.76 W/m2 (215 W/m3) using U. lactuca. Polarization curves obtained using a common method of linear sweep voltammetry (LSV) overestimated maximum power densities at a scan rate of 1 mV/s. At 0.1 mV/s, however, the LSV polarization data was in better agreement with single‐ and multiple‐cycle polarization curves. The fingerprints of microbial communities developed in reactors had only 11% similarity to inocula and clustered according to the type of bioprocess used. These results demonstrate that algae can in principle, be used as a renewable source of electricity production in MFCs. Biotechnol. Bioeng. 2009;103: 1068–1076. © 2009 Wiley Periodicals, Inc.  相似文献   

17.
Power densities and oxidation–reduction potentials (ORPs) of MFCs containing a pure culture of Shewanella oneidensis MR‐1 were compared to mixed cultures (wastewater inoculum) in cube shaped, 1‐, 2‐, and 3‐bottle batch‐fed MFC reactor configurations. The reactor architecture influenced the relative power produced by the different inocula, with the mixed culture generating 68–480% more power than MR‐1 in each MFC configuration. The mixed culture produced the maximum power density of 858 ± 9 mW m?2 in the cubic MFC, while MR‐1 produced 148 ± 20 mW m?2. The higher power by the mixed culture was primarily a result of lower internal resistances than those produced by the pure culture. Power was a direct function of ohmic resistance for the mixed culture, but not for strain MR‐1. ORP of the anode compartment varied with reactor configuration and inoculum, and it was always negative during maximum power production but it did not vary in proportion to power output. The ORP varied primarily at the end of the cycle when substrate was depleted, with a change from a reductive environment during maximum power production (approximately ?175 mV for mixed and approximately ?210 mV for MR‐1 in cubic MFCs), to an oxidative environment at the end of the batch cycle (~250 mV for mixed and ~300 mV for MR‐1). Mixed cultures produced more power than MR‐1 MFCs even though their redox potential was less negative. These results demonstrate that differences between power densities produced by pure and mixed cultures depend on the MFC architecture. Biotechnol. Bioeng. 2010; 105: 489–498. © 2009 Wiley Periodicals, Inc.  相似文献   

18.
A mediator-less three-stage two-chamber microbial fuel cell (MFC) system was developed and operated continuously for more than 1.5 years to evaluate continuous power generation while treating artificial wastewater containing glucose (10 mM) concurrently. A stable power density of 28 W/m3 was attained with an anode hydraulic retention time of 4.5 h and phosphate buffer as the cathode electrolyte. An overall dissolved organic carbon removal ratio was about 85%, and coulombic efficiency was about 46% in this MFC system. We also analyzed the microbial community structure of anode biofilms in each MFC. Since the environment in each MFC was different due to passing on the products to the next MFC in series, the microbial community structure was different accordingly. The anode biofilm in the first MFC consisted mainly of bacteria belonging to the Gammaproteobacteria, identified as Aeromonas sp., while the Firmicutes dominated the anode biofilms in the second and third MFCs that were mainly fed with acetate. Cyclic voltammetric results supported the presence of a redox compound(s) associated with the anode biofilm matrix, rather than mobile (dissolved) forms, which could be responsible for the electron transfer to the anode. Scanning electron microscopy revealed that the anode biofilms were comprised of morphologically different cells that were firmly attached on the anode surface and interconnected each other with anchor-like filamentous appendages, which might support the results of cyclic voltammetry. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
Shewanella oneidensis is a model species for aquatic ecosystems and plays an important role in bioremediation, biofuel cell manufacturing and biogeochemical cycling. S. oneidensis MR-1 is able to generate hydrogen sulfide from various sulfur species; however, its catalytic kinetics have not been determined. In this study, five in-frame deletion mutants of S. oneidensis were constructed and their H2S-producing activities were analyzed. SirA and PsrA were the two major contributors to H2S generation under anoxic cultivation, and the optimum SO32− concentration for sulfite respiration was approximately 0.8 mM, while the optimum S2O32− concentration for thiosulfate respiration was approximately 0.4 mM. Sulfite and thiosulfate were observed to interfere with each other during respiration, and a high concentration of sulfite or thiosulfate chelated extracellular free-iron but did not repress the expression of sirA or psrA. Nitrite and nitrate were two preferred electron acceptors during anaerobic respiration; however, under energy-insufficient conditions, S. oneidensis could utilize multiple electron acceptors simultaneously. Elucidiating the stoichiometry of H2S production in S. oneidensis would be helpful for the application of this species in bioremediation and biofuel cell manufacturing, and would help to characterize the ecophysiology of sulfur cycling.  相似文献   

20.
In the research and application of microbial fuel cell (MFC), how to incorporate MFCs into current wastewater infrastructure is an importance issue. Here, we report a novel strategy of integrating an MFC into a sequencing batch reactor (SBR) to test the energy production and the chemical oxygen demand (COD) removal. The membrane-less biocathode MFC is integrated with the SBR to recover energy from the aeration in the form of electricity and thus reduce the SBR operation costs. In a lab-scale integrated SBR-MFC system, the maximum power production of the MFC was 2.34 W/m(3) for one typical cycle and the current density reached up to 14 A/m(3) . As a result, the MFC contributed to the 18.7% COD consumption of the integrated system and also recovered energy from the aeration tank with a volume fraction of only 12% of the SBR. Our strategy provides a feasible and effective energy-saving and -recovering solution to upgrade the existing activated sludge processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号