首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Extracellular matrix metalloproteinase inducer (EMMPRIN/basigin/CD147) is a cell surface protein, which has been associated with the induction of matrix metalloproteinase (MMP) genes during cancer metastasis. EMMPRIN plays a role in a variety of physiological processes as is evident by the diverse deficiencies detectable in EMMPRIN knockout mice. We have analysed the role of EMMPRIN in the induction of MMP genes during mammary gland differentiation and involution. Co‐transfection studies showed that EMMPRIN has diverse effects on MMP promoter activity in different mammary and non‐mammary cell lines. Expression of EMMPRIN mRNA is enhanced markedly by insulin in a mammary gland cell line but appears to have no direct effect on MMP gene expression in these cells. Microarray analysis and quantitative PCR show that EMMPRIN is expressed throughout mammary gland differentiation in the mouse. Its expression decreases during early pregnancy and briefly after induction of mammary gland involution by litter removal. Immunohistochemical analysis shows that EMMPRIN expression is limited to the stromal compartment during pregnancy, whereas it is strongly expressed in the epithelium during lactation. In summary the data argue against a causal role for EMMPRIN for the induction of MMP gene expression during adult mammary gland development. These data therefore support a physiological role for EMMPRIN other than MMP induction in mammary gland biology. J. Cell. Biochem. 106: 52–62, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

4.
5.
6.
7.
8.
9.
Apoptosis and mammary gland involution: reviewing the process   总被引:4,自引:0,他引:4  
Apoptosis is a process of programmed cell death. Mammary gland involution is a tissue remodelling process. Mammary epithelial cell apoptosis is an integral component of tissue remodelling but it is only one element. Equally important are the factors which degrade basement membrane and extracellular matrix. Both operations are required for completion of mammary gland involution. The primary apoptotic process occurs first and is temporally distinct from the second stage of involution typified by lobular-alveolar collapse. Local factors related to milk accumulation trigger the first stage, but loss of systemic hormonal stimulation governs the second stage. Changes in the expression patterns of cell cycle control genes and bcl-2 family member genes are found in the first stage. Proteinase gene activation dominates the second stage. These findings support a two stage model of mammary gland involution. Both mammary epithelial cell apoptosis and mammary gland remodelling advance through a process which includes both loss of survival factors and gain of death factors. This review focuses on signalling pathways and genetic controls which are activated and repressed during mammary gland involution.  相似文献   

10.
Leptin is an autocrine and paracrine factor which affects the development of duct, formation of gland alveolus, expression of milk protein gene and onset involution of mammary gland. In order to know the function and mechanism of leptin in mammary gland, the protein expression and localization of leptin and its long form receptor (OB-Rb) were detected by a confocal laser scanning microscope. To study the impacts of leptin on mammary gland and leptin signal transduction pathway in pregnancy-, lactation-and involution-stage mammary gland, explants were cultured and Western blotting was used. The results showed that in the whole development cycle of mammary gland, the expression of leptin and OB-Rb was in positive correlation. In virgin the leptin expression was the highest and then decreased in pregnancy. In lactation the expression of leptin was low and upgraded in involution, and recovered to the original level about virgin on involution 13 d. The localization of leptin and OB-Rb revealed that leptin induced the expression of OB-Rb specifically and controlled the development and physiological function of the mammary gland by binding to OB-Rb. In pregnancy stage, leptin stimulated proliferation and differentiation of ductal epithelial cells by JAK-MAPK signal pathway. In lactation, leptin induced gene expression of β-casein by JAK-STAT5 signal pathway, and in involution leptin induced mammary epithelial cell apoptosis and mammary gland restitution by JAK-STAT3 signal pathway.  相似文献   

11.
12.
13.
Expression and function of leptin and its receptor in mouse mammary gland   总被引:4,自引:0,他引:4  
Leptin is an autocrine and paracrine factor which affects the development of duct, formation of gland alveolus, expression of milk protein gene and onset involution of mammary gland. In order to know the function and mechanism of leptin in mammary gland, the protein expression and localization of leptin and its long form receptor (OB-Rb) were detected by a confocal laser scanning microscope. To study the impacts of leptin on mammary gland and leptin signal transduction pathway in pregnancy-, lacta-tion-and involution-stage mammary gland, explants were cultured and Western blotting was used. The results showed that in the whole development cycle of mammary gland, the expression of leptin and OB-Rb was in positive correlation. In virgin the leptin expression was the highest and then decreased in pregnancy. In lactation the expression of leptin was low and upgraded in involution, and recovered to the original level about virgin on involution 13 d. The localization of leptin and OB-Rb revealed that leptin induced the expression of OB-Rb specifically and controlled the development and physiological function of the mammary gland by binding to OB-Rb. In pregnancy stage, leptin stimulated proliferation and differentiation of ductal epithelial cells by JAK-MAPK signal pathway. In lactation, leptin induced gene expression of β-casein by JAK-STAT5 signal pathway, and in involution leptin induced mammary epithelial cell apoptosis and mammary gland restitution by JAK-STAT3 signal pathway.  相似文献   

14.
Transforming growth factor beta (TGF‐β) ligands are known to regulate virgin mammary development and contribute to initiation of post‐lactation involution. However, the role for TGF‐β during the second phase of mammary involution has not been addressed. Previously, we have used an MMTV‐Cre transgene to delete exon 2 from the Tgfbr2 gene in mammary epithelium, however we observed a gradual loss of TβRII deficient epithelial cells that precluded an accurate study of the role for TGF‐β signaling during involution timepoints. Therefore, in order to determine the role for TGF‐β during the second phase of mammary involution we have now targeted TβRII ablation within mammary epithelium using the WAP‐Cre transgene [TβRII(WKO)Rosa26R]. Our results demonstrated that TGF‐β regulates commitment to cell death during the second phase of mammary involution. Importantly, at day 3 of mammary involution the Na–Pi type IIb co‐transporter (Npt2b), a selective marker for active lactation in luminal lobular alveolar epithelium, was completely silenced in the WAP‐Cre control and TβRII(WKO)Rosa26R tissues. However, by day 7 of involution the TβRII(WKO)Rosa26R tissues had distended lobular alveoli and regained a robust Npt2b signal that was detected at the apical luminal surface. The Npt2b abundance and localization positively correlated with elevated WAP mRNA expression, suggesting that the distended alveoli were the result of an active lactation program rather than residual milk protein and lipid accumulation. In summary, the results suggest that an epithelial cell response to TGF‐β signaling regulates commitment to cell death and suppression of lactation during the second phase of mammary involution. J. Cell. Physiol. 219: 57–68, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

15.
16.
Although apoptosis is important in determining cell fate and maintaining tissue homeostasis, the initiation and control of apoptotic cell death in epithelium is not well understood. Post-lactationai involution of the mammary gland provides both an important developmental process and a normal physiological setting for studying apoptosis of epithelium. We used a differential screening strategy, based on previous studies correlating morphology with gene expression and nucleic acid integrity during mammary gland involution, to isolate genes involved in the regulation and execution of apoptotic cell death in regressing mammary epithelium. This screening strategy yielded a large number of genes the expression of which is significantly altered during mammary gland involution. These include genes associated with cell death processes, tissue remodelling and mesenchymal differentiation. In addition, a number of novel genes have been isolated. We have used Northern analysis and in situ hybridisation to study the expression of a selection of these putative death-associated genes during post-lactational mouse mammary gland involution.  相似文献   

17.
The claudins are a family of tight junction proteins that display varied tissue distribution and preferential specificity. We recently identified by microarray analysis, members of this family, particularly claudin 1 (cldn1), as highly upregulated genes in the mouse mammary gland during early involution. Gene expression was confirmed by immunohistochemistry and real-time PCR. We then examined gene and protein expression throughout normal mammary gland development. The cldn3 gene showed a steady increase in expression from pregnancy to involution, while cldn1 and cldn4 gene expression increased during pregnancy, but decreased sharply by D10 of lactation, and once again was significantly increased by D1 of involution (P < 0.001 for both genes). The different patterns of gene expression observed between cldn3, and cldn1, and 4 suggest that different family members may be functionally important at different times during mouse mammary gland development. All three genes exhibited a high level of expression at day 1 (D1) of involution, followed by a dramatic decrease in gene expression to day 10 of involution. Immunostaining with the cldn3 antibody showed intense staining of epithelial cells; however, a lesser degree of staining was evident with the cldn1 antibody. In addition to the lateral staining of epithelial cells, basal staining was evident at D1 and D2 of involution and cytoplasmic staining was evident during lactation. Since claudins are known to play a role as tight junction proteins, lateral and basal staining may suggest a role in other functions such as vesicle trafficking or remodeling of tight junctions at different stages of mammary gland development. Cldn1 and 3 antibodies also stained epithelial cells in mouse mammary tumors. In summary, cldn1, 3, and 4 are differentially expressed in the mammary gland during pregnancy, lactation, and involution, suggesting different roles for these proteins at different stages of mammary gland function. In addition, cldn1 and cldn3 are detected in mammary tumors and the wide distribution of cldn3 in particular, suggest specific roles for these proteins in mammary tumorigenesis.  相似文献   

18.
J M Rosen  S L Woo  J P Comstock 《Biochemistry》1975,14(13):2895-2903
Casein mRNA was isolated and partially purified from RNA extracts of rat lactating mammary glands and translated in a teterologous cell-free protein synthesizing system derived from wheat germ. Casein mRNA activity was assayed by immunoprecipitation using a specific antiserum prepared against a mixture of the purified rat caseins. Properties of rat casein mRNA were examined using a variety of sizing techniques, including chromatography on Sepharose 4B, sedimentation on sucrose gradients after heat denaturation, and electrophoresis on 2.5% agarose gels in 6 M urea. Casein mRNA activity was found in an 8-16S region after gradient centrifugation with the peak occurring at 10.5 S. In addition, the binding of rat casein mRNA to dT-cellulose was examined. Only 40% of the total casein mRNA activity was selectively retained. A partial purification of casein mRNA was accomplished by a combination of these sizing and affinity chromatography techniques. In the purified preparations casein mRNA activity comprises approximately 90% of the total mRNA activity. Characterization of this material by agarose gel electrophoresis revealed two main bands of RNA at approximately 12 and 16 S, both containing casein mRNA activity. These mRNAs were of the correct size to code for two of the principal rat caseins of approximately 25,000 and 42,000 molecular weights. Casein mRNA and total mRNA activities were then compared in total RNA extracts at various stages of normal mammary gland development in the rat, i.e. during pregnancy, lactation, and involution following weaning. A selective induction of casein mRNA activity compared to total mRNA activity was found to occur during pregnancy and lactation. Moreover, a selective loss of activity was also observed during mammary gland involution. A surprisingly high level of casein mRNA activity was found in RNA extracts from early and midpregnant mammary glands.  相似文献   

19.
To understand molecular mechanisms that regulate mammary gland involution, we identified involution-induced cDNA clones by suppression subtractive hybridization methods. Nucleotide sequencing of a clone revealed that it was 97% identical to Ca(2+)-sensitive chloride channel 1 (mCLCA1) gene that has been identified in lung tissue. We concluded that our clone was derived from different gene with mCLCA1 and named it mCLCA2. We confirmed that expression of mCLCA2 gene was predominant in mammary gland while mCLCA1 mRNA was mainly detected in lung tissues by RT-PCR. Northern analysis showed that the mCLCA2 gene was induced at involution phase compared to pregnant and lactating phases of mammary gland. Under serum starvation, HC11 mammary epithelial cells showed DNA fragmentation and induction of mCLCA2 expression.  相似文献   

20.
Analyses of the rat mammary gland show that the increase in the milk-protein mRNAs during the development of lactation and the rapid disappearance of these sequences during involution are not accompanied by similar changes in the poly(A) content. During the development of lactation the casein mRNA is initially in great excess to the whey-protein mRNA and this differential expression of the genes for the two types of milk proteins is again observed during early involution. Since the amounts of poly(A) and of both milk-protein mRNAs are also similar to the amounts found in the gland during late pregnancy, these results indicate that during early involution the mammary gland has reverted to the pattern of mRNA metabolism that occurs during late pregnancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号