首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The separation of rac‐o‐chloromandelic acid 1 with enantiopure aryloxypropylamine via diastereomeric salt formation was investigated. (R)‐o‐chloromandelic acid (R)‐ 1 , a key intermediate for the antithrombotic agent clopidogrel, was obtained in 65% yield and 98% ee by Dutch resolution of rac‐ 1 with (S)‐2‐hydroxyl‐3‐(p‐chlorophenoxy) propylamine (S)‐ 5 as resolving agent and (S)‐2‐hydroxyl‐3‐(o‐nitrophenoxy) propylamine (S)‐ 4 as nucleation inhibitor. Chirality 24:1013–1017, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
The optical resolution of (R,S)‐propranolol by the diastereomeric crystallization method was successfully performed using dehydroabietic acid (DHAA) as the resolving agent in methanol. The three important parameters: DHAA amount, solvent (methanol) amount, and crystallization temperature of diastereomeric salts were optimized employing the response surface methodology (RSM). When maintaining a lower limit of 95% for the purity of (S)‐propranolol, the optimal resolution conditions were a DHAA/(R,S)‐propranolol molar ratio of 1.1, solvent/(R,S)‐propranolol ratio of 16.2 mL.g‐1, and crystallization temperature of –5 °C. The desired (S)‐propranolol was prepared with 94.8% optical purity and 72.2% yield under the optimal conditions. Chirality 27:131–136, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

3.
Chiral functionalization of 2,4,5,6‐tetrachloro‐1,3‐dicyanobenzene (1) by regioselective nucleophilic substitution of one or two chlorine atoms by optically pure (R)‐(+)‐1‐naphthylethylamine (NEA), or by a glycine unit as a spacer to (R)‐NEA, enables the preparation of brush‐type chiral selectors (2, 3, 9, 13). By the introduction of the 3‐aminopropyltriethoxysilyl (APTES) group, reactive intermediates 4a/b, 5, 10a/b, and 14a/b are obtained ( a/b indicate a mixture of regioisomers with APTES in 6‐ and 2‐position). Binding of these to silica gel afforded four novel chiral stationary phases (CSPs) 6, 7, 15, and 16. HPLC columns containing CSPs with (R)‐NEA directly linked to polysubstituted aromatic ring (6, 7) are not very effective in resolution of most of the 23 racemic analytes, whereas the columns with distant π‐basic subunits (15, 16) exhibited higher resolving efficacy, in particular towards the isopropyl esters of racemic N‐3,5‐dinitrobenzoyl‐α‐amino acids. Effective resolution of test racemates reveals the importance of the presence of the hydrogen bond donor amido group and the distance between the persubstituted benzene ring in 1 and the π‐basic naphthalene ring of (R)‐NEA. Chirality 11:722–730, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

4.
Light‐sheet fluorescence microscopy (LSFM) allows volumetric live imaging at high‐speed and with low photo‐toxicity. Various LSFM modalities are commercially available, but their size and cost limit their access by the research community. A new method, termed sub‐voxel‐resolving (SVR) light‐sheet add‐on microscopy (SLAM), is presented to enable fast, resolution‐enhanced light‐sheet fluorescence imaging from a conventional wide‐field microscope. This method contains two components: a miniature add‐on device to regular wide‐field microscopes, which contains a horizontal laser light‐sheet illumination path to confine fluorophore excitation at the vicinity of the focal plane for optical sectioning; an off‐axis scanning strategy and a SVR algorithm that utilizes sub‐voxel spatial shifts to reconstruct the image volume that results in a twofold increase in resolution. SLAM method has been applied to observe the muscle activity change of crawling C. elegans, the heartbeat of developing zebrafish embryo, and the neural anatomy of cleared mouse brains, at high spatiotemporal resolution. It provides an efficient and cost‐effective solution to convert the vast number of in‐service microscopes for fast 3D live imaging with voxel‐super‐resolved capability.  相似文献   

5.
Numbers of resolving factors were investigated to improve resolution of venlafaxine 1 . An effective resolving agent, O,O′‐di‐p‐toluoyl‐(R, R)‐tartaric acid 2 , was screened using similar method of ‘Dutch resolution’ from tartaric acid derivatives. The resolution efficiency was up to 88.4%, when the ratio of rac‐ 1 and 2 was 1:0.8 in THF with little water (10:1 v/v). Enantiomerically pure venlafaxine was prepared with 99.1% ee in 82.2% yield. The chiral resolution mechanism was first explained through X‐ray crystallographic study. One diastereomeric salt with well solubility forms a columnar supramolecular structure as the acidic salt (R)‐ 1 · 2 , while the other diastereomeric salt with less solubility forms a multilayered sandwich supramolecular structure by enantio‐differentiation self‐assembly as the neutral salt 2(S)‐ 1 · 2 . The water molecules play a key role in the optical resolution, as indicated by the special structures of the diastereomeric salts.  相似文献   

6.
Chiral resolutions of trifluoroacetyl‐derivatized 1‐phenylalkylamines with different type and position of substituent were investigated by capillary gas chromatography by using heptakis(2,3‐di‐O‐methyl‐6‐Otert‐butyldimethylsilyl)‐β‐cyclodextrin diluted in OV‐1701 as a chiral stationary phase. The influence of column temperature on retention and enantioselectivity was examined. All enantiomers of meta‐substituted analytes as well as fluoro‐substituted analytes could be resolved. Temperature had a favorable influence on enantioselectivity for small amines with substituents at the ortho‐position. The type of substituent at the stereogenic center of amines also had a crucial effect as the ethyl group led to poor enantioseparation. Among all analytes studied, trifluoroacetyl‐derivatized 1‐(2′‐fluorophenyl)ethylamine exhibited baseline resolution with the shortest analysis time.  相似文献   

7.
High‐resolution tracking of stem cells remains a challenging task. An ultra‐bright contrast agent with extended intracellular retention is suitable for in vivo high‐resolution tracking of stem cells following the implantation. Here, a plasmonic‐active nanoplatform was developed for tracking mesenchymal stromal cells (MSCs) in mice. The nanoplatform consisted of TAT peptide‐functionalized gold nanostars (TAT‐GNS) that emit ultra‐bright two‐photon photoluminescence capable of tracking MSCs under high‐resolution optical imaging. In vitro experiment showed TAT‐GNS‐labeled MSCs retained a similar differentiability to that of non‐labeled MSCs controls. Due to their star shape, TAT‐GNS exhibited greater intracellular retention than that of commercial Q‐Tracker. In vivo imaging of TAT‐GNS‐labeled MSCs five days following intra‐arterial injections in mice kidneys showed possible MSCs implantation in juxta‐glomerular (JG) regions, but non‐specifically in glomeruli and afferent arterioles as well. With future design to optimize GNS labeling specificity and clearance, plasmonic‐active nanoplatforms may be a useful intracellular tracking tool for stem cell research.

An ultra‐bright intracellular contrast agent is developed using TAT peptide‐functionalized gold nanostars (TAT‐GNS). It poses minimal influence on the stem cell differentiability. It exhibits stronger two‐photon photoluminescence and superior labeling efficiency than commercial Q‐Tracker. Following renal implantation, some TAT‐GNS‐labeled MSCs permeate blood vessels and migrate to the juxta‐glomerular region.  相似文献   


8.
As a new acidic selector (resolving agent), we synthesized an enantiopure O‐alkyl phenylphosphonothioic acid with a seven‐membered ring ((R)‐ 5 ), which was designed on the basis of the results for the enantioseparation of 1‐arylethylamine derivatives with acyclic O‐ethyl phenylphosphonothioic acid ( I ). The phosphonothioic acid (R)‐ 5 showed unique chirality‐recognition ability in the enantioseparation of 1‐naphthylethylamine derivatives, aliphatic secondary amines, and amino alcohols; the ability was complementary to that of I . The X‐ray crystallographic analyses of the less‐ and more‐soluble diastereomeric salts showed that hydrogen‐bonding networks in the salt crystals are 21‐column‐type with a single exception which is cluster‐type. In the cases of the 21‐column‐type crystals, stability of the crystals is firstly governed by hydrogen bonds to form a 21‐column and secondly determined by intra‐columnar T‐shaped CH/π interaction(s), intra‐columnar hydrogen bond(s), inter‐columnar van der Waals interaction and/or inter‐columnar T‐shaped CH/π interaction(s). In contrast, the cluster‐type salt crystal is stabilized by the assistance of inter‐cluster T‐shaped CH/π and van der Waals interactions. To realize still more numbers of intra‐ and inter‐columnar and ‐cluster T‐shaped CH/π interactions, the seven‐membered ring of (R)‐ 5 plays a considerable role. Chirality 23:438–448, 2011. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
As an example of acyclic P‐chiral phosphine oxides, the resolution of ethyl‐(2‐methylphenyl)‐phenylphosphine oxide was elaborated with TADDOL derivatives, or with calcium salts of the tartaric acid derivatives. Besides the study on the resolving agents, several purification methods were developed in order to prepare enantiopure ethyl‐(2‐methylphenyl)‐phenylphosphine oxide. It was found that the title phosphine oxide is a racemic crystal‐forming compound, and the recrystallization of the enantiomeric mixtures could be used for the preparation of pure enantiomers. According to our best method, the (R)‐ethyl‐(2‐methylphenyl)‐phenylphosphine oxide could be obtained with an enantiomeric excess of 99% and in a yield of 47%. Complete racemization of the enantiomerically enriched phosphine oxide could be accomplished via the formation of a chlorophosphonium salt. Characterization of the crystal structures of the enantiopure phosphine oxide was complemented with that of the diastereomeric intermediate. X‐ray analysis revealed the main nonbonding interactions responsible for enantiomeric recognition.  相似文献   

10.
2DE is one of the most efficient and widely used methods for resolving complex protein mixtures. For efficient analysis of complex samples, high‐resolution separation of proteins on 2D gel is essential, and for that purpose good sample preparation is crucial. In this study, we have improvized a method for preparing bacterial total cellular proteome, from a strategy applied earlier to recalcitrant plant tissues, which gave high‐quality resolution on 2DE. The method involving phenol extraction followed by methanol/ammonium acetate precipitation was first optimized for the chemolithotrophic proteobacteria Tetrathiobacter kashmirensis WT001 and Pseudaminobacter salicylatoxidans KCT001 that did not yield quality protein preps in conventional trichloroacetic acid/acetone precipitation method. Subsequently, to validate its general applicability, the method was evaluated against the trichloroacetic acid/acetone precipitation method for two other model bacteria, i.e. Escherichia coli DH5α and Mycobacterium smegmatis mc26. Identification of at least four proteins each from the outer membrane, periplasm, and cytoplasm of T. kashmirensis by MALDI‐MS not only proved the efficiency of the method in extracting proteins from the different cellular compartments but also the amenability of the obtained protein spots toward MALDI‐MS based identification.  相似文献   

11.
C2‐symmetric N,N‐bis(phosphinomethyl)amines were prepared by the thermal reaction of aromatic aldehydes with ammonia and hypophosphorus acid as previously described. Both enantiomers of C2‐symmetric N,N‐bis(phosphinomethyl)amine were obtained in a high enantiomeric purity through the diastereomeric salt formation with (–)‐quinine, and subsequent fractional crystallization. X‐ray crystallographic analysis of one of the diastereomeric salts clearly revealed that (–)‐quinine could be an efficient resolving agent for obtaining the single enantiomer (R,R)‐N,N‐bis(phosphinomethyl)amine. Chirality 27:71–74, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

12.
Flecainide, an antiarrythmic agent, and its analogs were resolved on a high performance liquid chromatographic chiral stationary phase (CSP) based on (+)‐(18‐crown‐6)‐2,3,11,12‐tetracarboxylic acid with the use of a mobile phase consisting of methanol‐acetonitrile‐trifluoroacetic acid‐triethylamine (80/20/0.1/0.3, v/v/v/v). The chiral resolution was quite successful, the separation factors (α) and the resolutions (RS) for 20 analytes including flecainide being in the range of 1.19–1.82 and 1.73–6.80, respectively. The ortho‐substituent of the benzoyl group of analytes was found to cause decrease in the retention times of analytes probably because of the conformational deformation of analytes originated from the steric hindrance exerted by the ortho‐substituent. Chirality, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
The resolution methods applying (?)‐(4R,5R)‐4,5‐bis(diphenylhydroxymethyl)‐2,2‐dimethyldioxolane (“TADDOL”), (?)‐(2R,3R)‐α,α,α',α'‐tetraphenyl‐1,4‐dioxaspiro[4.5]decan‐2,3‐dimethanol (“spiro‐TADDOL”), as well as the acidic and neutral Ca2+ salts of (?)‐O,O'‐dibenzoyl‐ and (?)‐O,O'‐di‐p‐toluoyl‐(2R,3R)‐tartaric acid were extended for the preparation of 1‐n‐butyl‐3‐methyl‐3‐phospholene 1‐oxide in optically active form. In one case, the intermediate diastereomeric complex could be identified by single‐crystal X‐ray analysis. The absolute P‐configuration of the enantiomers of the phospholene oxide was also determined by comparing the experimentally obtained and calculated CD spectra. Chirality 26:174–182, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

14.
Neisseria meningitidis is the causative agent of meningitis and meningococcal septicemia is a major cause of disease worldwide, resulting in brain damage and hearing loss, and can be fatal in a large proportion of cases. The enzyme 3‐deoxy‐d ‐arabino‐heptulosonate 7‐phosphate synthase (DAH7PS) catalyzes the first reaction in the shikimate pathway leading to the biosynthesis of aromatic metabolites including the aromatic acids l ‐Trp, l ‐Phe, and l ‐Tyr. This pathway is absent in humans, meaning that enzymes of the pathway are considered as potential candidates for therapeutic intervention. As the entry point, feedback inhibition of DAH7PS by pathway end products is a key mechanism for the control of pathway flux. The structure of the single DAH7PS expressed by N. meningitidis was determined at 2.0 Å resolution. In contrast to the other DAH7PS enzymes, which are inhibited only by a single aromatic amino acid, the N. meningitidis DAH7PS was inhibited by all three aromatic amino acids, showing greatest sensitivity to l ‐Phe. An N. meningitidis enzyme variant, in which a single Ser residue at the bottom of the inhibitor‐binding cavity was substituted to Gly, altered inhibitor specificity from l ‐Phe to l ‐Tyr. Comparison of the crystal structures of both unbound and Tyr‐bound forms and the small angle X‐ray scattering profiles reveal that N. meningtidis DAH7PS undergoes no significant conformational change on inhibitor binding. These observations are consistent with an allosteric response arising from changes in protein motion rather than conformation, and suggest ligands that modulate protein dynamics may be effective inhibitors of this enzyme.  相似文献   

15.
Emiliania huxleyi and Gephyrocapsa oceanica are abundant coccolithophore morpho‐species that play key roles in ocean carbon cycling due to their importance as both primary producers and cal‐cifiers. Global change processes such as ocean acidification impact these key calcifying species. The physiology of E. huxleyi, a developing model species, has been widely studied, but its genetic delineation from G. oceanica remains unclear due to a lack of resolution in classical genetic markers. Using nuclear (18S rDNA and 28S rDNA), mitochondrial (cox1, cox2, cox3, rpl16, and dam), and plastidial (16S rDNA, rbcL, tufA, and petA) DNA markers from 99 E. huxleyi and 44 G. oceanica strains, we conducted a multigene/multistrain survey to compare the suitability of different markers for resolving phylogenetic patterns within and between these two morpho‐species. The nuclear genes tested did not provide sufficient resolution to discriminate between the two morpho‐species that diverged only 291Kya. Typical patterns of incomplete lineage sorting were generated in phylogenetic analyses using plastidial genes. In contrast, full morpho‐species delineation was achieved with mitochondrial markers and common intra‐morpho‐species phylogenetic patterns were observed despite differing rates of DNA substitution. Mitochondrial genes are thus promising barcodes for distinguishing these coccolithophore morpho‐species, in particular in the context of environmental monitoring.  相似文献   

16.
In this study, a newly isolated strain screened from the indoxacarb‐rich agricultural soils, Bacillus cereus WZZ006, has a high stereoselectivity to racemic substrate 5‐chloro‐1‐oxo‐2,3‐dihydro‐2‐hydroxy‐1H‐indene‐2‐carboxylic acid methyl ester. (S)‐5‐chloro‐1‐oxo‐2,3‐dihydro‐2‐hydroxy‐1H‐indene‐2‐carboxylic acid methyl ester was obtained by bio‐enzymatic resolution. After the 36‐hour hydrolysis in 50‐mM racemic substrate under the optimized reaction conditions, the e.e.s was up to 93.0% and the conversion was nearly 53.0% with the E being 35.0. Therefore, B cereus WZZ006 performed high‐level ability to produce (S)‐5‐chloro‐1‐oxo‐2,3‐dihydro‐2‐hydroxy‐1H‐indene‐2‐carboxylic acid methyl ester. This study demonstrates a new biocatalytic process route for preparing the indoxacarb chiral intermediates and provides a theoretical basis for the application of new insecticides in agricultural production.  相似文献   

17.
Myung Ho Hyun 《Chirality》2015,27(9):576-588
Crown ether‐based chiral stationary phases (CSPs) have been known to be useful for the resolution of racemic primary amino compounds. In particular, CSPs based on (+)‐(18‐crown‐6)‐2,3,11,12‐tetracarboxylic acid have been reported to be useful for the resolution of secondary amino compounds as well as primary amino compounds. In this article, the process of developing various CSPs based on (+)‐(18‐crown‐6)‐2,3,11,12‐tetracarboxylic acid to improve the chiral recognition efficiency and/or the stability of the CSPs and their applications to the resolution of various primary and nonprimary amino compounds are reviewed. Chirality 27:576588, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

18.
A novel ligand‐assisted assembly approach is demonstrated for the synthesis of thermally stable and large‐pore ordered mesoporous titanium dioxide with a highly crystalline framework by using diblock copolymer poly(ethylene oxide)‐b‐polystyrene (PEO‐b‐PS) as a template and titanium isopropoxide (TIPO) as a precursor. Small‐angle X‐ray scattering, X‐ray diffraction (XRD), transmission electron microscopy (TEM), high‐resolution scanning electron microscopy, and N2‐sorption measurements indicate that the obtained TiO2 materials possess an ordered primary cubic mesostructure with large, uniform pore diameters of about 16.0 nm, and high Brunauer–Emmett–Teller surface areas of ~112 m2 g?1, as well as high thermal stability (~700 °C). High resolution TEM and wide‐angle XRD measurements clearly illustrate the high crystallinity of the mesoporous titania with an anatase structure in the pore walls. It is worth mentioning that, in this process, in addition to tetrahydrofuran as a solvent, acetylacetone was employed as a coordination agent to avoid rapid hydrolysis of the titanium precursor. Additionally, stepped evaporation and heating processes were adopted to control the condensation rate and facilitate the assembly of the ordered mesostructure, and ensure the formation of fully polycrystalline anatase titania frameworks without collapse of the mesostructure. By employing the obtained mesoporous and crystallized TiO2 as the photoanode in a dye‐sensitized solar cell, a high power‐conversion efficiency (5.45%) can be achieved in combination with the N719 dye, which shows that this mesoprous titania is a great potential candidate as a catalyst support for photonic‐conversion applications.  相似文献   

19.
A new type of planar chiral (Rp)‐ and (Sp)‐4,7,12,15‐tetrasubstituted [2.2]paracyclophanes was prepared from racemic 4,7,12,15‐tetrabromo[2.2]paracyclophane as the starting substrate. Regioselective lithiation and transformations afforded racemic bis‐(para)‐pseudo‐meta‐type [2.2]paracyclophane (4,15‐dibromo‐7,12‐dihydroxy[2.2]paracyclophane). Its optical resolution was performed by the diastereomer method using a chiral camphanoyl group as the chiral auxiliary. The diastereoisomers were readily isolated by simple silica gel column chromatography, and the successive hydrolysis afforded (Rp)‐ and (Sp)‐bis‐(para)‐pseudo‐meta‐type [2.2]paracyclophanes ((Rp)‐ and (Sp)‐4,15‐dibromo‐7,12‐dihydroxy[2.2]paracyclophanes). They can be used as pseudo‐meta‐substituted chiral building blocks.  相似文献   

20.
The enantiomers of four unusual isoxazoline‐fused 2‐aminocyclopentanecarboxylic acids were directly separated on chiral stationary phases containing (+)‐(18‐crown‐6)‐2,3,11,12‐tetracarboxylic acid as chiral selector. The nature of the alcoholic modifier (MeOH, EtOH, IPA) exerted a great effect on the retention, whereas the selectivity and resolution did not change substantially. Two types of dependence of retention on alcohol content were detected: k1 increased continuously with increasing alcohol content or a U‐shaped retention curve was observed. A comparison of the chromatographic data obtained with HCOOH, AcOH, TFA, HClO4, H2SO4, or H3PO4 as acidic modifier at a constant concentration demonstrated that in most cases, larger k values were obtained on the application of AcOH or HCOOH, and an increase of the acid content resulted in a decrease of retention. Some mechanistic aspects of the chiral recognition process are discussed with respect to the structures of the analytes and selector. The sequence of elution of the enantiomers was determined in all cases. Chirality 24:817‐824, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号