首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Compared with the great apes, the small-bodied hylobatids were treated historically as a relatively uniform group with 2 genera, Hylobates and the larger-bodied Symphalangus. Four genera are now recognized, each with a different chromosome number: Hoolock (hoolock) (38), Hylobates (44), Nomascus (crested gibbon) (52), and Symphalangus (siamang) (50). Previous morphological studies based on relative bone lengths, e.g., intermembral indices; molar tooth sizes; and body masses did not distinguish the 4 genera from each other. We applied quantitative anatomical methods to test the hypothesis that each genus can be differentiated from the others using the relative distribution of body mass to the forelimbs and hind limbs. Based on dissections of 13 hylobatids from captive facilities, our findings demonstrate that each of the 4 genera has a distinct pattern of body mass distribution. For example, the adult Hoolock has limb proportions of nearly equal mass, a pattern that differentiates it from species in the genus Hylobates, e.g., H. lar (lar gibbon), H. moloch (Javan gibbon), H. pileatus (pileated gibbon), Nomascus, and Symphalangus. Hylobates is distinct in having heavy hind limbs. Although Symphalangus has been treated as a scaled up version of Hylobates, its forelimb exceeds its hind limb mass, an unusual primate pattern otherwise found only in orangutans. This research provides new information on whole body anatomy and adds to the genetic, ecological, and behavioral evidence for clarifying the taxonomy of the hylobatids. The research also underscores the important contribution of studies on rare species in captivity.  相似文献   

2.
The forelimbs of hylobatids (gibbons and siamang) are distinctive among tetrapods in that they are loaded in overall tension during normal locomotion. While hylobatid ulnae must also encounter bending stresses in the course of their full range of locomotor behavior, their loading regime differs from that of quadrupedal anthropoids in that these bending stresses are distributed evenly along the bone, are not exerted in a preferred plane, and are probably of generally lower magnitude. This study examines the degree to which hylobatid ulnae are adapted to this suspensory loading regime. We obtained cross-sections of ulnae at various increments along the length of the bone using CAT scans. The sample comprises 476 cross-sections representing the ulnae of 25 individuals from five species of comparable body size. We show that in gibbons and siamang, the patterning of ulnar cross-sectional area and resistance to bending in the dorsoventral plane along the ulnar diaphysis differ from that of similarly sized quadrupedal anthropoids in the manner predicted by a suspensory loading regime. We also find the same pattern for the ulnae of Ateles, whose loading regime may be fairly similar to that of hylobatids. However, we find that the cross-sectional shape of the ulnar diaphysis in hylobatids and Ateles does not differ from that of quadrupedal monkeys in the manner predicted by a suspensory loading regime. © 1995 Wiley-Liss, Inc.  相似文献   

3.
An understanding of craniofacial growth, both evolutionarily and clinically, requires an investigation of pattern —geometric relations that remain relatively constant among growing structures or components of the skull. Several craniofacial biologists have suggested that specific morphological relations remain invariant during growth and in interspecific comparisons of adults of varying size. We tested the hypothesized invariance of a series of craniofacial angles in a sample of adult Old World monkeys. Fifteen angles were determined from lateral cranial radiographs. Criteria for examining angular invariance included tests for significant correlations and regression slopes with palatal length (overall skull size), tests for significant mean differences (ANOVAs) in angular values between the two subfamilies of Cercopithecidae — Cercopithecinae and Colobinae — and the computation and ranking of standard deviations (SDs) and coefficients of variation (CVs). Results indicate that most of the cranial angles purported to be invariant do not in fact meet the criteria for acceptance. One of the few cranial angles that evinces a somewhat constant value is that between the posterior maxillary plane and the neutral axis of the orbits, providing very limited support for Enlow’s (1982) claim that this region represents a fundamental anatomical interface (at least within Old World monkeys). Our analysis suggests that while there may be several relatively invariant structural relations within the skull, most of those previously discussed as representing evidence of pattern in primate-wide or mammal-wide comparisons are incorrect.  相似文献   

4.
Various members of the Pliopithecidae (Pliopithecus, Laccopithecus) and the Proconsulidae (Micropithecus, Dendropithecus, Limnoputhecus, Dionysopithecus, and Platdontopithecus) have been proposed as the ancestral hylobatid (gibbon), based largely on small size and simple-cusped, ape-like molars. However, this ignores evidence presented in early anatomical studies of living brachiating primates. All apes and several South American monkeys show structural anatomical adaptations for brachiation. The Pliopithecidae show some ceboid-like features in the hindlimb which suggest that this genus may have been partly suspensory and possibly comparable to spider monkeys, but without a prehensile tail. They were basically arboreal quadrupedal monkeys without any of the brachiator specializations. Large bodied apes add more traits in order to handle great weight. Among the small-bodied brachiators, only the hylobatids possess these large-brachiator traits. Such modifications serve no purpose other than to support a weight greater than 30 kg. The hylobatid gestation time and longevity are also characteristic only of much larger animals. The ancestral gibbon must have been among the large-bodied sivapithecines. This relationship is supported by body size, geography, and biochemical timing (pliopithecids were probably a distinct lineage in the late Oligocene). If a memeber of the Pliopithecidae were the ancestor of extant hylobatids, it would have had to have grown large, became adapted to brachiation, and then grown small again.Laccopithecus has been newly proposed as the ancestral gibbon. If it is not a member of the pliopithecids, with an age of less than 8 mya, then it could be a fossil hylobatid. It would have had to have separated from the Asian great ape line approximately 15 mya, developed full brachiation, and undergone a reduction in body size and dental sexual dimorphism.  相似文献   

5.
Although there have been few studies of self‐scratching in primates, some have reported distinct differences in whether hands or feet are used, and these variations seem to reflect the evolutionary history of the Order. Monkeys and prosimians use both hands and feet to self‐scratch while African great apes use hands almost exclusively. Gibbons represent an evolutionary divergence between monkeys and great apes and incidental observations at the Gibbon Conservation Center pointed to a difference in self‐scratching among the four extant gibbon genera (Hoolock, Nomascus, Symphalangus, and Hylobates). To validate and further explore these preliminary observations, we collected systematic data on self‐scratching from 32 gibbons, including nine species and all four genera. To supplement gibbon data, we also collected self‐scratching information from 18 great apes (four species), five prosimians (two species), 26 New World Monkeys (nine species) and 20 Old World Monkeys (seven species). All monkeys and some prosimians used both hands and feet to self‐scratch, whereas one prosimian species used only feet. All African great apes used hands exclusively (orangutans were an exception displaying occasional foot‐use). This appears to represent a fundamental difference between monkeys and great apes in limb use. Interestingly, there was a clear difference in self‐scratching between the four gibbon genera. Hylobates and Symphalangus self‐scratched only with hands (like all African great apes), while Hoolock and Nomascus self‐scratched with both hands and feet (like monkeys and prosimians). This difference in gibbon behavior may reflect the evolutionary history of gibbons as Hoolock and Nomascus are thought to have evolved before both Hylobates and Symphalangus. What evolutionary pressures led to this divergent pattern is currently opaque; however, this shift in limb preference may result from niche separation across the order facilitating differences in the behavioral repertoire associated with hind and forelimbs. Am. J. Primatol. 74:1035‐1043, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
Hirai H  Hirai Y  Domae H  Kirihara Y 《Human genetics》2007,122(5):477-483
Unlike humans, which are the sole remaining representatives of a once larger group of bipedal apes (hominins), the “lesser apes” (hylobatids) are a diverse radiation with numerous extant species. Consequently, the lesser apes can provide a valuable evolutionary window onto the possible interactions (e.g., interbreeding) of hominin lineages coexisting in the same time and place. In the present work, we employ chromosomal analyses to verify the hybrid ancestry of an individual (Larcon) produced by two of the most distant genera of lesser apes, Hylobates (lar-group gibbons) and Nomascus (concolor-group gibbons). In addition to a mixed pelage pattern, the hybrid animal carries a 48-chromosome karyotype that consists of the haploid complements of each parental species: Hylobates lar (n = 22) and Nomascus leucogenys leucogenys (n = 26). Studies of this animal’s karyotype shed light onto the processes of speciation and genus-level divergence in the lesser apes and, by extension, across the Hominoidea.  相似文献   

7.
The recent discovery that the hoolock gibbon (Hylobates hoolock [Harlan, 1834]) has a karyotype distinct from all other hylobatids provides a new and strong motive for revising gibbon taxonomy and establishing hoolocks in a separate, higher taxon. Revising Groves's taxonomy of 1972, we propose that hoolock, along with the fossil species sericus, occupy a subgenus, Bunopithecus. With the newly added taxon, the genus Hylobates would thus contain four subgenera: Bunopithecus, Hylobates, Nomascus, and Symphalangus.  相似文献   

8.
Two new genera of lycodine zoarcid fish, Santelmoa and Bentartia, and two new species, Santelmoa carmenae and Bentartia cinerea, are described from 13 specimens collected from the Gerlache Strait, Southern Ocean, at 1,056-m depth. Santelmoa can be distinguished from all other lycodine genera by the combination of the following characters: anterior portion of frontals fused; scapular foramen open; ceratohyal–epihyal articulation interdigitating; cranium narrowed; supratemporal commissure and occipital pores absent; intercalar reaching the prootic; parasphenoid wing well developed; palatal arch well developed; posterior hyomandibular ramus short; post-temporal ventral ramus well developed; six branchiostegal rays; vertebrae asymmetrical; pelvic fin rays ensheathed; scales, lateral line, pyloric caeca, palatine and vomerine teeth present. Bentartia differs from the remaining lycodine genera by the following combination of characters: basioccipital and exoccipitals fused; supraoccipital–exoccipital articulation broadly contacting; ceratohyal–epihyal articulation interdigitating; post-temporal ventral ramus weak; two posterior nasal pores; cranium narrowed; supratemporal commissure and occipital pores absent; intercalar set posteriorly; palatal arch well developed; posterior hyomandibular ramus not elongate; parasphenoid wing high; six branchiostegal rays; vertebrae asymmetrical; pelvic fin rays ensheathed; scales, lateral line, pyloric caeca, palatine and vomerine teeth present. The relationships of the two new genera are discussed.  相似文献   

9.
Pendular motion during brachiation of captive Lagothrix lagothricha lugens and Ateles fusciceps robustus was analyzed to demonstrate similarities, and differences, between these two closely related large bodied atelines. This is the first captive study of the kinematics of brachiation in Lagothrix. Videorecordings of one adult male of each species were made in a specially designed cage constructed at the DuMond Conservancy/Monkey Jungle, Miami, FL. Java software (Jandel Scientific Inc., San Rafael, CA) was used for frame‐by‐frame kinematic analysis of individual strides/steps. Results demonstrate that the sequence of hand and tail contacts differ significantly between the two species with Lagothrix using a new tail hold with every hand hold, while Ateles generally utilizes a new tail hold with only every other hand hold. Stride length and stride frequency, even after adjusting for limb length, also differ significantly between the two species. Lagothrix brachiation utilizes short, choppy strides with quick hand holds, while Ateles uses long, fluid strides with longer hand holds. During brachiation not only is Lagothrix's body significantly less horizontal than that of Ateles but also, within Ateles, there are significant differences between steps depending on tail use. Because of the unique nature of tail use in Ateles, many aspects of body positioning in Lagothrix more closely resemble Ateles steps without a simultaneous tail hold rather than those with one. Overall pendulum length in Lagothrix is shorter than in Ateles. Tail use in Ateles has a significant effect on maximum pendulum length during a step. Although neither species achieves the extreme pendulum effect and long period of free‐flight of hylobatids in fast ricochetal brachiation, in captivity both consistently demonstrate effective brachiation with brief periods of free‐flight and pendular motion. Morphological similarities between ateline brachiators and hylobatids are fewer and less pronounced in Lagothrix than in Ateles. This study demonstrates that Lagothrix brachiation is also less hylobatid‐like than that of Ateles. Am. J. Primatol. 48:263–281, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

10.
Observations on the behavior of living hominoids show generic differences in the use and posture of the wrist joint. Both orang-utans and hylobatids usually use the wrist in suspensory behaviors. However, orang-utans emphasize markedly adducted and flexed wrist postures, while hylobatids emphasize violent forearm and wrist rotation. African apes, especially the gorilla, use the wrist more frequently than other hominoids for terrestrial quadrupedal weight-bearing. Humans use the wrist less frequently for supportive purposes than do other hominoids. These behavioral differences correspond to structural specializations in the proximal carpal joint of each of the hominoid genera. Although each of the hominoid genera has apparently modified its proximal carpal joint best to serve its characteristic behaviors, all hominoids share a unique proximal carpal joint that permits approximately 160ℴ of forearm rotation. The hylobatid proximal carpal joint is specialized in exhibiting a marked development of those structures limiting forearm rotation, but it is in most respects the least derived— that is, closest to the nonhominoid anthropoids. Chimpanzees show a proximal carpal joint that is more generalized than those of the other great apes but more derived than that of hylobatids. The human and gorilla proximal wrist joints, on the other hand, show marked modifications for weight-bearing in terrestrial behaviors. Orang-utans have the most derived proximal carpal joint, which in many respects parallels that of the slow-climbing nonhominoid primates. The comparative anatomy and structural specializations of the wrist joint support (a) an early divergence of hylobatids from the common hominoid stock, (b) a common ancestry for gorillas and humans separate from the other hominoids, and (c) a long independent evolutionary period for orang-utans since their divergence from the common hominoid stock, or one that was marked by strong selection pressures for wrist specializations. Unfortunately, the generalized condition of the chimpanzee’s wrist joint and the very derived condition of the orang-utan wrist provide uncertain evidence as to which of the two was first to diverge from the common hominoid stock. Identification of hominoid wrist specializations as reflecting real phylogenetic relationships or parallelisms depends on how well the phytogeny inferred from wrist morphology accords with those arrived at from the study of other systems.  相似文献   

11.
主分量分析(PCA)在动物分类学中的运用   总被引:2,自引:1,他引:1  
潘汝亮  彭燕章 《兽类学报》1991,11(3):194-199
  相似文献   

12.
An understanding of craniofacial growth, both evolutionarily and clinically, requires an investigation of pattern —geometric relations that remain relatively constant among growing structures or components of the skull. Several craniofacial biologists have suggested that specific morphological relations remain invariant during growth and in interspecific comparisons of adults of varying size. We tested the hypothesized invariance of a series of craniofacial angles in a sample of adult Old World monkeys. Fifteen angles were determined from lateral cranial radiographs. Criteria for examining angular invariance included tests for significant correlations and regression slopes with palatal length (overall skull size), tests for significant mean differences (ANOVAs) in angular values between the two subfamilies of Cercopithecidae — Cercopithecinae and Colobinae — and the computation and ranking of standard deviations (SDs) and coefficients of variation (CVs). Results indicate that most of the cranial angles purported to be invariant do not in fact meet the criteria for acceptance. One of the few cranial angles that evinces a somewhat constant value is that between the posterior maxillary plane and the neutral axis of the orbits, providing very limited support for Enlow’s (1982) claim that this region represents a fundamental anatomical interface (at least within Old World monkeys). Our analysis suggests that while there may be several relatively invariant structural relations within the skull, most of those previously discussed as representing evidence of pattern in primate-wide or mammal-wide comparisons are incorrect.  相似文献   

13.
This paper examines differences in the processes by which the cranial base flexes in humans and extends in chimpanzees. In addition, we test the extent to which one can use comparisons of cranial base angles in humans and non-human primates to predict vocal tract dimensions. Four internal cranial base angles and one external cranial base angle were measured in a longitudinal sample of Homo sapiens and a cross-sectional sample of Pan troglodytes. These data show that the processes of cranial base angulation differ substantially in these species. While the human cranial base flexes postnatally in a rapid growth trajectory that is complete by two years, the cranial base in P. troglodytes extends postnatally in a more prolonged skeletal growth trajectory. These comparisons also demonstrate that the rate of cranial base angulation is comparable for different measures, but that angles which incorporate different anterior cranial base measurements correlate poorly. We also examined ontogenetic relationships between internal and external cranial base angles and vocal tract growth in humans to test the hypothesis that cranial base angulation influences pharyngeal dimensions and can, therefore, be used to estimate vocal tract proportions in fossil hominids. Our results indicate that internal and external cranial base angles are independent of the horizontal and vertical dimensions of the vocal tract. Instead, a combination of mandibular and palatal landmarks can be used to predict dimensions of the vocal tract in H. sapiens. The developmental contrasts in cranial base angulation between humans and non-human primates may have important implications for testing hypotheses about the relationship between cranial base flexion and other craniofacial dimensions in hominid evolution.  相似文献   

14.
Paranthropus is distinctive among hominoids in its possession of a greatly thickened hard palate. Although traditionally considered a structural adaptation to counter high-magnitude masticatory stress, alternative developmental models are equally viable. Three models of palatal thickening were evaluated in this study. A mechanical model interprets palatal thickening as a compensatory response to increased instability of the midpalatal suture effected by an anterior placement of the masseteric muscle mass. This model predicts that palatal thickness is correlated with the length of the palate posterior to the masseteric tubercle. Two non-mechanical models consider the thickness of the hard palate to be structurally related to and therefore correlated with either 1) the degree to which the premaxilla overlaps the hard palate in the subnasal region or 2) the height of the posterior facial skeleton. The correlation of craniofacial variables was assessed intraspecifically in ontogenetic series of great ape and human crania. Tests of correlation were performed for each comparison using both residuals calculated from reduced major axis regression of the variable of interest against a measure of cranial size and shape ratios. A significant correlation of palatal thickness with posterior facial height in Pan suggests that the unusually thick hard palate of Paranthropus is directly related to the increased posterior facial height characteristic of this taxon. Further evaluation suggests that extreme palatal thickening in these specimens occurred by virtue of their possession of a nasal septum morphology in which the vomer extends onto the superior nasal surface of the premaxilla. Such a morphology would have constrained the palatal nasal lamina to maintain the approximate level of the premaxillary nasal lamina throughout the growth process thereby promoting palatal thickening. Am J Phys Anthropol 103:375–392, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

15.
According to recent taxonomic reclassification, the primate family Hylobatidae contains four genera (Hoolock, Nomascus, Symphalangus, and Hylobates) and between 14 and 18 species, making it by far the most species-rich group of extant hominoids. Known as the "small apes", these small arboreal primates are distributed throughout Southeast, South and East Asia. Considerable uncertainty surrounds the phylogeny of extant hylobatids, particularly the relationships among the genera and the species within the Hylobates genus. In this paper we use parsimony, likelihood, and Bayesian methods to analyze a dataset containing nearly 14 kilobase pairs, which includes newly collected sequences from X-linked, Y-linked, and mitochondrial loci together with data from previous mitochondrial studies. Parsimony, likelihood, and Bayesian analyses largely failed to find a significant difference among phylogenies with any of the four genera as the most basal taxon. All analyses, however, support a tree with Hylobates and Symphalangus as most closely related genera. One strongly supported phylogenetic result within the Hylobates genus is that Hylobates pileatus is the most basal taxon. Multiple analyses failed to find significant support for any singular genus-level phylogeny. While it is natural to suspect that there might not be sufficient data for phylogenetic resolution (whenever that situation occurs), an alternative hypothesis relating to the nature of gibbon speciation exists. This lack of resolution may be the result of a rapid radiation or a sudden vicariance event of the hylobatid genera, and it is likely that a similarly rapid radiation occurred within the Hylobates genus. Additional molecular and paleontological evidence are necessary to better test among these, and other, hypotheses of hylobatid evolution.  相似文献   

16.
This study examines latitudinal and insular variation in the expression of sexual dimorphism in cranial length in three geographical groupings of Macaca fascicularis. In addition, the relationship between cranial length dimorphism (CLD) and sex‐specific size is examined. The results of the study identified a significant relationship between CLD and latitude for only one of the three geographic groupings. Sex‐specific relationships between cranial length and CLD were detected. The pattern of these relationships varied by geographic grouping. This study is important because it demonstrates that despite very similar levels of CLD in a single primate species, there exists important geographic variability in the correlates of that dimorphism. I suggest that geographically varying ecological factors may influence sex‐specific natural selection and the intensity of CLD in M. fascicularis. Gaining a better understanding of this geographical variability will require that future research examines morphological variation, including CLD, within its corresponding ecological and social contexts. Such research should be comparative, and incorporate multiple geographically separated populations with disparate environmental settings. Am. J. Primatol. 72:152–160, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
The associations between craniofacial morphology and the posture of the head and the cervical column were examined in a sample of 120 Danish male students aged 22–30 years. Two head positions were recorded on lateral cephalometric radiographs, one determined by the subject's own feeling of a natural head balance (self balance position), and the other by the subject looking straight into a mirror (mirror position). Craniofacial morphology was described by 42 linear and angular variables, and postural relationships by 18 angular variables. A comprehensive set of correlations was found between craniofacial morphology and head posture. The correlations were similar for both head positions investigated. Of the postural variables, the position of the head in relation to the cervical column showed the largest set of correlations with craniofacial morphology. Extension of the head in relation to the cervical column was found in connection with large anterior and small posterior facial heights, small antero-posterior craniofacial dimensions, large inclination of the mandible to the anterior cranial base and to the nasal plane, facial retrognathism, a large cranial base angle, and a small nasopharyngeal space. The possible role of functional factors in mediating the relationship between morphology and posture was discussed.  相似文献   

18.
We cross-sectionally investigated prenatal ontogeny of craniofacial shape in the two subspecies of the Japanese macaque (Macaca fuscata fuscata and Macaca fuscata yakui) using a geometric morphometric technique to explore the process of morphogenetic divergence leading to the adult morphological difference between the subspecies. The sample comprised a total of 32 formalin-fixed fetal specimens of the two subspecies, in approximately the second and third trimesters. Each fetal cranium was scanned using computed tomography to generate a three-dimensional surface model, and 68 landmarks were digitized on the external and internal surface of each cranium to trace the growth-related changes in craniofacial shape of the two subspecies. The results of our study demonstrated that the two subspecies generally shared the same craniofacial growth pattern. Both crania tend to exhibit relative contraction of the neurocranium in the mediolateral and superoinferior directions, a more superiorly positioned cranial base, a more vertically oriented occipital squama, and a more anteriorly positioned viscerocranium as the cranial size increased. However, distinctive subspecific differences, for example relatively narrower orbital breadth, higher orbit, higher position of the nuchal crest, and more protrudent snout found in Macaca fuscata yakui were already present during the prenatal period. This study demonstrated that morphological differentiation in the craniofacial shape may occur at a very early stage of the fetal period even between closely related subspecies of the Japanese macaque.  相似文献   

19.
The relationships among the genera and tribal groupings of Riodininae with five forewing radial veins, and between these and tribes with four forewing radial veins, were examined using a phylogenetic analysis. Using the type species from all sixteen genera in the tribal groupings Eurybiini, Mesosemiini and incertae sedis (a presumed paraphyletic group of loosely related genera), and representatives from the four forewing radial‐veined riodinine tribes, thirty‐five new and traditional characters were coded from adult ecology, wing venation and pattern, the adult head and body, male and female genitalia, and early stage ecology and morphology. The majority of characters are illustrated. Phylogenetic analysis of these data produced five equally most parsimonious cladograms using equal weights and after successive weighting. The strict consensus of these confirms the monophyly of Eurybiini and Mesosemiini as currently conceived, but also indicates several higher‐level relationships not previously hypothesized. Mesosemiini is here more broadly defined to also include the entire incertae sedis section, and the tribe is divided into Mesosemiina, for the previously delimited Mesosemiini plus Eunogyra and Teratophthalma, and Napaeina, subtr.n. for the incertae sedis section minus these two genera. The following hypothesis of relationships is tentatively proposed for the basal clades of Riodininae: Mesosemiini + (Eurybiini + remainder of Riodininae). These new hypotheses, and the characters supporting them, are discussed and compared with those previously proposed.  相似文献   

20.
One‐third of all congenital birth defects affect the head and face, and most craniofacial anomalies are considered to arise through defects in the development of cranial neural crest cells. Cranial neural crest cells give rise to the majority of craniofacial bones, cartilages and connective tissues. Therefore, understanding the events that control normal cranial neural crest and subsequent craniofacial development is important for elucidating the pathogenetic mechanisms of craniofacial anomalies and for the exploring potential therapeutic avenues for their prevention. Treacher Collins syndrome (TCS) is a congenital disorder characterized by severe craniofacial anomalies. An animal model of TCS, generated through mutation of Tcof1, the mouse (Mus musculus) homologue of the gene primarily mutated in association with TCS in humans, has recently revealed significant insights into the pathogenesis of TCS. Apoptotic elimination of neuroepithelial cells including neural crest cells is the primary cause of craniofacial defects in Tcof1 mutant embryos. However, our understanding of the mechanisms that induce tissue‐specific apoptosis remains incomplete. In this review, we describe recent advances in our understanding of the pathogenesis TCS. Furthermore, we discuss the role of Tcof1 in normal embryonic development, the correlation between genetic and environmental factors on the severity of craniofacial abnormalities, and the prospect for prenatal prevention of craniofacial anomalies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号