首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We developed a novel fluorescent probe that contains the neodymium(III) complex moiety and fluorescein moiety. This probe can emit long-lived near-infrared luminescence derived from a Nd ion through excitation of the fluorescein moiety with visible light (lambda(ex) = 488 nm, lambda(em) = 880 nm, lifetime = 2.3 micros). These results indicate the possibility of the probe as a candidate for in vivo fluorescence molecular imaging.  相似文献   

2.
This study aims to develop a novel cross‐sectional imaging of fluorescence in over‐1000 nm near‐infrared (OTN‐NIR), which allows in vivo deep imaging, using computed tomography (CT) system. Cylindrical specimens of composite of OTN‐NIR fluorophore, NaGdF4 co‐doped with Yb3+ and Ho3+ (ex: 980 nm, em: 1150 nm), were embedded in cubic agar (10.5–12 mm) or in the peritoneal cavity of mice and placed on a rotatable stage. When the fluorescence from inside of the samples was serially captured from multiple angles, the images were disrupted by the reflection and refraction of emitted light on the sample‐air interface. Immersing the sample into water filled in a rectangular bath suppressed the disruption at the interface and successfully reconstructed the position and concentration of OTN‐NIR fluorophores on the cross‐sectional images using a CT technique. This is promising as a novel three‐dimensional imaging technique for OTN‐NIR fluorescent image projections of small animals captured from multiple angles.  相似文献   

3.
荧光成像已被广泛应用于生物医学和临床诊断领域.近红外(Near-infrared,NIR,700-1700 nm)荧光成像在NIR波段对生物组织显影,与可见光波段(400-760 nm)的传统荧光成像相比,更有助于提高成像的信噪比和灵敏度.高质量的荧光成像需要借助良好的荧光探针,纳米技术的快速发展使具备良好荧光特性的有...  相似文献   

4.
To date, several fluorescent probes modified by a single targeting agent have been explored. However, studies on the preparation of dual‐function quantum dot (QD) fluorescent probes with dual‐targeting action and a therapeutic effect are rare. Here, a dual‐targeting CdTe/CdS QD fluorescent probe with a bovine serum albumin–glycyrrhetinic acid conjugate and arginine‐glycine‐aspartic acid was successfully prepared that could induce the apoptosis of liver cancer cells and showed enhanced targeting in in vitro cell imaging. Therefore, the as‐prepared fluorescent probe in this work is an efficient diagnostic tool for the simultaneous detection of liver cancer and breast cancer cells. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
In vivo tracking and monitoring of adoptive cell transfer has a distinct importance in cell‐based therapy. There are many imaging modalities for in vivo monitoring of biodistribution, viability and effectiveness of transferred cells. Some of these procedures are not applicable in the human body because of low sensitivity and high possibility of tissue damages. Shortwave infrared region (SWIR) imaging is a relatively new technique by which deep biological tissues can be potentially visualized with high resolution at cellular level. Indeed, scanning of the electromagnetic spectrum (beyond 1000 nm) of SWIR has a great potential to increase sensitivity and resolution of in vivo imaging for various human tissues. In this review, molecular imaging modalities used for monitoring of biodistribution and fate of administered cells with focusing on the application of non‐invasive optical imaging at shortwave infrared region are discussed in detail.  相似文献   

6.
Using the characteristics of hydrogen peroxide that are able to cleave phenyl‐boric acid selectively and efficiently, we here report a dicyanoisophorone‐boric acid ( DCP‐BA )‐based near‐infrared (NIR) fluorescent probe for detection of hydrogen peroxide. This probe shows a rapid, highly selective, and sensitive detection process for hydrogen peroxide with a significant NIR fluorescent turn‐on response that has been successfully applied to detect exogenous hydrogen peroxide in HeLa cells.  相似文献   

7.
Rapid detection of multifocal cancer without the use of complex imaging schemes will improve treatment outcomes. In this study, dynamic fluorescence imaging was used to harness differences in the perfusion kinetics of near‐infrared (NIR) fluorescent dyes to visualize structural characteristics of different tissues. Using the hydrophobic nontumor‐selective NIR dye cypate, and the hydrophilic dye LS288, a high tumor‐to‐background contrast was achieved, allowing the delineation of diverse tissue types while maintaining short imaging times. By clustering tissue types with similar perfusion properties, the dynamic fluorescence imaging method identified secondary tumor locations when only the primary tumor position was known, with a respective sensitivity and specificity of 0.97 and 0.75 for cypate, and 0.85 and 0.81 for LS288. Histological analysis suggests that the vasculature in the connective tissue that directly surrounds the tumor was a major factor for tumor identification through perfusion imaging. Although the hydrophobic dye showed higher specificity than the hydrophilic probe, use of other dyes with different physical and biological properties could further improve the accuracy of the dynamic imaging platform to identify multifocal tumors for potential use in real‐time intraoperative procedures.   相似文献   

8.
The transplantation of mesenchymal stem cells (MSCs) holds great promise for the treatment of a plethora of human diseases, but new noninvasive procedures are needed to monitor the cell fate in vivo. Already largely used in medical diagnostics, the fluorescent dye indocyanine green (ICG) is an established dye to track limited numbers of cells by optical imaging (OI), but it can also be visualized by photoacoustic imaging (PAI), which provides a higher spatial resolution than pure near infrared fluorescence imaging (NIRF). Because of its successful use in clinical and preclinical examinations, we chose ICG as PAI cell labeling agent. Optimal incubation conditions were defined for an efficient and clinically translatable MSC labeling protocol, such that no cytotoxicity or alterations of the phenotypic profile were observed, and a consistent intracellular uptake of the molecule was achieved. Suspensions of ICG‐labeled cells were both optically and optoacoustically detected in vitro, revealing a certain variability in the photoacoustic spectra acquired by varying the excitation wavelength from 680 to 970 nm. Intramuscular engraftments of ICG‐labeled MSCs were clearly visualized by both PAI and NIRF over few days after transplantation in the hindlimb of healthy mice, suggesting that the proposed technique retains a considerable potential in the field of transplantation‐focused research and therapy. Stem cells were labeled with the Food and Drug Administration (FDA)‐approved fluorescent dye ICG, and detected by both PAI and OI, enabling to monitor the cell fate safely, in dual modality, and with good sensitivity and improved spatial resolution.   相似文献   

9.
We present one‐ and two‐photon‐absorption fluorescence spectroscopic analysis of biliverdin (BV) chromophore–based single‐domain near‐infrared fluorescent proteins (iRFPs). The results of these studies are used to estimate the internal electric fields acting on BV inside iRFPs and quantify the electric dipole properties of this chromophore, defining the red shift of excitation and emission spectra of BV‐based iRFPs. The iRFP studied in this work is shown to fit well the global diagram of the red‐shift tunability of currently available BV‐based iRFPs as dictated by the quadratic Stark effect, suggesting the existence of the lower bound for the strongest red shifts attainable within this family of fluorescent proteins. The absolute value of the two‐photon absorption (TPA) cross section of a fluorescent calcium sensor based on the studied iRFP is found to be significantly larger than the TPA cross sections of other widely used genetically encodable fluorescent calcium sensors.   相似文献   

10.
Fluorescent proteins (FPs) are powerful tools for cell and molecular biology. Here based on structural analysis, a blue‐shifted mutant of a recently engineered monomeric infrared fluorescent protein (mIFP) has been rationally designed. This variant, named iBlueberry, bears a single mutation that shifts both excitation and emission spectra by approximately 40 nm. Furthermore, iBlueberry is four times more photostable than mIFP, rendering it more advantageous for imaging protein dynamics. By tagging iBlueberry to centrin, it has been demonstrated that the fusion protein labels the centrosome in the developing zebrafish embryo. Together with GFP‐labeled nucleus and tdTomato‐labeled plasma membrane, time‐lapse imaging to visualize the dynamics of centrosomes in radial glia neural progenitors in the intact zebrafish brain has been demonstrated. It is further shown that iBlueberry can be used together with mIFP in two‐color protein labeling in living cells and in two‐color tumor labeling in mice.  相似文献   

11.
We report a fluorescence resonance energy transfer (FRET) system in which the fluorescent donor is fluorescein isothiocyanate (FITC) dye and the fluorescent acceptor is CdTe quantum dot (QDs). Based on FRET quenching theory, we designed a method to detect the concentration of silver ions (Ag+). The results revealed a good linear trend over Ag+ concentrations in the range 0.01–8.96 nmol/L, a range that was larger than with other methods; the quenching coefficient is 0.442. The FRET mechanism and physical mechanisms responsible for dynamic quenching are also discussed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
The major stress‐inducible heat shock protein 70 (Hsp70) is frequently present on the cell surface of human tumours, but not on normal cells. Herein, the binding characteristics of the cmHsp70.1 mouse monoclonal antibody (mAb) were evaluated in vitro and in a syngeneic tumour mouse model. More than 50% of the CT26 mouse colon carcinoma cells express Hsp70 on their cell surface at 4°C. After a temperature shift to 37°C, the cmHsp70.1‐fluorescein isothiocyanate mAb translocates into early endosomes and lysosomes. Intraoperative and near‐infrared fluorescence imaging revealed an enrichment of Cy5.5‐conjugated mAb cmHsp70.1, but not an identically labelled IgG1 isotype‐matched control, in i.p. and s.c. located CT26 tumours, as soon as 30 min. after i.v. injection into the tail vein. Due to the rapid turnover rate of membrane‐bound Hsp70, the fluorescence‐labelled cmHsp70.1 mAb became endocytosed and accumulated in the tumour, reaching a maximum after 24 hrs and remained detectable at least up to 96 hrs after a single i.v. injection. The tumour‐selective internalization of mAb cmHsp70.1 at the physiological temperature of 37°C might enable a targeted uptake of toxins or radionuclides into Hsp70 membrane‐positive tumours. The anti‐tumoral activity of the cmHsp70.1 mAb is further supported by its capacity to mediate antibody‐dependent cytotoxicity.  相似文献   

13.
14.
In this paper, we report the use of lead sulfide quantum dot (PbS QD) bioconjugates as near infrared (NIR) contrast agents for targeted molecular imaging with expanded emission wavelengths beyond 1000 nm. The red-shifted emission band, coupled with the small particle size, which will facilitate clearance, both afford PbS QDs unique properties for noninvasive, high resolution in vivo NIR imaging applications. We have performed imaging experiments at the molecular level using surface-modified PbS NIR QDs, together with our lab-built NIR imaging system. This novel instrumentation and fluorescent contrast agent have enabled us to study the relatively unexplored NIR biomedical imaging spectral region of 900-1200 nm. Preliminary experimental results indicate that PbS-QD/antibody bioconjugates are promising candidates for targeted NIR molecular imaging and future in vivo NIR tissue imaging applications.  相似文献   

15.
A new near‐infrared fluorescence sensor PDI‐PD for Ag+ ions was successfully prepared and its structure characterized by 1H nuclear magnetic resonance (NMR), 13C NMR and high‐resolution mass spectrometry; matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (HRMS MALDI‐TOF). The probe exhibited rapid, sensitive, and selective two‐channel fluorescence responses towards Ag+ ions and protons. The probe has a marked high binding affinity and high sensitivity for Ag+, with a detection limit of 1.4 × 10?6 M. An approximately five‐fold enhanced core emission at 784 nm was attributed to fluorescence resonance energy transfer (FRET). The enhanced core emission of the probe with Ag+ ions based on photo‐induced electron transfer and FRET is discussed. In addition, the probe presented a visible colour change. All experimental results demonstrated that PDI‐PD is an efficient tool for the selective, sensitive and rapid detection of Ag+ ions and protons using two‐channel fluorescence responses.  相似文献   

16.
神经递质是神经系统中至关重要的组成部分,神经递质释放的时间和空间变化是神经网络中信息处理的核心,可视化监测神经递质的生物传感器是探究各类生理和病理活动的重要工具。文中综述了近年来具有较高时间和空间分辨率的监测神经递质时空分布变化技术的研究进展,介绍了对谷氨酸、多巴胺、γ-氨基丁酸和乙酰胆碱这4类重要的神经递质的检测方法,并归纳总结了各类检测方法的基本原理和优缺点,为设计具有高时空分辨率的神经递质传感器提供一个较为系统的参考。  相似文献   

17.
Optical imaging is a cornerstone of modern oncologic research. The aim of this study is to determine the value of a new tool to enhance bioluminescent and fluorescent sensitivity for facilitating very‐low‐level signal detection in vivo. Experimental: For bioluminescent imaging experiments, a luciferase expressing breast cancer cell line with metastatic phenotype was implanted orthotopically into the mammary fat pad of mice. For fluorescent imaging experiments, near‐infrared (NIR) nanoparticles were injected intratumorally and subcutaneously into mice. Images were compared in mice with and without application of the ‘Gator’ Mouse Suit (GMS). Results: The GMS was associated with early detection and quantification of metastatic bioluminescent very‐low‐level signal not possible with conventional imaging strategies. Similarly, NIR nanoparticles that were undetectable in locations beyond the primary injection site could be visualized and their very‐low‐level signal quantifiable with the aid of the GMS. Conclusion: The GMS is a device which has tremendous potential for facilitating the development of bioluminescent models and fluorescent nanomaterials for translational oncologic applications. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Given that optical tomography is capable of quantitatively imaging the distribution of several important chromophores and fluorophores in vivo, there has been a great deal of interest in developing optical imaging systems with increased numbers of measurements under optimal experimental conditions. In this article, we present a novel system that enables three-dimensional imaging of fluorescent probes in whole animals using a noncontact setup, in parallel with a three-dimensional surface reconstruction algorithm. This approach is directed toward the in vivo imaging of fluorophore or fluorescent protein concentration in small animals. The system consists of a rotating sample holder and a lens-coupled charge-coupled device camera in combination with a fiber-coupled laser scanning device. By measuring multiple projections, large data sets can be obtained, thus improving the accuracy of the inversion models used for quantitative three-dimensional reconstruction of fluorochrome distribution, as well as facilitating a higher spatial resolution. In this study, the system was applied to determining the distribution of green fluorescent protein (GFP)-expressing T lymphocytes in a transgenic mouse model, thus demonstrating the potential of the system for studying immune system function. The technique was used to image and reconstruct fluorescence originating from 32 x 10(6) T cells in the thymus and 3 x 10(5) T cells in the spleen.  相似文献   

19.
The pregnane X receptor (PXR) regulates the metabolism and excretion of xenobiotics and endobiotics by regulating the expression of drug-metabolizing enzymes and transporters. The unique structure of PXR allows the binding of many drugs and drug leads to it, possibly causing undesired drug–drug interactions. Therefore, it is crucial to evaluate whether lead compounds bind to PXR. Fluorescence-based assays are preferred because of their sensitivity and nonradioactive nature. One fluorescent PXR probe is currently commercially available; however, because its chemical structure is not publicly disclosed, it is not optimal for studying ligand–PXR interactions. Here we report the characterization of BODIPY FL–vinblastine, generated by labeling vinblastine with the fluorophore 4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene (BODIPY FL), as a high-affinity ligand for human PXR with a Kd value of 673 nM. We provide evidence that BODIPY FL–vinblastine is a unique chemical entity different from either vinblastine or the fluorophore BODIPY FL in its function as a high-affinity human PXR ligand. We describe a BODIPY FL–vinblastine-based human PXR time-resolved fluorescence resonance energy transfer assay, which was used to successfully test a panel of human PXR ligands. The BODIPY FL–vinblastine-based biochemical assay is suitable for high-throughput screening to evaluate whether lead compounds bind to PXR.  相似文献   

20.
In this study, we used rat animal model to compare the efficiency of indocyanine green (ICG)‐assisted dental near‐infrared fluorescence imaging with X‐ray imaging, and we optimized the imaging window for both unerupted and erupted molars. The results show that the morphology of the dental structures was observed clearly from ICG‐assisted dental images (especially through the endoscope). A better image contrast was easily acquired at the short imaging windows (<10 minutes) for unerupted and erupted molars. For unerupted molars, there is another optimized imaging window (48‐96 hours) with a prominent glow‐in‐the‐dark effect: only the molars remain bright. This study also revealed that the laser ablation of dental follicles can disrupt the molar development, and our method is able to efficiently detect laser‐treated molars and acquire the precise morphology. Thus, ICG‐assisted dental imaging has the potential to be a safer and more efficient imaging modality for the real‐time diagnosis of dental diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号