首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A de novo polypeptide GH(6)[(GA)(3)GY(GA)(3)GE](8)GAH(6) (YE8) was designed and genetically engineered to form antiparallel beta-strands of GAGAGA repeats. Modulation of pH enables control of solubility, folding, and aggregation of YE8 by control of the overall polypeptide charge, a consequence of the protonation or deprotonation of the glutamic acid and histidine residues. YE8 exhibits all the major properties of a fibrillogenic protein providing an excellent model for detailed study of the fibrillation. At neutral pH, YE8 is soluble in disordered form, yet at pH 3.5 folds into a predominantly beta-sheet conformation that is fibrillogenic. Atomic force microscopy and transmission electron microscopy indicated the formation of fibrillar aggregates on well-defined, hydrophobic surfaces. The beta-sheet folding of YE8 exhibited a lag phase that could be eliminated by seeding or stirring. The strong dependence of lag time on polypeptide concentration established the limiting step in aggregation as initiation of beta-sheet folding.  相似文献   

2.
The design of biomimetic materials through molecular self‐assembly is a growing area of modern nanotechnology. With problems of protein folding, self‐assembly, and sequence–structure relationships as essential in nanotechnology as in biology, the effect of the nucleation of β‐hairpin formation by proline on the folding process has been investigated in model studies. Previously such studies were limited to investigations of the influence of proline on the formation of turns in short peptide sequences. The effect of proline‐based triads on the folding of an 11‐kDa amyloidogenic peptide GH6[(GA)3GY(GA)3GE]8GAH6 ( YE8 ) was investigated by selective substitution of the proline‐substituted triads at the γ‐turn sites. The folding and fibrillation of the singly proline‐substituted polypeptides, e.g., GH6? [(GA)3GY(GA)3GE]7(GA)3GY(GA)3PD? GAH6 ( 8PD ), and doubly proline‐substituted polypeptides, e.g., GH6? [(GA)3GY(GA)3GE]3(GA)3GY(GA)3PD[(GA)3GY(GA)3GE]3(GA)3GY(GA)3PD? GAH6 ( 4,8PD ), were directly monitored by circular dichroism and deep UV resonance Raman and fluorescence spectroscopies. These findings were used to identify the essential folding domains, i.e., the minimum number of β‐strands necessary for stable folding. These experimental findings may be especially useful in the design and construction of peptidic materials for a wide range of applications as well as in understanding the mechanisms of folding critical to fibril formation. © 2015 Wiley Periodicals, Inc. Biopolymers 103: 339–350, 2015.  相似文献   

3.
The loss of metal homeostasis and the toxic effect of metal ion are important events in neurodegenerative and age‐related diseases, such as Alzheimer's disease (AD). For the first time, we investigated the impacts of mercury(II) ions on the folding and aggregation of Alzheimer's tau fragment R2 (residues 275‐305: VQIIN KKLDL SNVQS KCGSK DNIKH VPGGGS), corresponding to the second repeat unit of the microtubule‐binding domain, which was believed to be pivotal to the biochemical properties of full tau protein. By ThS fluorescence assay and electron microscopy, we found that mercury(II) dramatically promoted heparin‐induced aggregation of R2 at an optimum molar ratio of 1: 2 (metal: protein), and the resulting R2 filaments became smaller. Isothermal titration calorimetry (ITC) experiment revealed that the strong coordination of mercury(II) with R2 was an enthalpy‐controlled, entropy‐decreased thermodynamic process. The exceptionally large magnitude of heat release (ΔH1 = ?34.8 Kcal mol?1) suggested that the most possible coordinating site on the R2 peptide chain was the thiol group of cysteine residue (Cys291), and this was further confirmed by a control experiment using Cys291 mutated R2. Circular dichroism spectrum demonstrated that this peptide underwent a significant conformational change from random coil to β‐turn structure upon its binding to mercury(II) ion. This study was undertaken to better understand the mechanism of tau aggregation, and evaluate the possible role of mercury(II) in the pathogenesis of AD. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 1100–1107, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

4.
The murine 10‐residue neurohormone kisspeptin (YNWNSFGLRY) is an important regulator of reproductive behavior and gonadotrophin secretion. It is known to form a random coil in solution, but undergoes a structural change in the presence of membranes although the nature of this change is not fully determined. The peptide's conformational versatility raises the question whether it is also able to form ordered aggregates under physiological conditions, which might be relevant as a storage mechanism. Here we show that heparin induces kisspeptin to form β‐sheet rich amyloid aggregates both at neutral (pH 7.0) and slightly acidic (pH 5.2) conditions. Addition of heparin leads to aggregation after a certain lag phase, irrespective of the time of addition of heparin, indicating that heparin is needed to facilitate the formation of fibrillation nuclei. Aggregation is completely inhibited by submicellar concentrations of zwitterionic and anionic surfactants. Unlike previous reports, our NMR data do not indicate persistent structure in the presence of zwitterionic surfactant micelles. Thus kisspeptin can aggregate under physiologically relevant conditions provided heparin is present, but the process is highly sensitive to the presence of amphiphiles, highlighting the very dynamic nature of the peptide conformation and suggesting that kisspeptin aggregation is a biologically regulatable process. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 678–689, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

5.
A fluorescently labeled 20‐residue polyglutamic acid (polyE) peptide 20 amino acid length polyglutamic acid (E20) was used to study structural changes which occur in E20 as it co‐aggregates with other unlabeled polyE peptides. Resonance energy transfer (RET) was performed using an o‐aminobenzamide donor at the N‐terminus and 3‐nitrotyrosine acceptor at the C‐terminus of E20. PolyE aggregates were not defined as amyloid, as they were nonfibrillar and did not bind congo red. Circular dichroism measurements indicate that polyE aggregation involves a transition from α‐helical monomers to aggregated β‐sheets. Soluble oligomers are also produced along with aggregates in the reaction, as determined through size exclusion chromatography. Time‐resolved and steady‐state RET measurements reveal four dominant E20 conformations: (1) a partially collapsed conformation (24 Å donor–acceptor distance) in monomers, (2) an extended conformation in soluble oligomers (>29 Å donor–acceptor distance), (3) a minor partially collapsed conformation (22 Å donor‐acceptor distance) in aggregates, and (4) a major highly collapsed conformation (13 Å donor–acceptor distance) in aggregates. These findings demonstrate the use of RET as a means of determining angstrom‐level structural details of soluble oligomer and aggregated states of proteins. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 299–317, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

6.
A 34‐residue α/β peptide [IG(28–61)], derived from the C‐terminal part of the B3 domain of the immunoglobulin binding protein G from Streptoccocus, was studied using CD and NMR spectroscopy at various temperatures and by differential scanning calorimetry. It was found that the C‐terminal part (a 16‐residue‐long fragment) of this peptide, which corresponds to the sequence of the β‐hairpin in the native structure, forms structure similar to the β‐hairpin only at T = 313 K, and the structure is stabilized by non‐native long‐range hydrophobic interactions (Val47–Val59). On the other hand, the N‐terminal part of IG(28–61), which corresponds to the middle α‐helix in the native structure, is unstructured at low temperature (283 K) and forms an α‐helix‐like structure at 305 K, and only one helical turn is observed at 313 K. At all temperatures at which NMR experiments were performed (283, 305, and 313 K), we do not observe any long‐range connectivities which would have supported packing between the C‐terminal (β‐hairpin) and the N‐terminal (α‐helix) parts of the sequence. Such interactions are absent, in contrast to the folding pathway of the B domain of protein G, proposed recently by Kmiecik and Kolinski (Biophys J 2008, 94, 726–736), based on Monte‐Carlo dynamics studies. Alternative folding mechanisms are proposed and discussed. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 469–480, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

7.
The entire family of noncomplementary hexamer oligodeoxyribonucleotides d(GCXYGC) (X and Y = A, G, C, or T) were assessed for topological indicators and equilibrium thermodynamics using a priori molecular modeling and solution phase NMR spectroscopy. Feasible modeled hairpin structures formed a basis from which solution structure and equilibria for each oligonucleotide were considered. 1H and 31P variable temperature‐dependent (VT) and concentration‐dependent NMR data, NMR signal assignments, and diffusion parameters led to d(GCGAGC) and d(GCGGGC) being understood as exceptions within the family in terms of self‐association and topological character. A mean diffusion coefficient D298 K = (2.0 ± 0.07) × 10?10 m2 s?1 was evaluated across all hexamers except for d(GCGAGC) (D298 K = 1.7 × 10?10 m2 s?1) and d(GCGGGC) (D298 K = 1.2 × 10?10 m2 s?1). Melting under VT analysis (Tm = 323 K) combined with supporting NMR evidence confirmed d(GCGAGC) as the shortest tandem sheared GA mismatched duplex. Diffusion measurements were used to conclude that d(GCGGGC) preferentially exists as the shortest stable quadruplex structure. Thermodynamic analysis of all data led to the assertion that, with the exception of XY = GA and GG, the remaining noncomplementary oligonucleotides adopt equilibria between monomer and duplex, contributed largely by monomer random‐coil forms. Contrastingly, d(GCGAGC) showed preference for tandem sheared GA mismatch duplex formation with an association constant K = 3.9 × 105M?1. No direct evidence was acquired for hairpin formation in any instance although its potential existence is considered possible for d(GCGAGC) on the basis of molecular modeling studies. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 1023–1038, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

8.
Salmon calcitonin (sCT) was selected as a model protein drug for investigating its intrinsic thermal stability and conformational structure in the solid and liquid states by using a Fourier transform infrared (FT‐IR) microspectroscopy with or without utilizing thermal analyzer. The spectral correlation coefficient (r) analysis between two second‐derivative IR spectra was applied to quantitatively estimate the structural similarity of sCT in the solid state before and after different treatments. The thermal FT‐IR microspectroscopic data clearly evidenced that sCT in the solid state was not effected by temperature and had a thermal reversible property during heating–cooling process. Moreover, the high r value of 0.973 or 0.988 also evidenced the structural similarity of solid‐state sCT samples before and after treatments. However, sCT in H2O exhibited protein instability and thermal irreversibility after incubation at 40°C. The temperature‐induced conformational changes of sCT in H2O was occurred to transform the α‐helix/random coil structures to β‐sheet structure and also resulted in the formation of intramolecular and intermolecular β‐sheet structures. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 200–207, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

9.
Riboswitch regulation of gene expression requires ligand‐mediated RNA folding. From the fluorescence lifetime distribution of bound 2‐aminopurine ligand, we resolve three RNA conformers (Co, Ci, Cc) of the liganded G‐ and A‐sensing riboswitches from Bacillus subtilis. The ligand binding affinities, and sensitivity to Mg2+, together with results from mutagenesis, suggest that Co and Ci are partially unfolded species compromised in key loop‐loop interactions present in the fully folded Cc. These data verify that the ligand‐bound riboswitches may dynamically fold and unfold in solution, and reveal differences in the distribution of folded states between two structurally homologous purine riboswitches: Ligand‐mediated folding of the G‐sensing riboswitch is more effective, less dependent on Mg2+, and less debilitated by mutation, than the A‐sensing riboswitch, which remains more unfolded in its liganded state. We propose that these sequence‐dependent RNA dynamics, which adjust the balance of ligand‐mediated folding and unfolding, enable different degrees of kinetic discrimination in ligand binding, and fine‐tuning of gene regulatory mechanisms. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 953–965, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

10.
2SS[6‐127,64‐80] variant of lysozyme which has two disulfide bridges, Cys6‐Cys127 and Cys64‐Cys80, and lacks the other two disulfide bridges, Cys30‐Cys115 and Cys76‐Cys94, was quite unstructured in water, but a part of the polypeptide chain was gradually frozen into a native‐like conformation with increasing glycerol concentration. It was monitored from the protection factors of amide hydrogens against H/D exchange. In solution containing various concentrations of glycerol, H/D exchange reactions were carried out at pH* 3.0 and 4°C. Then, 1H‐15N‐HSQC spectra of partially deuterated protein were measured in a quenching buffer for H/D exchange (95% DMSO/5% D2O mixture at pH* 5.5 adjusted with dichloroacetate). In a solution of 10% glycerol, the protection factors were nearly equal to 10 at most of residues. With increasing glycerol concentration, some selected regions were further protected, and their protection factors reached about a 1000 in 30% glycerol solution. The highly protected residues were included in A‐, B‐, and C‐helices and β3‐strand, and especially centered on Ile 55 and Leu 56. In 2SS[6‐127,64‐80], long‐range interactions were recovered due to the preferential hydration by glycerol in the hydrophobic box of the α‐domain. Glycerol‐induced recovering of the native‐like structure is discussed from the viewpoint of molten globules growing with the protein folding. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 665–675, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

11.
The misfolding and aggregation of disease proteins is characteristic of numerous neurodegenerative diseases. Particular neuronal populations are more vulnerable to proteotoxicity while others are more apt to tolerate the misfolding and aggregation of disease proteins. Thus, the cellular environment must play a significant role in determining whether disease proteins are converted into toxic or benign forms. The endomembrane network of eukaryotes divides the cell into different subcellular compartments that possess distinct sets of molecular chaperones and protein interaction networks. Chaperones act as agonists and antagonists of disease protein aggregation to prevent the accumulation of toxic intermediates in the aggregation pathway. Interacting partners can also modulate the conformation and localization of disease proteins and thereby influence proteotoxicity. Thus, interplay between these protein homeostasis network components can modulate the self‐association of disease proteins and determine whether they elicit a toxic or benign outcome. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 229–236, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

12.
Electronic and vibrational circular dichroism are often used to determine the secondary structure of proteins, because each secondary structure has a unique spectrum. Little is known about the vibrational circular dichroic spectroscopic features of the β‐hairpin. In this study, the VCD spectral features of a decapeptide, YYDPETGTWY (CLN025), which forms a stable β‐hairpin that is stabilized by intramolecular weakly polar interactions and hydrogen bonds were determined. Molecular dynamics simulations and ECD spectropolarimetry were used to confirm that CLN025 adopts a β‐hairpin in water, TFE, MeOH, and DMSO and to examine differences in the secondary structure, hydrogen bonds, and weakly polar interactions. CLN025 was synthesized by microwave‐assisted solid phase peptide synthesis with Nα‐Fmoc protected amino acids. The VCD spectra displayed a (?,+,?) pattern with bands at 1640 to 1656 cm?1, 1667 to 1687 cm?1, and 1679 to 1686 cm?1 formed by the overlap of a lower frequency negative couplet and a higher frequency positive couplet. A maximum IR absorbance was observed at 1647 to 1663 cm?1 with component bands at 1630 cm?1, 1646 cm?1, 1658 cm?1, and 1675 to 1680 cm?1 that are indicative of the β‐sheet, random meander, either random meander or loop and turn, respectively. These results are similar to the results of others, who examined the VCD spectra of β‐hairpins formed by DPro‐Xxx turns and indicated that observed pattern is typical of β‐hairpins. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 442–450, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

13.
The collagen triple helix has a larger accessible surface area per molecular mass than globular proteins, and therefore potentially more water interaction sites. The effect of deuterium oxide on the stability of collagen model peptides and Type I collagen molecules was analyzed by circular dichroism and differential scanning calorimetry. The transition temperatures (Tm) of the protonated peptide (Pro‐Pro‐Gly)10 were 25.4 and 28.7°C in H2O and D2O, respectively. The increase of the Tm of (Pro‐Pro‐Gly)10 measured calorimetrically at 1.0°C min?1 in a low pH solution from the protonated to the deuterated solvent was 5.1°C. The increases of the Tm for (Gly‐Pro‐4(R)Hyp)9 and pepsin‐extracted Type I collagen were measured as 4.2 and 2.2°C, respectively. These results indicated that the increase in the Tm in the presence of D2O is comparable to that of globular proteins, and much less than reported previously for collagen model peptides [Gough and Bhatnagar, J Biomol Struct Dyn 1999, 17, 481–491]. These experimental results suggest that the interaction of water molecules with collagen is similar to the interaction of water with globular proteins, when the ratio of collagen to water is very small and collagen is monomerically dispersed in the solvent. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 93–101, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

14.
15.
Hsp90 molecular chaperones are required for the stability and activity of a diverse range of client proteins that have critical roles in signal transduction, cellular trafficking, chromatin remodeling, cell growth, differentiation, and reproduction. Mammalian cells contain three types of Hsp90s: cytosolic Hsp90, mitochondrial Trap‐1, and Grp94 of the endoplasmic reticulum. Each of the Hsp90s, as well as the bacterial homolog, HtpG, hydrolyze ATP and undergo similar conformational changes. Unlike the other forms of Hsp90, cytosolic Hsp90 function is dependent on a battery of co‐chaperone proteins that regulate the ATPase activity of Hsp90 or direct Hsp90 to interact with specific client proteins. This review will summarize what is known about Hsp90's ability to mediate the folding and activation of diverse client proteins that contribute to human diseases, such as cancer and fungal and viral infections. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 211–217, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

16.
Jun Gao  Zhijun Li 《Biopolymers》2010,93(4):340-347
It is widely accepted that a protein's sequence determines its structure. The surprising finding that proteins of distant sequence can adopt similar 3D structures has raised interesting questions regarding underlying conserved properties that are essential for protein folding and stability. Uncovering the conserved properties may shed light on the folding mechanism of proteins and help with the development of computational tools for protein structure prediction. We compiled and analyzed a structure pair dataset of 66 high‐resolution and low sequence identity (16–38%) soluble proteins. Structure deviation for each pair was confirmed by calculating its Cα SiMax value and comparing its potential energy per residue. Analysis of favorable inter‐residue interactions for each structure pair indicated that the average number of inter‐residue interactions within each structure represents a conserved feature of homologous structures of distant sequence. Detailed comparison of individual types of interactions showed that the average number of either hydrophobic or hydrogen bonding interactions remains unchanged for each structure pair. These findings should be of help to improving the quality of homology models based on templates of low sequence identity, thus broadening the application of homology modeling techniques for protein studies. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 340–347, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

17.
The capacity to form β‐sheet structure and to self‐organize into amyloid aggregates is a property shared by many proteins. Severe neurodegenerative pathologies such as Alzheimer's disease are thought to involve the interaction of amyloidogenic protein oligomers with neuronal membranes. To understand the experimentally observed catalysis of amyloid formation by lipid membranes and other water‐hydrophobic interfaces, we examine the physico‐chemical basis of peptide adsorption and aggregation in a model membrane using atomistic molecular simulations. Blocked octapeptides with simple, repetitive sequences, (Gly‐Ala)4, and (Gly‐Val)4, are used as models of β‐sheet‐forming polypeptide chains found in the core of amyloid fibrils. In the presence of an n‐octane phase mimicking the core of lipid membranes, the peptides spontaneously partition at the octane‐water interface. The adsorption of nonpolar sidechains displaces the peptides' conformational equilibrium from a heterogeneous ensemble characterized by a high degree of structural disorder toward a more ordered ensemble favoring β‐hairpins and elongated β‐strands. At the interface, peptides spontaneously aggregate and rapidly evolve β‐sheet structure on a 10 to 100 ns time scale, while aqueous aggregates remain amorphous. Catalysis of β‐sheet formation results from the combination of the hydrophobic effect and of reduced conformational entropy of the polypeptide chain. While the former drives interfacial partition and displaces the conformational equilibrium of monomeric peptides, the planar interface further facilitates β‐sheet organization by increasing peptide concentration and reducing the dimensionality of self‐assembly from three to two. These findings suggest a general mechanism for the formation of β‐sheets on the surface of globular proteins and for amyloid self‐organization at hydrophobic interfaces. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
We tested directly the differences in the aggregation kinetics of three important β amyloid peptides, the full‐length Aβ1‐42, and the two N‐terminal truncated and pyroglutamil modified Aβpy3‐42 and Aβpy11‐42 found in different relative concentrations in the brains in normal aging and in Alzheimer disease. By following the circular dichroism signal and the ThT fluorescence of the solution in phosphate buffer, we found substantially faster aggregation kinetics for Aβpy3‐42. This behavior is due to the particular sequence of this peptide, which is also responsible for the specific oligomeric aggregation states, found by TEM, during the fibrillization process, which are very different from those of Aβ1‐42, more prone to fibril formation. In addition, Aβpy3‐42 is found here to have an inhibitory effect on Aβ1‐42 fibrillogenesis, coherently with its known greater infective power. This is an indication of the important role of this peptide in the aggregation process of β‐peptides in Alzheimer disease. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 861–873, 2009. This article was originally published online as an accepted preprint. The “Published Online“ date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

19.
Glucose acts as a β‐cell stimulus factor and leads to cellular responses that involve a large amount of biomolecule formation, relocation, and transformation. We hypothesize that information about these changes can be obtained in real‐time by laser tweezers Raman spectroscopy. To test this hypothesis, repeated measurements designs in accordance with the application of Raman spectroscopy detection were used in the current experiment. Single rat β‐cells were measured by Raman spectroscopy in 2.8 mmol/l glucose culture medium as a basal condition. After stimulation with high glucose (20 mmol/l), the same cells were measured continuously. Each cell was monitored over a total time span of 25 min, in 5 min intervals. During this period of time, cells were maintained at an appropriate temperature controlled by an automatic heater, to provide near‐physiological conditions. It was found that some significant spectral changes induced by glucose were taking place during the stimulation time course. The most noticeable changes were the increase of spectral intensity at the 1002, 1085, 1445, and 1655 cm?1 peaks, mainly corresponding to protein and lipid. We speculate that these changes might have to do with β‐cell protein and lipid synthesis. Using laser tweezers Raman spectroscopy in combination with glucose stimulation, optical spectral information from rat β‐cells was received and analyzed. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 587–594, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

20.
Nucleic acid recognition is often mediated by α‐helices or disordered regions that fold into α‐helix on binding. A peptide bearing the DNA recognition helix of HPV16 E2 displays type II polyproline (PII) structure as judged by pH, temperature, and solvent effects on the CD spectra. NMR experiments indicate that the canonical α‐helix is stabilized at the N‐terminus, while the PII forms at the C‐terminus half of the peptide. Re‐examination of the dihedral angles of the DNA binding helix in the crystal structure and analysis of the NMR chemical shift indexes confirm that the N‐terminus half is a canonical α‐helix, while the C‐terminal half adopts a 310 helix structure. These regions precisely match two locally driven folding nucleii, which partake in the native hydrophobic core and modulate a conformational switch in the DNA binding helix. The peptide shows only weak and unspecific residual DNA binding, 104‐fold lower affinity, and 500‐fold lower discrimination capacity compared with the domain. Thus, the precise side chain conformation required for modulated and tight physiological binding by HPV E2 is largely determined by the noncanonical strained α‐helix conformation, “presented” by this unique architecture. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 432–443, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号