首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acrolein, a cell metabolic product and main component of cigarette smoke, reacts with DNA generating α‐OH‐PdG lesions, which have the ability to pair with dATP during replication thereby causing G to T transversions. We describe the solution structure of an 11‐mer DNA duplex containing the mutagenic α‐OH‐PdG·dA base pair intermediate, as determined by solution nuclear magnetic resonance (NMR) spectroscopy and retrained molecular dynamics (MD) simulations. The NMR data support a mostly regular right‐handed helix that is only perturbed at its center by the presence of the lesion. Undamaged residues of the duplex are in anti orientation, forming standard Watson‐Crick base pairs alignments. Duplication of proton signals at and near the damaged base pair reveals the presence of two enantiomeric duplexes, thus establishing the exocyclic nature of the lesion. The α‐OH‐PdG adduct assumes a syn conformation pairing to its partner dA base that is protonated at pH 6.6. The three‐dimensional structure obtained by restrained molecular dynamics simulations show hydrogen bond interactions that stabilize α‐OH‐PdG in a syn conformation and across the lesion containing base pair. We discuss the implications of the structures for the mutagenic bypass of acrolein lesions. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 391–401, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

2.
Salmon calcitonin (sCT) was selected as a model protein drug for investigating its intrinsic thermal stability and conformational structure in the solid and liquid states by using a Fourier transform infrared (FT‐IR) microspectroscopy with or without utilizing thermal analyzer. The spectral correlation coefficient (r) analysis between two second‐derivative IR spectra was applied to quantitatively estimate the structural similarity of sCT in the solid state before and after different treatments. The thermal FT‐IR microspectroscopic data clearly evidenced that sCT in the solid state was not effected by temperature and had a thermal reversible property during heating–cooling process. Moreover, the high r value of 0.973 or 0.988 also evidenced the structural similarity of solid‐state sCT samples before and after treatments. However, sCT in H2O exhibited protein instability and thermal irreversibility after incubation at 40°C. The temperature‐induced conformational changes of sCT in H2O was occurred to transform the α‐helix/random coil structures to β‐sheet structure and also resulted in the formation of intramolecular and intermolecular β‐sheet structures. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 200–207, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

3.
Fourier transform infrared (FT‐IR) spectroscopy combined with 2D correlation spectroscopy has been used to offer some information about stability and structure of some soluble elastins. Temperature has been chosen as the perturbation to monitor the infrared behavior of various soluble elastins, namely, α‐elastin p, α‐elastin, and k‐elastin. In the 3800–2700 cm?1 region, the H‐containing groups were analyzed. The bonded hydroxyls are found to decrease prior to the NH‐related hydrogen bonds and also to the conformational reorganization of hydrocarbon chains. The transition temperatures were evaluated and they were found to agree with those obtained from DSC data. The FTIR spectra and their 2nd derivatives denote that α‐ elastins exhibited amide‐I, ‐II and ‐III bands at 1656, 1539 and 1236 cm?1, respectively, while in k‐elastin these bands were found at 1652 cm?1 for amide I, 1540 cm?1 for amide II and 1248 cm?1 for amide III. The macroscopic IR finger‐print method, which combines: general IR spectra, secondary derivative spectra, and 2D‐IR correlation spectra, is useful to discriminate different elastins. Thus using the differences of the position and intensity of the bands from “fingerprint region” of studied elastins, which include the peaks assigned to C?O, C? C groups from α‐helix, β‐turn, and the peaks assigned to the amide groups, it is possible to identify and discriminate elastins from each others. Furthermore, the pattern of 2D‐IR correlation spectra under thermal perturbation, allow their direct identification and discrimination. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 1072–1084, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

4.
Modified internucleotide linkage featuring the C3′‐O‐P‐CH2‐O‐C4″ phosphonate grouping as an isosteric alternative to the phosphodiester C3′‐O‐P‐O‐CH2‐C4″ bond was studied in order to learn more on its stereochemical arrangement, which we showed earlier to be of prime importance for the properties of the respective oligonucleotide analogues. Two approaches were pursued: First, the attempt to prepare the model dinucleoside phosphonate with 13C‐labeled CH2 group present in the modified internucleotide linkage that would allow for a more detailed evaluation of the linkage conformation by NMR spectroscopy. Second, the use of ab initio calculations along with molecular dynamics (MD) simulations in order to observe the most populated conformations and specify main structural elements governing the conformational preferences. To deal with the former aim, a novel synthesis of key labeled reagent (CH3O)2P(O)13CH2OH for dimer preparation had to be elaborated using aqueous 13C‐formaldehyde. The results from both approaches were compared and found consistent. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 514–529, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

5.
Bz‐423 is an inhibitor of the mitochondrial F1F0‐ATPase, with therapeutic properties in murine models of immune diseases. Here, we study the binding of a water‐soluble Bz‐423 analog (5‐(3‐(aminomethyl)phenyl)‐7‐chloro‐ 1‐methyl‐3‐(naphthalen‐2‐ylmethyl)‐1H‐benzo][e][1,4]diazepin‐2(3H)‐one); (1) to its target subunit on the enzyme, the oligomycin sensitivity conferring protein (OSCP), by NMR spectroscopy using chemical shift perturbation and cross‐relaxation experiments. Titration experiments with constructs representing residues 1–120 or 1–145 of the OSCP reveals that (a) 1 binds to a region of the protein, at the minimum, comprising residues M51, L56, K65, V66, K75, K77, and N92, and (b) binding of 1 induces conformational changes in the OSCP. Control experiments employing a variant of 1 in which a key binding element on the small molecule was deleted; it had no perturbational effect on the spectra of the OSCP, which indicates that the observed changes with 1 represent specific binding interactions. Collectively, these data suggest that 1 might inhibit the enzyme through an allosteric mechanism where binding results in conformational changes that perturb the OSCP‐F1 interface resulting in disrupted communication between the peripheral stalk and the F1‐domain of the enzyme. © 2009 Wiley Periodicals, Inc. Biopolymers 29: 85–92, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

6.
Copolymers of sodium 4‐styrene sulfonate (SS) and hydroxyethyl methacrylate (HEMA) were investigated as sequestrants of α‐gliadin, a gluten protein, for the treatment of gluten intolerance. The interactions of α‐gliadin with poly(SS) and poly(HEMA‐co‐SS) with 9 and 26 mol% SS content were studied at gastric (1.2) and intestinal (6.8) pH using circular dichroism and measurements of turbidity, dynamic light scattering and zeta potential. The interactions and their influence on α‐gliadin secondary and aggregated structures depended mainly on the ratio of polymer negative and protein positive charges at pH 1.2, and on polymer SS content at polymer concentrations providing in excess of negative charges at either pH. Poly(SS) could not form complex particles with α‐gliadin in a sufficient excess of negative charges. Copolymerization with HEMA enhanced the formation of complex particles. Poly(HEMA‐co‐SS) with intermediate SS content was found to be the most effective sequestrant for α‐gliadin. This study provides insight into design considerations for polymer sequestrants used in the supportive treatment of celiac disease. © 2009 Wiley Periodicals, Inc. Biopolymers 93:418–428, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

7.
A fluorescently labeled 20‐residue polyglutamic acid (polyE) peptide 20 amino acid length polyglutamic acid (E20) was used to study structural changes which occur in E20 as it co‐aggregates with other unlabeled polyE peptides. Resonance energy transfer (RET) was performed using an o‐aminobenzamide donor at the N‐terminus and 3‐nitrotyrosine acceptor at the C‐terminus of E20. PolyE aggregates were not defined as amyloid, as they were nonfibrillar and did not bind congo red. Circular dichroism measurements indicate that polyE aggregation involves a transition from α‐helical monomers to aggregated β‐sheets. Soluble oligomers are also produced along with aggregates in the reaction, as determined through size exclusion chromatography. Time‐resolved and steady‐state RET measurements reveal four dominant E20 conformations: (1) a partially collapsed conformation (24 Å donor–acceptor distance) in monomers, (2) an extended conformation in soluble oligomers (>29 Å donor–acceptor distance), (3) a minor partially collapsed conformation (22 Å donor‐acceptor distance) in aggregates, and (4) a major highly collapsed conformation (13 Å donor–acceptor distance) in aggregates. These findings demonstrate the use of RET as a means of determining angstrom‐level structural details of soluble oligomer and aggregated states of proteins. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 299–317, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

8.
Nucleic acid recognition is often mediated by α‐helices or disordered regions that fold into α‐helix on binding. A peptide bearing the DNA recognition helix of HPV16 E2 displays type II polyproline (PII) structure as judged by pH, temperature, and solvent effects on the CD spectra. NMR experiments indicate that the canonical α‐helix is stabilized at the N‐terminus, while the PII forms at the C‐terminus half of the peptide. Re‐examination of the dihedral angles of the DNA binding helix in the crystal structure and analysis of the NMR chemical shift indexes confirm that the N‐terminus half is a canonical α‐helix, while the C‐terminal half adopts a 310 helix structure. These regions precisely match two locally driven folding nucleii, which partake in the native hydrophobic core and modulate a conformational switch in the DNA binding helix. The peptide shows only weak and unspecific residual DNA binding, 104‐fold lower affinity, and 500‐fold lower discrimination capacity compared with the domain. Thus, the precise side chain conformation required for modulated and tight physiological binding by HPV E2 is largely determined by the noncanonical strained α‐helix conformation, “presented” by this unique architecture. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 432–443, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

9.
The collagen triple helix has a larger accessible surface area per molecular mass than globular proteins, and therefore potentially more water interaction sites. The effect of deuterium oxide on the stability of collagen model peptides and Type I collagen molecules was analyzed by circular dichroism and differential scanning calorimetry. The transition temperatures (Tm) of the protonated peptide (Pro‐Pro‐Gly)10 were 25.4 and 28.7°C in H2O and D2O, respectively. The increase of the Tm of (Pro‐Pro‐Gly)10 measured calorimetrically at 1.0°C min?1 in a low pH solution from the protonated to the deuterated solvent was 5.1°C. The increases of the Tm for (Gly‐Pro‐4(R)Hyp)9 and pepsin‐extracted Type I collagen were measured as 4.2 and 2.2°C, respectively. These results indicated that the increase in the Tm in the presence of D2O is comparable to that of globular proteins, and much less than reported previously for collagen model peptides [Gough and Bhatnagar, J Biomol Struct Dyn 1999, 17, 481–491]. These experimental results suggest that the interaction of water molecules with collagen is similar to the interaction of water with globular proteins, when the ratio of collagen to water is very small and collagen is monomerically dispersed in the solvent. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 93–101, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

10.
2SS[6‐127,64‐80] variant of lysozyme which has two disulfide bridges, Cys6‐Cys127 and Cys64‐Cys80, and lacks the other two disulfide bridges, Cys30‐Cys115 and Cys76‐Cys94, was quite unstructured in water, but a part of the polypeptide chain was gradually frozen into a native‐like conformation with increasing glycerol concentration. It was monitored from the protection factors of amide hydrogens against H/D exchange. In solution containing various concentrations of glycerol, H/D exchange reactions were carried out at pH* 3.0 and 4°C. Then, 1H‐15N‐HSQC spectra of partially deuterated protein were measured in a quenching buffer for H/D exchange (95% DMSO/5% D2O mixture at pH* 5.5 adjusted with dichloroacetate). In a solution of 10% glycerol, the protection factors were nearly equal to 10 at most of residues. With increasing glycerol concentration, some selected regions were further protected, and their protection factors reached about a 1000 in 30% glycerol solution. The highly protected residues were included in A‐, B‐, and C‐helices and β3‐strand, and especially centered on Ile 55 and Leu 56. In 2SS[6‐127,64‐80], long‐range interactions were recovered due to the preferential hydration by glycerol in the hydrophobic box of the α‐domain. Glycerol‐induced recovering of the native‐like structure is discussed from the viewpoint of molten globules growing with the protein folding. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 665–675, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

11.
Does the amino acid use at the terminal positions of an α‐helix become altered depending on the context—more specifically, when there is an adjoining 310‐helix, and can a single helical cylinder encompass the resultant composite helix? An analysis of 138 and 107 cases of 310–α and α–310 composite helices, respectively, found in known protein structures indicate that the secondary structural element occurring first imposes its characteristics on the sequence of the structural element coming next. Thus, when preceded by a 310‐helix, the preference of proline to occur at the N1 position of an α‐helix is shifted to the N2 position, a typical characteristic of the C‐terminal capping of the 310‐helix. When an α‐ or a 310‐helix leads into a helix of the other type, there is a bend at the junction, especially for the 310–α composite, with the two junction residues facing inward and buried within the structure. Thus a single helical cylinder may not properly represent a composite helix, the bend providing a means for the tertiary structure to assume a globular shape, very much akin to what a proline‐induced kink does to an α‐helix. The tertiary structural context in which β–310 and 310–β composites occurs can be different, causing the angle between the secondary structural elements in the two cases to be different. Composites of 310‐helices and β‐strands are much more conserved among members in families of homologous structures than those between two types of helices; in many of the former instances, the 310‐helix constitutes the loops in β‐hairpin or β–β‐corner motifs. The overall fold of the chain may be more conserved than the actual identify of the secondary structure elements in a composite. © 2005 Wiley Periodicals, Inc. Biopolymers 78: 147–162, 2005 This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

12.
Many studies have examined consensus sequences required for protein‐glycosaminoglycan interactions. Through the synthesis of helical heparin binding peptides, this study probes the relationship between spatial arrangement of positive charge and heparin binding affinity. Peptides with a linear distribution of positive charge along one face of the α‐helix had the highest affinity for heparin. Moving the basic residues away from a single face resulted in drastic changes in heparin binding affinity of up to three orders of magnitude. These findings demonstrate that amino acid sequences, different from the known heparin binding consensus sequences, will form high affinity protein‐heparin binding interactions when the charged residues are aligned linearly. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 290–298, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

13.
Metal ions in proteins are important not only for the formation of the proper structures but also for various biological activities. For biological functions such as hydrolysis and oxidation, metal ions often adopt unusual coordination structures. We constructed a stable scaffold for metal binding to create distorted metal coordination structures. A stable four stranded α‐helical coiled‐coil structure was used as the scaffold, and the metal binding site was in the cavity created at the center of the structure. Two His residues and one Asp or Glu residue were used to coordinate the metal ions, AM2D and AM2E, respectively. Cu2+ bound to AM2D with an equatorial planar coordination structure with two His, one Asp, and H2O as detected by electron spin resonance and UV spectral analyzes. On the other hand, Cu2+ had a slightly distorted square planar structure when it bound two His and Glu in AM2E, due to the longer side‐chain of the Glu residue as compared to the Asp residue. Computational analysis also supported the distorted coordination structure of Cu2+ in AM2E. This construct should be useful to create various coordinations of metal ions for catalytic functions. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 907–916, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

14.
A 34‐residue α/β peptide [IG(28–61)], derived from the C‐terminal part of the B3 domain of the immunoglobulin binding protein G from Streptoccocus, was studied using CD and NMR spectroscopy at various temperatures and by differential scanning calorimetry. It was found that the C‐terminal part (a 16‐residue‐long fragment) of this peptide, which corresponds to the sequence of the β‐hairpin in the native structure, forms structure similar to the β‐hairpin only at T = 313 K, and the structure is stabilized by non‐native long‐range hydrophobic interactions (Val47–Val59). On the other hand, the N‐terminal part of IG(28–61), which corresponds to the middle α‐helix in the native structure, is unstructured at low temperature (283 K) and forms an α‐helix‐like structure at 305 K, and only one helical turn is observed at 313 K. At all temperatures at which NMR experiments were performed (283, 305, and 313 K), we do not observe any long‐range connectivities which would have supported packing between the C‐terminal (β‐hairpin) and the N‐terminal (α‐helix) parts of the sequence. Such interactions are absent, in contrast to the folding pathway of the B domain of protein G, proposed recently by Kmiecik and Kolinski (Biophys J 2008, 94, 726–736), based on Monte‐Carlo dynamics studies. Alternative folding mechanisms are proposed and discussed. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 469–480, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

15.
Mucins form a group of heavily O‐glycosylated biologically important glycoproteins that are involved in a variety of biological functions, including modulating immune response, inflammation, and adhesion. Mucins are also involved in cancer and metastasis and often express diagnostic cancer antigens. Recently, a modified porcine submaxillary mucin (Tn‐PSM) containing GalNAcα1‐O‐Ser/Thr residues was shown to bind to soybean agglutinin (SBA) with ~106‐fold enhanced affinity relative to GalNAcα1‐O‐Ser, the pancarcinoma carbohydrate antigen. In this study, dynamic force spectroscopy is used to investigate molecular pairs of SBA and Tn‐PSM. A number of force jumps that demonstrate unbinding or rebinding events were observed up to a distance equal to 2.0 μm, consistent with the length of the mucin chain. The unbinding force increased from 103 to 402 pN with increasing force loading rate. The position of the activation barrier in the energy landscape of the interaction was 0.1 nm. The lifetime of the SBA–TnPSM complex in the absence of applied force was determined to be in the range 1.3–1.9 s. Kinetic parameters describing the rate of dissociation of other sugar lectin interactions are in the range 3.3 × 10?3–2.5 × 10?3 s. The long lifetime of the SBA‐TnPSM complex is compatible with a binding model in which lectin molecules “bind and jump” from α‐GalNAc residue to α‐GalNAc residue along the polypeptide chain of Tn‐PSM before dissociating. These findings have important implications for the molecular recognition properties of mucins. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 719–728, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

16.
Recent research has implicated the C‐terminus of G‐protein coupled receptors in key events such as receptor activation and subsequent intracellular sorting, yet obtaining structural information of the entire C‐tail has proven a formidable task. Here, a peptide corresponding to the full‐length C‐tail of the human CB1 receptor (residues 400–472) was expressed in E.coli and purified in a soluble form. Circular dichroism (CD) spectroscopy revealed that the peptide adopts an α‐helical conformation in negatively charged and zwitterionic detergents (48–51% and 36–38%, respectively), whereas it exhibited the CD signature of unordered structure at low concentration in aqueous solution. Interestingly, 27% helicity was displayed at high peptide concentration suggesting that self‐association induces helix formation in the absence of a membrane mimetic. NMR spectroscopy of the doubly labeled (15N‐ and 13C‐) C‐terminus in dodecylphosphocholine (DPC) identified two amphipathic α‐helical domains. The first domain, S401‐F412, corresponds to the helix 8 common to G protein‐coupled receptors while the second domain, A440‐M461, is a newly identified structural motif in the distal region of the carboxyl‐terminus of the receptor. Molecular modeling of the C‐tail in DPC indicates that both helices lie parallel to the plane of the membrane with their hydrophobic and hydrophilic faces poised for critical interactions. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 565–573, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

17.
While end capping in α‐helices is well understood, the concept of capping a β‐hairpin is a relatively recent development; to date, favorable Coulombic interactions are the only example of sidechains at the termini influencing the overall stability of a β‐hairpin. While cross‐strand hydrophobic residues generally provide hairpin stabilization, particular when flanking the turn region, those remote from this location appear to provide little stabilization. While probing for an optimal residue at a hydrogen bond position near the terminus of a designed β‐hairpin a conservative, hydrophobic, V → I mutation was observed to not only result in a significant change in fold population but also effected major changes in the structuring shifts at numerous sites in the peptide. Mutational studies reveal that there is an interaction between the sidechain at this H‐bonded site and the sidechain at the C‐terminal non‐H‐bonded site of the hairpin. This interaction, which appears to be hydrophobic in character, requires a highly twisted hairpin structure. Modifications at the C‐terminal site, for example an E → A mutation (ΔΔGU = 6 kJ/mol), have profound affects on fold structure and stability. The data suggests that this may be a case of hairpin end capping by the formation of a hydrophobic cluster. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 557–564, 2009. This article was originally published online as an accepted preprint. The “Published Online”date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

18.
Structural knowledge of telomeric DNA is critical for understanding telomere biology and for the utilization of telomeric DNA as a therapeutic target. Very little is known about the structure of long human DNA sequences that may form more than one quadruplex unit. Here, we report a combination of molecular dynamics simulations and experimental biophysical studies to explore the structural and dynamic properties of the human telomeric sequence (TTAGGG)8TT that folds into two contiguous quadruplexes. Five higher order quadruplex models were built combining known single human telomeric quadruplex structures as unique building blocks. The biophysical properties of this sequence in K+ solution were experimentally investigated by means of analytical ultracentrifugation and UV spectroscopy. Additionally, the environments of loop adenines were probed by fluorescence studies using systematic single‐substitutions of 2‐aminopurine for the adenine bases. The comparison of the experimentally determined properties with the corresponding quantities predicted from the models allowed us to test the validity of each of the structural models. One model emerged whose properties are most consistent with the predictions, and which therefore is the most probable structure in solution. This structure features contiguous quadruplex units in an alternating hybrid‐1‐hybrid‐2 conformation with a highly ordered interface composed of loop residues from both quadruplexes © 2010 Wiley Periodicals, Inc. Biopolymers 93:533–548, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

19.
In an attempt to prepare a library of short oligoadenylate analogues featuring both the enzyme‐stable internucleotide linkage and the 5′‐O‐methylphosphonate moiety and thus obtain a pool of potential RNase L agonists/antagonists, we studied the spontaneous polycondensation of the adenosin‐5′‐O‐ylmethylphosphonic acid (pcA), an isopolar AMP analogue, and its imidazolide derivatives employing N,N′‐dicyclohexylcarbodiimide under nonaqueous conditions and uranyl ions under aqueous conditions, respectively. The RP LC–MS analyses of the reaction mixtures per se, and those obtained after the periodate treatment, along with analyses and separations by capillary zone electrophoresis, allowed us to characterize major linear and cyclic oligoadenylates obtained. The structure of selected compounds was supported, after their isolation, by NMR spectroscopy. Ab initio calculation of the model structures simulating the AMP‐imidazolide and pcA‐imidazolide offered the explanation why the latter compound exerted, in contrast to AMP‐imidazolide, a very low stability in aqueous solutions. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 277–289, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

20.
The natural amino acids are primarily helix breakers at the low assignment temperatures characteristic of many studies, but recent genomic analyses of thermophilic proteins suggest that at high temperatures, some breakers may become strong helix formers. Moreover, the breaker/former inventory has not been previously characterized at the physiologically relevant temperature of 37°C. The versatility of 13C?O NMR chemical shifts as helicity reporters allows construction of two mutant peptide series, tailored to expand the range of temperature assignments for helical propensities and derived from the core hosts tL‐Ala9XxxAla9tL and tL‐AlaNva4XxxNva4Ala9tL, Nva = norvaline. For three limiting guests Xxx, the helix former Nva and the breakers Gly and Pro, we report wXxx[T] assignments at seven temperatures from 2 to 80°C, validating our reasoning and paving the way for assignment of a definitive wXxx[T] data‐base. © 2008 Wiley Periodicals, Inc. Biopolymers 91: 311–320, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号