首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An Escherichia coli recombinant system produced soluble and full-length beta-1,3-glucanase type II (BglII) cloned from the yeast-lytic actinomycete Oerskovia xanthineolytica. The expression system was designed to produce recombinant BglII with a six-histidine peptide fused to the carboxy end of the protein. The expression level was optimized to produce 30% of total protein of E. coli as the recombinant protein, releasing 75% to the extracellular space. The 43-kDa recombinant protein was purified by IMAC to homogeneity and its molecular and biochemical characteristics were studied, showing that there are no important functional differences with those properties described for the BglII purified from O. xanthineolytica.  相似文献   

2.
The entire encoding region for Aspergillus flavus uricase was cloned into pET-32a and expressed in Escherichia coli BL21 (DE3). The uricase was expressed in the E. coli cytoplasm in a completely soluble, biologically active form. A scalable process aimed to produce and purify multi-gram quantities of highly pure, recombinant urate oxidase (rUox) from E. coli was developed. The rUox protein was produced in a 30 L fermentor containing 25 L of 2x YT medium and purified to >99% purity using hydrophobic interaction, anion-exchange, and gel filtered chromatography. The final yield of purified rUox from fermentation resulted in approximately 27 g of highly pure, biologically active rUox per kg of cell paste (approximately 238 mg/8.8 g cell paste/L). The results presented here exhibit the ability to generate multi-gram quantities of rUox from E. coli that may be used for the development of pharmaceutics of reducing the hyperuricemia.  相似文献   

3.
Single chain (scFv) antibodies are used as affinity reagents for diagnostics, therapeutics, and proteomic analyses. The antibody discovery platform we use to identify novel antigen binders involves discovery, characterization, and production. The discovery and characterization components have previously been characterized but in order to fully utilize the capabilities of affinity reagents from our yeast surface display library, efforts were focused on developing a production component to obtain purified, soluble, and active scFvs. Instead of optimizing conditions to achieve maximum yield, efforts were focused on using a system that could quickly and easily produce and process hundreds of scFv antibodies. Heterologous protein expression in Saccharomyces cerevisiae, Pichia pastoris, and Escherichia coli were evaluated for their ability to rapidly, efficaciously, and consistently produce scFv antibodies for use in downstream proteomic applications. Following purification, the binding activity of several scFv antibodies were quantified using a novel Biacore assay. All three systems produced soluble scFv antibodies which ranged in activity from 0 to 99%. scFv antibody yields from Saccharomyces, Pichia, and E. coli were 1.5-4.2, 0.4-7.3, and 0.63-16.4 mgL(-1) culture, respectively. For our purposes, expression in E. coli proved to be the quickest and most consistent way to obtain and characterize purified scFv for downstream applications. The E. coli expression system was subsequently used to study three scFv variants engineered to determine structure-function relationships.  相似文献   

4.
目的:通过原核细胞表达人免疫缺陷病毒(HIV)Nef抗原,制备特异抗血清,为Nef抗原检测提供技术方法。方法:以HIVBotswana毒株基因组为模板,用PCR法获得Nef蛋白编码基因,将其克隆到pET30a载体中,在大肠杆菌中表达Nef融合蛋白;用纯化的融合蛋白免疫BALB/c小鼠获得抗血清,用真核表达的Nef抗原对其特异性进行分析。结果:构建的Nef融合基因在大肠杆菌中获得表达,相对分子质量约为36x103,免疫BALB/c小鼠获得针对融合蛋白的高效价抗血清,ELISA抗体滴度为1:6400;免疫荧光和Westemblot检测表明,该抗血清能特异地与重组痘苗病毒表达的Nef抗原反应。结论:在大肠杆菌中表达了HIVNef融合蛋白,制备了Nef融合蛋白的高效价小鼠免疫血清,该血清能特异性识别HIVNef抗原,为HlVNef抗原检测提供了技术方法。  相似文献   

5.
The murine adipocyte lipid binding protein (ALBP) has been cloned into Escherichia coli, purified from expressing cultures, and its ligand binding and phosphorylation properties studied. In the cloning strategy, the recombinant, pT7-5 rALBP, was transformed into E. coli strain K38 harboring plasmid pGP1-2 which directs the synthesis of T7 RNA polymerase. Upon shifting the temperature from 30 to 42 degrees C to induce T7 RNA polymerase expression, the 14.6-kDa recombinant ALBP (rALBP) was expressed for approximately 2 h and accumulated to about 1% of total E. coli protein. The recombinant ALBP was soluble in E. coli extracts and resistant to bacterial proteolysis. A procedure for purifying rALBP was developed utilizing immuno-chemical detection based upon reactivity with anti-murine ALBP antiserum. A combination of acidic ammonium sulfate fractionation, gel permeation chromatography, and carboxymethyl ion-exchange high performance liquid chromatography separation was used to prepare homogeneous rALBP. Sequence analysis of rALBP indicated that the initiating methionine residue had been removed and the amino-terminal cysteine residue was not blocked. Purified rALBP exhibited stoichiometric, saturable binding of oleic acid (n = 1.0, K0.5 approximately 100 microM) and retinoic acid (n = 1.0, K0.5 approximately 170 microM). Incubation of rALBP with wheat germ agglutinin-purified insulin receptor, ATP, and 100 nM insulin resulted in a 5-fold stimulation of rALBP phosphorylation above the basal state. Kinetic analysis of rALBP phosphorylation by the 3T3-L1 insulin receptor kinase yielded a Michaelis constant (Km) of 50 microM and a maximal velocity of 1 mol of rALBP phosphorylated/min/mol insulin binding sites. Phosphoamino acid analysis indicated that phosphorylation occurred upon tyrosine. These results indicate that murine ALBP has been cloned and expressed in E. coli, purified to homogeneity, and is a substrate for the insulin receptor tyrosyl kinase in vitro.  相似文献   

6.
A cDNA that encodes pig citrate synthase (PCS) was inserted into a plasmid T7 vector and was expressed in an E. coli gltA mutant. Up to 10 mg of purified PCS was obtained from 2 liters of E. coli. The mammalian protein produced in E. coli comigrated with the enzyme purified from pig heart on a SDS-polyacrylamide gel (SDS-PAGE) with an Mr of 50,000, and reacted with a polyclonal antibody directed against pig heart citrate synthase. The Vmax and Km of the expressed PCS were indistinguishable from those of the pig heart enzyme. The PCS produced in E. coli did not contain the trimethylation modification of Lys 368, characteristic of the pig heart enzyme. These data suggest that the PCS protein produced in E. coli is catalytically similar to the enzyme purified from pig heart and methylation of Lys 368 is not essential for catalysis.  相似文献   

7.
Interleukin 1 (IL 1) is a polypeptide hormone produced by activated macrophages that affects many different cell types involved in immune and inflammatory responses. The cloning and expression of a murine IL 1 cDNA in Escherichia coli encoding a polypeptide precursor of 270 amino acids has been reported, and expression of the carboxy-terminal 156 amino acids of this precursor in E. coli yields biologically active IL 1. By using the murine IL 1 cDNA as a probe, we have isolated its human homolog from cDNA generated to lipopolysaccharide-stimulated human leukocyte mRNA. Nucleotide sequence analysis of this cDNA predicts a protein of analysis of this cDNA predicts a protein of 271 amino acids (termed IL 1 alpha) which shows congruent to 61% homology to its murine counterpart but only 27% homology to a recently characterized human IL 1 precursor (IL 1 beta). We have expressed the carboxy-terminal 154 amino acids of IL 1 alpha in E. coli, purified this protein to homogeneity, and have compared it with pure recombinant murine IL 1 in several different IL 1 assays based on murine and human cells. Recombinant IL 1 is capable of stimulating T cell and fibroblast proliferation and inducing fibroblast collagenase and prostaglandin production, thus proving that a single molecule has many of the activities previously ascribed to only partially purified IL 1 preparations. Our results indicate that there exists a family of at least two human IL 1 genes (alpha and beta) whose dissimilar protein products have similar biological activities.  相似文献   

8.
登革病毒(Dengue virus,DENV)属于黄病毒科(Flaviviridae),黄病毒属(Flavivirus),为单股正链RNA病毒,有4个不同的血清型(DENV-1,2,3,4),主要通过埃及伊蚊(Aedes aegypti)和白纹伊蚊(Aedes albopictus)传播,可引起登革热、登革出血热、登革休克综合征等多种疾病[1,2]。E蛋白是位于DENV表面的结构蛋白,由495个氨基酸组成,它既含有黄病毒亚群特异的和登革病毒血清型特异的抗原表位,又有与中和,血凝抑制作用有关的抗原表位,是病毒颗粒的主要包膜蛋白[3]。Modis等研究表明,DENV-2型E蛋白以延伸的二聚体形式平铺在病毒表面,折叠成3个不…  相似文献   

9.
Abstract The nucleotide sequence of the Rhodobacter capsulatus bacterioferritin gene ( bfr ) was determined and found to encode a protein of 161 amino acids with a predicted molecular mass of 18 174 Da. The molecular mass of the purified protein was estimated to be 18 176.06 ± 0.80 Da by electrospray mass spectrometry. The bfr gene was introduced into an expression vector, and bacterioferritin was produced to a high level in Escherichia coli . The amino acids which are involved in haem ligation, and those which provide ligands in the binuclear metal centre in bacterioferritin from E. coli are conserved in the R. capsulatus protein. The sequences of bacterioferritins, ferritin-like proteins, and proteins similar to Dps of E. coli are compared, and membership of the bacterioferritin family re-evaluated.  相似文献   

10.
目的表达并纯化产肠毒素大肠埃希菌(Enterotoxigenic Escherichia coli,ETEC)CFA/I定居因子的CfaB亚单位,分析其免疫原性。方法将不含信号肽序列的cfaB基因克隆到pQE一30上,构建重组质粒pQE-30-cfaB并转化EcoliM15,表达融合蛋白6xHis—CfaB,将表达的蛋白纯化和复性后免疫BALB/c小鼠,制备抗CfaB的抗血清,用ELISA法检测抗血清效价。结果6×His—CfaB融合蛋白高效表达,相对分子质量为15.5kD,纯化复性后免疫小鼠所得抗血清效价为1:125000。结论成功构建了高效表达6×His-CfaB融合蛋白的重组质粒,表达的融合蛋白免疫小鼠后获得了高效价的抗血清,为进一步研制以双歧杆菌为表达系统的新型ETEC亚单位口服疫苗奠定了基础。  相似文献   

11.
旨在提高基因重组人胰岛素在大肠杆菌中表达的稳定性及表达包涵体蛋白的复性水平.在人胰岛素原N端前融合人生长素N端的一段序列来充当前导肽,同时将C肽设计为两个精氨酸,分10段合成长链寡核苷酸链,利用重叠延伸PCR技术(SOE PCR)扩增得到该基因片段.与表达载体PET-30a连接,转化E.coli BL21(DE3),IPTG诱导表达.表达的融合蛋白采用Ni-NTA亲和层析纯化,纯化后的蛋白经复性、冻干等步骤后用胰蛋白酶,羧肽酶B双酶切再过DEAE Sepharose Fast Flow阴离子交换柱,收集洗脱峰.对制备所得的胰岛素用SDS-PAGE,Western blot进行性质鉴定,及皮下注射小鼠测定生物活性.结果显示,目的蛋白在大肠杆菌BL21(DE3)中得到了表达,表达产物以不溶性包涵体形式纯在,约占大肠杆菌总蛋白的30%.经Ni-NTA亲和层析得到的重组蛋白纯度为85%,DEAE Sepharose Fast Flow阴离子交换纯化得到单组分胰岛素.Western Blot显示制备所得的胰岛素具有胰岛素免疫原性,皮下给药注射小鼠活性测定表明具有明显的降血糖活性.获得了一种高效生产基因重组人胰岛素的方法,为研究胰岛素类似物奠定了前期基础同时也为今后探索胰岛素的非注射给药途径提供了原料.  相似文献   

12.
The enzymatic properties of two endoglucanases from Fibrobacter succinogenes, EGB and EGC, were analysed. EGB and EGC were purified from recombinant Escherichia coli cultures expressing their gene. The failure of purification of EGB by classical techniques led us to produce antipeptide antibodies that allowed immunopurification of the protein from E. coli as well as its detection in F. succinogenes cultures. Synthetic peptides were selected from the predicted primary structure of EGB, linked to bovine serum albumin and used as immunogens to obtain specific antibodies. One of the polyclonal antipeptide antisera was used to purify EGB. EGC was purified by affinity chromatography with Ni-NTA resin. The endo mode of action of the two enzymes on carboxymethyl-cellulose was different. The values of K(m) and V(max) were respectively 13.6 mg/ml and 46 micromol/min mg protein for EGB, and 7 mg/ml and 110 micromol/min mg protein for EGC. The reactivity of the antipeptide and the anti-EGC sera with F. succinogenes proteins of molecular mass different from that of EGB and EGC produced in E. coli suggested post-translational modification of the two enzymes in F. succinogenes cultures. Expression of endB and endC genes in F. succinogenes was confirmed by RT-PCR.  相似文献   

13.
The regulatory (R) subunit of cAMP-dependent protein kinase from the yeast Saccharomyces cerevisiae was expressed in Escherichia coli by engineering the gene for yeast R, BCY1, into an E. coli expression vector that contained a promoter from phage T7. Oligonucleotide-directed mutagenesis was used to create an NdeI restriction site at the natural ATG of the yeast R. This facilitated construction of the T7 expression vector so that the sequence of the protein produced was identical to the natural R subunit. Yeast R was highly expressed in a soluble form. 20 mg of purified yeast R was obtained from 4 liters of E. coli. N-terminal amino acid sequencing revealed that the expressed protein began with the natural sequence. 60% of the molecules contained an N-terminal methionine, and 40% initiated with valine, the second amino acid of yeast R. The protein produced in E. coli migrated on a sodium dodecyl sulfate-polyacrylamide gel with an Mr of 52,000. The yeast R bound 2 mol of cAMP/mol of R monomer with a Kd of 76 nM. The protein was treated with urea to remove bound cAMP. Sedimentation values before and after the urea treatment were identical (s20,w = 5.1). Addition of purified R subunit to a preparation of yeast C subunit (TPK1) rendered catalytic activity cAMP-dependent with an activity ratio of 4.6. The yeast R was autophosphorylated by yeast C to a level of 0.8 mol of phosphate/mol of R monomer. By these criteria, the R subunit produced in E. coli was structurally and functionally identical to the natural yeast R subunit and similar to mammalian type II R subunits.  相似文献   

14.
The Arabidopsis thaliana (Arabidopsis) GIGANTEA (GI) gene is a central component of the photoperiodic flowering pathway. While it has been 40 years since the first mutant alleles of GI were described much is still unknown about the molecular mechanism of GI action. To investigate the biochemistry and domain organisation (and ultimately to give a greater understanding of the role of GI in floral induction), it is first necessary to produce significant quantities of purified protein. Soluble affinity-tagged full-length GI was expressed in Escherichia coli (E. coli) and was stabilised by the addition of the detergent n-dodecyl-β-D-maltoside (DDM) to storage and purification buffers. Stabilised GI was purified using a variety of chromatographic methods, and characterised using a selection of biochemical techniques including circular dichroism, and dynamic light scattering. This showed that purified GI contained secondary structure, but was polydisperse in solution. Electron microscopy suggests a possible tetramer arrangement of GI. Limited proteolytic digests and mass spectrometry were used to identify potential GI domains. This led to the identification of a predicted 46 kDa amino-terminal GI domain. GI was also expressed in Sf9 insect cells using the baculovirus expression system. GI produced via this route gave insoluble protein.  相似文献   

15.
The antimicrobial peptide fowlicidin‐2 identified in chicken is a member of the cathelicidins family. The mature fowlicidin‐2 possesses high antibacterial efficacy and lipopolysaccharide (LPS) neutralizing activity, and also represents an excellent candidate as an antimicrobial agent. In the present study, the recombinant fowlicidin‐2 was successfully produced by Escherichia coli (E. coli) recombinant expression system. The gene encoding fowlicidin‐2 with the codon preference of E. coli was designed through codon optimization and synthesized in vitro. The gene was then ligated into the plasmid pET‐32a(+), which features fusion protein thioredoxin at the N‐terminal. The recombinant plasmid was transformed into E. coli BL21(DE3) and cultured in Luria‐Bertani (LB) medium. After isopropyl‐β‐D‐thiogalactopyranoside (IPTG) induction, the fowlicidin‐2 fusion protein was successfully expressed as inclusion bodies. The inclusion bodies were dissolved and successfully released the peptide in 70% formic acid solution containing cyanogen bromide (CNBr) in a single step. After purification by reverse‐phase high‐performance liquid chromatography (RP‐HPLC), ~6.0 mg of fowlicidin‐2 with purity more than 97% was obtained from 1 litre of bacteria culture. The recombinant peptide exhibited high antibacterial activity against the Gram‐positive and Gram‐negative bacteria, and even drug‐resistant strains. This system could be used to rapidly and efficiently produce milligram quantities of a battery of recombinant antimicrobial peptides as well as for large‐scale production. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:369–374, 2015  相似文献   

16.
[目的]获得高纯度大肠杆菌holo-ACP和多种长链脂酰ACP,为研究细菌脂肪酸、类脂A和N-酯酰高丝氨酸内脂等物质的合成提供底物.[方法和结果]采用PCR方法扩增得到大肠杆菌酰基载体蛋白基因(acpP)和holo-ACP合成酶基因(acpS).使用载体pBAD24、pBAD34和pET28b分别克隆了acpP和acpS,得到pBAD-ACP、pET-ACP和pET-ACP-ACPS 3个ACP表达质粒和一个AcpS表达质粒pBAD-ACPS.分别用3个ACP表达质粒转化大肠杆菌DH5a和BL21(DE3),构建了DH5αpBAD-ACP、BL21(DE3)/pET-ACP和BL21(DE3)/pET-ACP-ACPS 3种ACP生产菌株.与holo-ACP纯化常用菌株DK574相比,虽然三菌株在诱导时均能过量表达ACP,但是holo-ACP所占比例偏低.为了提高ACP生产菌株holo-ACP的产量,用质粒pBAD-ACPS分别转化上述3种ACP生产菌株,获得了3种携带双质粒的ACP生产菌株.表达结果显示携带pBAD-ACP和pBAD-ACPS双质粒的DH5a菌株比DK574菌株能产生更多的holo-ACP,且纯度也得到提高(纯度达99%).同时使用UNOsphere Q阴离子交换层析从这一菌株培养物中分离纯化到了高纯度的holo-ACP,并以纯化到的holo-ACP和多种长链脂肪酸为底物在哈氏弧菌脂酰ACP合成酶的催化下,合成了多种长链脂酰ACP.[结论]通过研究获得一株holo-ACP高产菌株,并证明在大肠杆菌菌株中,同时表达acpP基因和acpS基因,有利于holo-ACP的产生.  相似文献   

17.
Membrane proteins, particularly G-protein coupled receptors (GPCRs), are notoriously difficult to express. Using commercial E. coli cell-free systems with the detergent Brij-35, we could rapidly produce milligram quantities of 13 unique GPCRs. Immunoaffinity purification yielded receptors at >90% purity. Secondary structure analysis using circular dichroism indicated that the purified receptors were properly folded. Microscale thermophoresis, a novel label-free and surface-free detection technique that uses thermal gradients, showed that these receptors bound their ligands. The secondary structure and ligand-binding results from cell-free produced proteins were comparable to those expressed and purified from HEK293 cells. Our study demonstrates that cell-free protein production using commercially available kits and optimal detergents is a robust technology that can be used to produce sufficient GPCRs for biochemical, structural, and functional analyses. This robust and simple method may further stimulate others to study the structure and function of membrane proteins.  相似文献   

18.
Che X  Hu J  Wang L  Zhu Z  Xu Q  Lv J  Fu Z  Sun Y  Sun J  Lin G  Lu R  Yao Z 《Molecular and cellular biochemistry》2011,357(1-2):47-54
Peptide deformylase (PDF) is considered an attractive target for screening novel antibiotics. The PDF from Escherichia coli and Staphylococcus aureus are representative of the gram-negative species type of PDF (type I PDF) and the gram-positive species type of PDF (type II PDF), respectively. They could be used for screening broad-spectrum antibiotics. Herein, we cloned the def gene by PCR, inserted it into plasmid pET-22b-def, and transformed the plasmid into E. coli BL21 (DE3) cells, then the cells were induced by IPTG to express PDF. E. coli Ni(2+)-PDF was extracted and purified by ion-exchange chromatography and gel filtration chromatography. S. aureus PDFs were extracted and purified using the MagExtractor kit. The nickel form of S. aureus PDF was obtained by adding NiCl(2) to all reagents used for purification. Iron-enriched S. aureus PDF was obtained by adding FeCl(3) to the growth medium for E. coli BL21 (DE3) cells and adding FeCl(3) and catalase to all reagents used for purification. The activities of PDFs were analyzed, compared, and grouped according to the experimental conditions that produced optimal activity, and we used actinonin as an inhibitor of PDF and calculated the IC(50) value. We obtained high expression of E. coli and S. aureus PDF with high activity and stability. The function of PDFs was inhibited by actinonin in a dose-dependent manner. Results may be helpful for future mechanistic investigations of PDF as well as high-throughput screening for other PDF inhibitors.  相似文献   

19.
20.
The DNA fragment encoding Kluyvera citrophila penicillin G acylase (KcPGA) was amplified and cloned into the vector pET28b to obtain a C-terminus His-tagged fusion expression plasmid. The fusion protein KcPGA was successfully overexpressed in Escherichia coli BL21(DE3). The optimal induction concentration of isopropylthio-beta-D-galactoside (IPTG) was found to be 5 microM. The fusion protein was purified in a single step by Ni-IDA affinity chromatograph to a specific activity of 35.3U/mg protein with a final yield of 89% representing a 23-fold purification. The data presented here suggest that the purified fusion protein is stable with respect to pH and temperature. The optimal pH and temperature of recombinant KcPGA are 8.5 and 55 degrees C, respectively. The Km and Vmax are 17.6 microM and 23.8 U/mg, respectively. Therefore, the high yield and high specific activity of recombinant KcPGA produced in E. coli, together with other kinetic parameters, represent an excellent basis for further development of recombinant KcPGA as an immobilized biocatalyst for industrial applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号