首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the role of bone marrow cells in bone fracture repair using green fluorescent protein (GFP) chimeric model mice. First, the chimeric model mice were created: bone marrow cells from GFP-transgenic C57BL/6 mice were injected into the tail veins of recipient wild-type C57BL/6 mice that had been irradiated with a lethal dose of 10Gy from a cesium source. Next, bone fracture models were created from these mice: closed transverse fractures of the left femur were produced using a specially designed device. One, three, and five weeks later, fracture lesions were extirpated for histological and immunohistochemical analyses. In the specimens collected 3 and 5 weeks after operation, we confirmed calluses showing intramembranous ossification peripheral to the fracture site. The calluses consisted of GFP- and osteocalcin-positive cells at the same site, although the femur consisted of only osteocalcin-positive cells. We suggest that bone marrow cells migrated outside of the bone marrow and differentiated into osteoblasts to make up the calluses.  相似文献   

2.
Bone possesses a remarkable repair capacity to regenerate completely without scar tissue formation. This unique characteristic, expressed during bone development, maintenance and injury (fracture) healing, is performed by the reparative cells including skeletal stem cells (SSCs) and their descendants. However, the identity and functional roles of SSCs remain controversial due to technological difficulties and the heterogeneity and plasticity of SSCs. Moreover, for many years, there has been a biased view that bone marrow is the main cell source for bone repair. Together, these limitations have greatly hampered our understanding of these important cell populations and their potential applications in the treatment of fractures and skeletal diseases. Here, we reanalyse and summarize current understanding of the reparative cells in bone regeneration and repair and outline recent progress in this area, with a particular emphasis on the temporal and spatial process of fracture healing, the sources of reparative cells, an updated definition of SSCs, and markers of skeletal stem/progenitor cells contributing to the repair of craniofacial and long bones, as well as the debate between SSCs and pericytes. Finally, we also discuss the existing problems, emerging novel technologies and future research directions in this field.  相似文献   

3.
Extracellular matrix (ECM) remodeling is important during bone development and repair. Because matrix metalloproteinase 13 (MMP13, collagenase-3) plays a role in long bone development, we have examined its role during adult skeletal repair. In this study we find that MMP13 is expressed by hypertrophic chondrocytes and osteoblasts in the fracture callus. We demonstrate that MMP13 is required for proper resorption of hypertrophic cartilage and for normal bone remodeling during non-stabilized fracture healing, which occurs via endochondral ossification. However, no difference in callus strength was detected in the absence of MMP13. Transplant of wild-type bone marrow, which reconstitutes cells only of the hematopoietic lineage, did not rescue the endochondral repair defect, indicating that impaired healing in Mmp13-/- mice is intrinsic to cartilage and bone. Mmp13-/- mice also exhibited altered bone remodeling during healing of stabilized fractures and cortical defects via intramembranous ossification. This indicates that the bone phenotype occurs independently from the cartilage phenotype. Taken together, our findings demonstrate that MMP13 is involved in normal remodeling of bone and cartilage during adult skeletal repair, and that MMP13 may act directly in the initial stages of ECM degradation in these tissues prior to invasion of blood vessels and osteoclasts.  相似文献   

4.
Articular cartilage defects that do not repair spontaneously induce osteoarthritic changes in joints over a long period of observation. In this study, we examined the usefulness of transplanting culture‐expanded bone marrow mesenchymal cells into osteochondral defects of joints with cartilage defects. First, we performed experiments on rabbits and up on obtaining good results proceeded to perform the experiments on humans. Macroscopic and histological repair with this method was good, and good clinical results were obtained although there was no significant difference with the control group. Recent reports have indicated that this procedure is comparable to autologous chondrocyte implantation, and concluded that it was a good procedure because it required one step less than that required by surgery, reduced costs for patients, and minimized donor site morbidity. Although some reports have previously shown that progenitor cells formed a tumor when implanted into immune‐deficient mice after long term in vitro culture, the safety of the cell transplantation was confirmed by our clinical experience. Thus, this procedure is useful, effective, and safe, but the repaired tissues were not always hyaline cartilage. To obtain better repair with this procedure, treatment approaches using some growth factors during in vitro culture or gene transfection are being explored. J. Cell. Physiol. 225: 291–295, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

5.
《Cytotherapy》2023,25(4):353-361
Fractures in bone, a tissue critical in protecting other organs, affect patients’ quality of life and have a heavy economic burden on societies. Based on regenerative medicine and bone tissue engineering approaches, stem cells have become a promising and attractive strategy for repairing bone fractures via differentiation into bone-forming cells and production of favorable mediators. Recent evidence suggests that stem cell-derived exosomes could mediate the therapeutic effects of their counterpart cells and provide a cell-free therapeutic strategy in bone repair. Since bone is a highly vascularized tissue, coupling angiogenesis and osteogenesis is critical in bone fracture healing; thus, developing therapeutic strategies to promote angiogenesis will facilitate bone regeneration and healing. To this end, stem cell-derived exosomes with angiogenic potency have been developed to improve fracture healing. This review summarizes the effects of stem cell-derived exosomes on the repair of bone tissue, focusing on the angiogenesis process.  相似文献   

6.
7.
Fracture repair is a complex process involving timed cellular recruitment, gene expression, and synthesis of compounds that regenerate native tissue to restore the mechanical integrity, and thus function of injured bone. While the majority of fractures heal without complication, this takes time and a subset of patients (~10%) experience healing delays, extending their morbidity and treatment costs. Consequently, there is a need for efficacious therapeutics for the intervention of fracture healing. Recent studies into the molecular control of fracture repair and advances in the understanding of the skeleton as a whole have resulted in the identification of numerous novel targets and compounds for such intervention. These include traditional agents such bone morphogenetic proteins and other growth factors, but also relatively newer compounds such as parathyroid hormone and modulators of the Wnt signaling pathway. These agents, along with others, are discussed in the current article in terms of their investigative status and potential for clinical implementation. Hopefully, these agents, as well as others yet to be discovered, will demonstrate sufficient clinical utility for successful intervention of fracture healing. This may have significant implications for the duration of morbidity and costs associated with traumatic bone fractures. J. Cell. Biochem. 109: 302–311, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

8.

Objectives

Hip fractures commonly result in permanent disability, institutionalization or death in elderly. Existing hip-fracture predicting tools are underused in clinical practice, partly due to their lack of intuitive interpretation. By use of a graphical layer, Bayesian network models could increase the attractiveness of fracture prediction tools. Our aim was to study the potential contribution of a causal Bayesian network in this clinical setting. A logistic regression was performed as a standard control approach to check the robustness of the causal Bayesian network approach.

Setting

EPIDOS is a multicenter study, conducted in an ambulatory care setting in five French cities between 1992 and 1996 and updated in 2010. The study included 7598 women aged 75 years or older, in which fractures were assessed quarterly during 4 years. A causal Bayesian network and a logistic regression were performed on EPIDOS data to describe major variables involved in hip fractures occurrences.

Results

Both models had similar association estimations and predictive performances. They detected gait speed and mineral bone density as variables the most involved in the fracture process. The causal Bayesian network showed that gait speed and bone mineral density were directly connected to fracture and seem to mediate the influence of all the other variables included in our model. The logistic regression approach detected multiple interactions involving psychotropic drug use, age and bone mineral density.

Conclusion

Both approaches retrieved similar variables as predictors of hip fractures. However, Bayesian network highlighted the whole web of relation between the variables involved in the analysis, suggesting a possible mechanism leading to hip fracture. According to the latter results, intervention focusing concomitantly on gait speed and bone mineral density may be necessary for an optimal prevention of hip fracture occurrence in elderly people.  相似文献   

9.
Connexin 43 (Cx43) is the most abundant gap junction protein in bone and is required for osteoblastic differentiation and bone homeostasis. During fracture healing, Cx43 is abundantly expressed in osteoblasts and osteocytes, while Cx43 deficiency impairs bone formation and healing. In the present study we selectively deleted Cx43 in the osteoblastic lineage from immature osteoblasts through osteocytes and tested the hypothesis that Cx43 deficiency results in delayed osteoblastic differentiation and impaired restoration of biomechanical properties due to attenuated β-catenin expression relative to wild type littermates. Here we show that Cx43 deficiency results in alterations in the mineralization and remodeling phases of healing. In Cx43 deficient fractures the mineralization phase is marked by delayed expression of osteogenic genes. Additionally, the decrease in the RankL/ Opg ratio, osteoclast number and osteoclast size suggest decreased osteoclast bone resorption and remodeling. These changes in healing result in functional deficits as shown by a decrease in ultimate torque at failure. Consistent with these impairments in healing, β-catenin expression is attenuated in Cx43 deficient fractures at 14 and 21 days, while Sclerostin (Sost) expression, a negative regulator of bone formation is increased in Cx43cKO fractures at 21 days, as is GSK-3β, a key component of the β-catenin proteasomal degradation complex. Furthermore, we show that alterations in healing in Cx43 deficient fractures can be rescued by inhibiting GSK-3β activity using Lithium Chloride (LiCl). Treatment of Cx43 deficient mice with LiCl restores both normal bone formation and mechanical properties relative to LiCl treated WT fractures. This study suggests that Cx43 is a potential therapeutic target to enhance fracture healing and identifies a previously unknown role for Cx43 in regulating β-catenin expression and thus bone formation during fracture repair.  相似文献   

10.
BackgroundRecent approaches have sought to harness the potential of stem cells to regenerate bone that is lost as a consequence of trauma or disease. Bone marrow aspirate (BMA) provides an autologous source of osteoprogenitors for such applications. However, previous studies indicated that the concentration of osteoprogenitors present in BMA is less than required for robust bone regeneration. We provide further evidence for the importance of BMA enrichment for skeletal tissue engineering strategies using a novel acoustic wave-facilitated filtration strategy to concentrate BMA for osteoprogenitors, clinically applicable for intraoperative orthopedic use.MethodsFemoral BMA from 15 patients of an elderly cohort was concentrated for the nucleated cell fraction against erythrocytes and excess plasma volume via size exclusion filtration facilitated by acoustic agitation. The effect of aspirate concentration was assessed by assays for colony formation, flow cytometry, multilineage differentiation and scaffold seeding efficiency.ResultsBMA was filtered to achieve a mean 4.2-fold reduction in volume with a corresponding enrichment of viable and functional osteoprogenitors, indicated by flow cytometry and assays for colony formation. Enhanced osteogenic and chondrogenic differentiation was observed using concentrated aspirate and enhanced cell-seeding efficiency onto allogeneic bone graft as an effect of osteoprogenitor concentration relative specifically to the concentration of erythrocytes in the aspirate.ConclusionsThese studies provide evidence for the importance of BMA nucleated cell concentration for both cell differentiation and cell seeding efficiency and demonstrate the potential of this approach for intraoperative application to enhance bone healing.  相似文献   

11.
Civilian gunshot wounds to the hand are typically caused by low-velocity weapons, which create a localized pattern of soft-tissue and bone injury that usually allows for early definitive treatment. A retrospective chart review of 72 patients treated for 98 gunshot wound fractures at an urban level I trauma center was conducted to evaluate the results of limited debridement and early definitive fracture fixation of urban gunshot wound fractures of the hand. The incidence of hand fractures, means of fracture fixation, number of operations, occurrence of infection, and level of patient compliance were determined. Twenty-nine fractures were managed definitively with reduction and splinting in the emergency department or intensive care unit. Sixty-eight fractures were treated surgically, at a mean of 2 days after injury. Eleven patients required more than one operation. The overall infection rate was 8 percent and was not influenced by the fracture fixation method. All infections were superficial and resolved with antibiotics alone. Thirty-nine percent of patients were lost to follow-up after hospital discharge and 85 percent of patients were lost to follow-up before documented fracture healing. Twenty-six percent of patients were lost to follow-up with a removable fixation device in place. Limited debridement and early definitive fracture fixation are associated with low rates of complications for typical civilian handgun wound fractures. Cases with extensive injury or contamination do require a staged approach to treatment. Poor patient compliance in the urban trauma setting should be expected and may affect the management plan.  相似文献   

12.
The bone marrow is believed to play important roles during fracture healing such as providing progenitor cells for inflammation, matrix remodeling, and cartilage and bone formation. Given the complex nature of bone repair, it remains difficult to distinguish the contributions of various cell types. Here we describe a mouse model based on bone marrow transplantation and genetic labeling to track cells originating from bone marrow during fracture healing. Following lethal irradiation and engraftment of bone marrow expressing the LacZ transgene constitutively, wild type mice underwent tibial fracture. Donor bone marrow-derived cells, which originated from the hematopoietic compartment, did not participate in the chondrogenic and osteogenic lineages during fracture healing. Instead, the donor bone marrow contributed to inflammatory and bone resorbing cells. This model can be exploited in the future to investigate the role of inflammation and matrix remodeling during bone repair, independent from osteogenesis and chondrogenesis.  相似文献   

13.
Mesenchymal stem cells (MSCs) are the most popular among the adult stem cells in tissue engineering and regenerative medicine. Since their discovery and functional characterization in the late 1960s and early 1970s, MSCs or MSC‐like cells have been obtained from various mesodermal and non‐mesodermal tissues, although majority of the therapeutic applications involved bone marrow‐derived MSCs. Based on its mesenchymal origin, it was predicted earlier that MSCs only can differentiate into mesengenic lineages like bone, cartilage, fat or muscle. However, varied isolation and cell culturing methods identified subsets of MSCs in the bone marrow which not only differentiated into mesenchymal lineages, but also into ectodermal and endodermal derivatives. Although, true pluripotent status is yet to be established, MSCs have been successfully used in bone and cartilage regeneration in osteoporotic fracture and arthritis, respectively, and in the repair of cardiac tissue following myocardial infarction. Immunosuppressive properties of MSCs extend utility of MSCs to reduce complications of graft versus host disease and rheumatoid arthritis. Homing of MSCs to sites of tissue injury, including tumor, is well established. In addition to their ability in tissue regeneration, MSCs can be genetically engineered ex vivo for delivery of therapeutic molecule(s) to the sites of injury or tumorigenesis as cell therapy vehicles. MSCs tend to lose surface receptors for trafficking and have been reported to develop sarcoma in long‐term culture. In this article, we reviewed the current status of MSCs with special emphasis to therapeutic application in bone‐related diseases. J. Cell. Biochem. 111: 249–257, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
15.
Yu YY  Lieu S  Hu D  Miclau T  Colnot C 《PloS one》2012,7(2):e31771
Numerous factors can affect skeletal regeneration, including the extent of bone injury, mechanical loading, inflammation and exogenous molecules. Bisphosphonates are anticatabolic agents that have been widely used to treat a variety of metabolic bone diseases. Zoledronate (ZA), a nitrogen-containing bisphosphonate (N-BP), is the most potent bisphosphonate among the clinically approved bisphosphonates. Cases of bisphosphonate-induced osteonecrosis of the jaw have been reported in patients receiving long term N-BP treatment. Yet, osteonecrosis does not occur in long bones. The aim of this study was to compare the effects of zoledronate on long bone and cranial bone regeneration using a previously established model of non-stabilized tibial fractures and a new model of mandibular fracture repair. Contrary to tibial fractures, which heal mainly through endochondral ossification, mandibular fractures healed via endochondral and intramembranous ossification with a lesser degree of endochondral ossification compared to tibial fractures. In the tibia, ZA reduced callus and cartilage formation during the early stages of repair. In parallel, we found a delay in cartilage hypertrophy and a decrease in angiogenesis during the soft callus phase of repair. During later stages of repair, ZA delayed callus, cartilage and bone remodeling. In the mandible, ZA delayed callus, cartilage and bone remodeling in correlation with a decrease in osteoclast number during the soft and hard callus phases of repair. These results reveal a more profound impact of ZA on cartilage and bone remodeling in the mandible compared to the tibia. This may predispose mandible bone to adverse effects of ZA in disease conditions. These results also imply that therapeutic effects of ZA may need to be optimized using time and dose-specific treatments in cranial versus long bones.  相似文献   

16.
Aotus lemurinus griseimembra are highly susceptible to infection by human malaria parasites and reproduce some of its clinical manifestations, including anemia. We developed a new surgical technique to obtain bone marrow samples from Aotus by surgical aspiration of the femur. First, we determined that the femur offered advantages over other bones, primarily due to lower fracture vulnerability. We tested a surgical technique using 20 G IV catheters in formaldehyde-preserved animals, then conducted the procedure on 27 live animals. This technique provided easy, quick surgical access to adequate volumes of bone marrow and was safe for almost all animals: only one died; another developed nervous impairment of the lower limb. Adequate cell samples were obtained in all animals and allowed cytological studies. This procedure offers a useful tool for bone marrow research in Aotus and helps overcome current limitations of such research in human where these studies are limited by ethical and technical issues.  相似文献   

17.
Fracture healing is a complex event that involves the coordination of a variety of different processes. Repair is typically characterized by four overlapping stages: the initial inflammatory response, soft callus formation, hard callus formation, initial bony union and bone remodeling. However, repair can also be seen to represent a juxtaposition of two distinct forces: anabolism or tissue formation, and catabolism or remodeling. These anabolic/catabolic concepts are useful for understanding bone repair without giving the false impression of temporally distinct stages that operate independently. They are also relevant when considering intervention. In normal bone development, bone remodeling conventionally refers to the removal of calcified bone tissue by osteoclasts. However, in the context of bone repair there are two phases of tissue catabolism: the removal of the initial cartilaginous soft callus, followed by the eventual remodeling of the bony hard callus. In this review, we have attempted to examine catabolism/remodeling in fractures in a systematic fashion. The first section briefly summarizes the traditional four-stage view of fracture repair in a physiological manner. The second section highlights some of the limitations of using a temporal rather than process-driven model and summarizes the anabolic/catabolic paradigm of fracture repair. The third section examines the cellular participants in soft callus remodeling and in particular the role of the osteoclast in endochondral ossification. Finally, the fourth section examines the effects of delaying osteoclast-dependent hard callus remodeling and also poses questions regarding the crosstalk between anabolism and catabolism in the latter stages of fracture repair.  相似文献   

18.
近年来,由于创伤和感染等多类原因导致的骨折和骨不连等症状均是威胁到人类生命安全及生活质量的一个医学难题,为了更好地提升对于此类患者的治疗效果,有必要明确骨形成和重建等病理生理学情况以及相应的生物学机制。同时,骨组织是一类随细胞外基质的矿化,并根据其自身需求进行修复的动态组织,也是有着血管和神经支配的活性组织,所以,骨折的修复过程当中不仅含机体各类组织和细胞因子间的复杂作用,还和血液供应及神经支配紧密相连。目前,临床关于神经肽的研究逐渐增多,且越来越多的报道表明神经肽类物质能够在骨折愈合及重建过程中发挥出重要作用,原因可能和机体神经发挥相应的调控作用,并刺激骨细胞发生变化等因素有关。本文即据此展开关于神经肽CGRP(降钙素基因相关肽,Calcitonin gene-related peptide)、SP(P物质,Substance P)、NPY(神经肽Y,Neuropeptide Y)对软骨细胞影响情况的综述分析,从而更好地服务临床。  相似文献   

19.
BACKGROUND: An in vivo gene therapy strategy was developed to accelerate bone fracture repair. METHODS: Direct injection of a murine leukemia virus-based vector targeted transgene expression to the proliferating periosteal cells arising shortly after fracture. Cyclooxygenase-2 (Cox-2) was selected because the transgene for its prostaglandin products that promote angiogenesis, bone formation and bone resorption, are all required for fracture healing. The human (h) Cox-2 transgene was modified to remove AU-rich elements in the 3'-untranslated region and to improve protein translation. RESULTS: In vitro studies revealed robust and sustained Cox-2 protein expression, prostaglandin E(2) and alkaline phosphatase production in rat bone marrow stromal cells and osteoblasts transgenic for the hCox-2 gene. In vivo studies in the rat femur fracture revealed that Cox-2 transgene expression produced bony union of the fracture by 21 days post-fracture, a time when cartilage persisted within the fracture tissues of control animals and approximately 1 week earlier than the healing normally observed in this model. None of the ectopic bone formation associated with bone morphogenetic protein gene therapy was observed. CONCLUSIONS: This study represents the first demonstration that a single local application of a retroviral vector expressing a single osteoinductive transgene consistently accelerated fracture repair.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号