首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Growth on glycerol has already been a topic of research for several yeast species, and recent publications deal with the regulatory mechanisms of glycerol assimilation by the fission yeast Schizosaccharomyces pombe. We investigated glycerol metabolism of S. pombe from a physiological point of view, characterizing growth and metabolism on a mixture of glycerol and acetate and comparing it to growth on glucose under respirative growth conditions in chemostat experiments. On glycerol/acetate mixtures, the cells grew with a maximum specific growth rate of 0.11 h?1 where 46 % of the carbon was channeled into biomass and the key fermentation product ethanol was not detectable. 13C-assisted metabolic flux analysis resolved substrate distributions through central carbon metabolism, proving that glycerol is used as a precursor for glycolysis, gluconeogenesis, and the pentose phosphate pathway, while acetate enters the tricarboxylic acid cycle via acetyl-CoA. Considering compartmentalization between cytosol and mitochondria in the metabolic model, we found compartmentalization of biosynthesis for the amino acids aspartate and leucine. Balancing of redox cofactors revealed an abundant production of cytosolic NADPH that must be finally regenerated via the respiratory chain shown by the simulated and measured CO2 production and oxygen consumption rates which were in good agreement.  相似文献   

2.
The effects of zinc supplementation were investigated in the continuous ethanol fermentation using self-flocculating yeast. Zinc sulfate was added at the concentrations of 0.01, 0.05 and 0.1 g l(-1), respectively. Reduced average floc sizes were observed in all the zinc-supplemented cultures. Both the ethanol tolerance and thermal tolerance were significantly improved by zinc supplements, which correlated well with the increased ergosterol and trehalose contents in the yeast flocs. The highest ethanol concentration by 0.05 g l(-1) zinc sulfate supplementation attained 114.5 g l(-1), in contrast to 104.1 g l(-1) in the control culture. Glycerol production was decreased by zinc supplementations, with the lowest level 3.21 g l(-1), about 58% of the control. Zinc content in yeast cells was about 1.4 microMol g(-1) dry cell weight, about sixfold higher than that of control in all the zinc-supplemented cultures, and close correlation of zinc content in yeast cells with the cell viability against ethanol and heat shock treatment was observed. These studies suggest that exogenous zinc addition led to a reprogramming of cellular metabolic network, resulting in enhanced ethanol tolerance and ethanol production.  相似文献   

3.
An innovative consecutive batch fermentation process was developed for very high gravity (VHG) ethanol fermentation with the self-flocculating yeast under high biomass concentration conditions. On the one hand, the high biomass concentration significantly shortened the time required to complete the VHG fermentation and the duration of yeast cells suffering from strong ethanol inhibition, preventing them from losing viability and making them suitable for being repeatedly used in the process. On the other hand, the separation of yeast cells from the fermentation broth by sedimentation instead of centrifugation, making the process economically more competitive. The VHG medium composed of 255 g L−1 glucose and 6.75 g L−1 each of yeast extract and peptone was fed into the fermentation system for nine consecutive batch fermentations, which were completed within 8–14 h with an average ethanol concentration of 15% (v/v) and ethanol yield of 0.464, 90.8% of its theoretical value of 0.511. The average ethanol productivity that was calculated with the inclusion of the downstream time for the yeast flocs to settle from the fermentation broth and the supernatant to be removed from the fermentation system was 8.2 g L−1 h−1, much higher than those previously reported for VHG ethanol fermentation and regular ethanol fermentation with ethanol concentration around 12% (v/v) as well.  相似文献   

4.
Studies were performed on the effect of CaCO3 and CaCl2 supplementation to fermentation medium for ethanol production from xylose, glucose, or their mixtures using Scheffersomyces (Pichia) stipitis. Both of these chemicals were found to improve maximum ethanol concentration and ethanol productivity. Use of xylose alone resulted in the production of 20.68 ± 0.44 g L?1 ethanol with a productivity of 0.17 ± 0.00 g L?1 h?1, while xylose plus 3 g L?1 CaCO3 resulted in the production of 24.68 ± 0.75 g L?1 ethanol with a productivity of 0.21 ± 0.01 g L?1 h?1. Use of xylose plus glucose in combination with 3 g L?1 CaCO3 resulted in the production of 47.37 ± 0.55 g L?1 ethanol (aerobic culture), thus resulting in an ethanol productivity of 0.39 ± 0.00 g L?1 h?1. These values are 229 % of that achieved in xylose medium. Supplementation of xylose and glucose medium with 0.40 g L?1 CaCl2 resulted in the production of 44.84 ± 0.28 g L?1 ethanol with a productivity of 0.37 ± 0.02 g L?1 h?1. Use of glucose plus 3 g L?1 CaCO3 resulted in the production of 57.39 ± 1.41 g L?1 ethanol under micro-aerophilic conditions. These results indicate that supplementation of cellulosic sugars in the fermentation medium with CaCO3 and CaCl2 would improve economics of ethanol production from agricultural residues.  相似文献   

5.
自絮凝酵母高浓度重复批次乙醇发酵   总被引:2,自引:1,他引:2  
利用发酵性能优良的自絮凝酵母Saccharomyces cerevisiaeflo,研究开发了重复批次高浓度乙醇发酵系统,以节省下游加工过程的能耗。在终点乙醇浓度达到120g/L左右的条件下,发酵系统的乙醇生产强度达到8.2g/(L·h)。然而实验中发现,随着发酵批次的增多,自絮凝酵母沉降性能逐渐下降,从发酵液中沉降分离所需时间相应延长,导致发酵液中高浓度乙醇对酵母的毒害作用加剧,影响其发酵活性和发酵系统运行的稳定性,发酵装置运行11个批次后无法继续运行。实验结果表明,絮凝能力下降导致的酵母絮凝颗粒尺度减小是其沉降性能下降的主要原因。进一步研究发现,酵母的絮凝能力通过再培养可以恢复。在此基础上对发酵系统操作进行改进,每批发酵结束后可控采出一定比例菌体,调节系统的酵母细胞密度和乙醇生产强度以刺激酵母增殖,保持其絮凝能力。在达到相同发酵终点乙醇浓度条件下,虽然发酵系统的乙醇生产强度降低到4.0g/(L·h),但运行10d后絮凝颗粒酵母尺度趋于稳定,继续运行14d,未发现絮凝颗粒酵母尺度继续下降的现象,系统可以稳定运行。  相似文献   

6.
絮凝颗粒粒度分布对自絮凝酵母SPSC01乙醇耐受能力的影响   总被引:1,自引:0,他引:1  
利用激光聚焦反射式颗粒测量系统, 通过调节不同的搅拌速率, 得到了分批补料培养条件下粒度分布不同的四个絮凝酵母SPSC01颗粒群体, 进而对絮凝颗粒群体分布对乙醇耐受性进行了系统研究。经过6 h、20%乙醇的冲击, 颗粒粒度为100、200、300和400 mm的自絮凝酵母SPSC01的存活率分别为3.5%、26.7%、48.8%和37.6%。这表明不同粒度分布的絮凝颗粒群体乙醇耐受性具有明显差别, 在一定粒度范围内乙醇耐受性达到最高, 乙醇耐受性最高的酵母群体的乙醇得率系数85.5%, 比乙醇耐性最低的颗粒群体提高了7.2%。粒度为100、200和300 mm的自絮凝酵母颗粒群体总麦角固醇、游离麦角固醇及海藻糖含量与粒度大小成正相关, 但在粒度为400 mm的絮凝颗粒群体中总麦角固醇、游离麦角固醇及海藻糖含量呈下降趋势, 与其乙醇耐性低于300 mm絮凝颗粒的结果相一致。对细胞膜透性的研究表明, 颗粒粒度为300 mm的絮凝酵母颗粒细胞膜通透性(P′)最低, 分别仅为颗粒粒度为100 mm和200 mm颗粒群体的43%和52%, 表明粒度分布不同的絮凝颗粒群体乙醇耐性的差别与细胞膜透性密切相关。  相似文献   

7.
Undesirable butter-tasting vicinal diketones are produced as by-products of valine and isoleucine biosynthesis during wort fermentation. One promising method of decreasing diacetyl production is through control of wort valine content since valine is involved in feedback inhibition of enzymes controlling the formation of diacetyl precursors. Here, the influence of valine supplementation, wort amino acid profile and free amino nitrogen content on diacetyl formation during wort fermentation with the lager yeast Saccharomyces pastorianus was investigated. Valine supplementation (100 to 300 mg L?1) resulted in decreased maximum diacetyl concentrations (up to 37 % lower) and diacetyl concentrations at the end of fermentation (up to 33 % lower) in all trials. Composition of the amino acid spectrum of the wort also had an impact on diacetyl and 2,3-pentanedione production during fermentation. No direct correlation between the wort amino acid concentrations and diacetyl production was found, but rather a negative correlation between the uptake rate of valine (and also other branched-chain amino acids) and diacetyl production. Fermentation performance and yeast growth were unaffected by supplementations. Amino acid addition had a minor effect on higher alcohol and ester composition, suggesting that high levels of supplementation could affect the flavour profile of the beer. Modifying amino acid profile of wort, especially with respect to valine and the other branched-chain amino acids, may be an effective way of decreasing the amount of diacetyl formed during fermentation.  相似文献   

8.
The optimal cultivation conditions ensuring the maximal rate of citric acid (CA) biosynthesis by glycerol-grown mutant Yarrowia lipolytica NG40/UV7 were found to be as follows: growth limitation by inorganic nutrients (nitrogen, phosphorus, or sulfur), 28 °C, pH 5.0, dissolved oxygen concentration (pO2) of 50 % (of air saturation), and pulsed addition of glycerol from 20 to 80 g L?1 depending on the rate of medium titration. Under optimal conditions of fed-batch cultivation, in the medium with pure glycerol, strain Y. lipolytica NG40/UV7 produced 115 g L?1 of CA with the mass yield coefficient of 0.64 g g?1 and isocitric acid (ICA) amounted to 4.6 g L?1; in the medium with raw glycerol, CA production was 112 g L?1 with the mass yield coefficient of 0.90 g g?1 and ICA amounted to 5.3 g L?1. Based on the activities of enzymes involved in the initial stages of raw glycerol assimilation, the tricarboxylic acid cycle and the glyoxylate cycle, the mechanism of increased CA yield from glycerol-containing substrates in Y. lipolytica yeast was explained.  相似文献   

9.
Crude glycerol obtained as a by-product of biodiesel production is a reliable feedstock with the potential to be converted into reduced chemicals with high yields. It has been previously shown that ethanol is the primary product of glycerol fermentation by Escherichia coli. However, few efforts were made to enhance this conversion by means of the expression of heterologous genes with the potential to improve glycerol transport or metabolism. In this study, a fosmid-based metagenomic library constructed from an anaerobic reactor purge sludge was screened for genetic elements that promote the use and fermentation of crude glycerol by E. coli. One clone was selected based on its improved growth rate on this feedstock. The corresponding fosmid, named G1, was fully sequenced (41 kbp long) and the gene responsible for the observed phenotype was pinpointed by in vitro insertion mutagenesis. Ethanol production from both pure and crude glycerol was evaluated using the parental G1 clone harboring the ethanologenic plasmid pLOI297 or the industrial strain LY180 complemented with G1. In mineral salts media containing 50 % (v/v) pure glycerol, ethanol concentrations increased two-fold on average when G1 was present in the cells reaching up to 20 g/L after 24 h fermentation. Similar fermentation experiments were done using crude instead of pure glycerol. With an initial OD620 of 8.0, final ethanol concentrations after 24 h were much higher reaching 67 and 75 g/L with LY180 cells carrying the control fosmid or the G1 fosmid, respectively. This translates into a specific ethanol production rate of 0.39 g h?1 OD?1 L?1.  相似文献   

10.
The effects of oxidoreduction potential (ORP) regulation on the process of propionic acid production by Propionibacterium freudenreichii CCTCC M207015 have been investigated. Potassium ferricyanide and sodium borohydride were determined as ORP control agents through serum bottle experiment. In batch fermentation, cell growth, propionic acid and by-products distribution were changed with ORP levels in the range of 0–160 mV. Based on these analysis results, an ORP-shift control strategy was proposed: at first 156 h, ORP was controlled at 120 mV to obtain higher cell growth rate and propionic acid formation rate, and then it was shifted to 80 mV after 156 h to maintain the higher propionic acid formation rate. By applying this strategy, the optimal parameters were obtained as follows: the propionic acid concentration 45.99 g L?1, productivity 0.192 g L?1 h?1, the proportion of propionic acid to total organic acids 92.26 % (w/w) and glycerol conversion efficiency 76.65 %. The mechanism of ORP regulation was discussed by the ratio of NADH/NAD+, ATP levels, and metabolic flux analysis. The results suggest that it is possible to redistribute energy and metabolic fluxes by the ORP-shift control strategy, and the strategy could provide a simple and efficient tool to realize high purity propionic acid production with glycerol as carbon source.  相似文献   

11.
To increase thermotolerance and ethanol tolerance in Saccharomyces cerevisiae strain YZ1, the strategies of high-energy pulse electron beam (HEPE) and three rounds of protoplast fusion were explored. The YF31 strain had the characteristics of resistant to high-temperature, high-ethanol tolerance, rapid growth and high yield. The YF31 could grow on plate cultures up to 47?°C, containing 237.5?g?L?1 of ethanol. In particular, the mutant strain YF31 generated 94.2?±?4.8?g?L?1 ethanol from 200?g glucose L?1 at 42?°C, which was 2.48 times the production of the wild strain YZ1. Results demonstrated that the variant phenotypes from the strains screening by HEPE irradiation could be used as parent stock for yeast regeneration and the protoplast fusion technology is sufficiently powerful in combining suitable characteristics in a single strain for ethanol fermentation.  相似文献   

12.
High-purity fructooligosaccharides (FOS) were produced from sucrose by an innovative process incorporating immobilized Aspergillus japonicus and Pichia heimii cells. Intracellular FTase of A. japonicus converted sucrose into FOS and glucose, and P. heimii fermented glucose mainly into ethanol. The continuous production of FOS was carried out using a tanks-in-series bioreactor consisting of three stirred tanks. When a solution composed of 1 g L?1 yeast extract and 300 g L?1 sucrose was fed continuously to the bioreactor at a dilution rate of 0.1 h?1, FOS at a purity of up to 98.2 % could be achieved and the value-added byproduct ethanol at 79.6 g L?1 was also obtained. One gram of sucrose yielded 0.62 g FOS and 0.27 g ethanol. This immobilized dual-cell system was effective for continuous production of high-purity FOS and ethanol for as long as 10 days.  相似文献   

13.
The total yield of ergosterol produced by the fermentation of the yeast Saccharomyces cerevisiae depends on the final amount of yeast biomass and the ergosterol content in the cells. At the same time ergosterol purity—defined as percentage of ergosterol in the total sterols in the yeast—is equally important for efficient downstream processing. This study investigated the development of both the ergosterol content and ergosterol purity in different physiological (metabolic) states of the microorganism S. cerevisiae with the aim of reaching maximal ergosterol productivity. To expose the yeast culture to different physiological states during fermentation an on‐line inference of the current physiological state of the culture was used. The results achieved made it possible to design a new production strategy, which consists of two preferable metabolic states, oxidative‐fermentative growth on glucose followed by oxidative growth on glucose and ethanol simultaneously. Experimental application of this strategy achieved a value of the total efficiency of ergosterol production (defined as product of ergosterol yield coefficient and volumetric productivity), 103.84 × 10?6 g L?1h?1, more than three times higher than with standard baker's yeast fed‐batch cultivations, which attained in average 32.14 × 10?6 g L?1h?1. At the same time the final content of ergosterol in dry biomass was 2.43%, with a purity 86%. These results make the product obtained by the proposed control strategy suitable for effective down‐stream processing. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:838–848, 2017  相似文献   

14.
Tolerance to high temperature and ethanol is a major factor in high‐temperature bio‐ethanol fermentation. The inhibitory effect of exogenously added ethanol (0–100 g L?1) on the growth of the newly isolated thermotolerant Issatchenkia orientalis IPE100 was evaluated at a range of temperatures (30–45°C). A generalized Monod equation with product inhibition was used to quantify ethanol tolerance, and it correlated well with the experimental data on microbial growth inhibition of ethanol at the temperatures of 30–45°C. The maximum inhibitory concentration of ethanol for growth (Pm) and toxic power (n) at the optimal growth temperature of 42°C were estimated to be 96.7 g L?1 and 1.23, respectively. The recently isolated thermotolerant I. orientalis IPE100 shows therefore a strong potential for the development of future high‐temperature bio‐ethanol fermentation technologies. This study provides useful insights into our understanding of the temperature‐dependent inhibitory effects of ethanol on yeast growth.  相似文献   

15.
In these studies, we pretreated sweet sorghum bagasse (SSB) using liquid hot water (LHW) or dilute H2SO4 (2 g L?1) at 190°C for zero min (as soon as temperature reached 190°C, cooling was started) to reduce generation of sugar degradation fermentation inhibiting products such as furfural and hydroxymethyl furfural (HMF). The solids loading were 250–300 g L?1. This was followed by enzymatic hydrolysis. After hydrolysis, 89.0 g L?1 sugars, 7.60 g L?1 acetic acid, 0.33 g L?1 furfural, and 0.07 g L?1 HMF were released. This pretreatment and hydrolysis resulted in the release of 57.9% sugars. This was followed by second hydrolysis of the fibrous biomass which resulted in the release of 43.64 g L?1 additional sugars, 2.40 g L?1 acetic acid, zero g L?1 furfural, and zero g L?1 HMF. In both the hydrolyzates, 86.3% sugars present in SSB were released. Fermentation of the hydrolyzate I resulted in poor acetone‐butanol‐ethanol (ABE) fermentation. However, fermentation of the hydrolyzate II was successful and produced 13.43 g L?1 ABE of which butanol was the main product. Use of 2 g L?1 H2SO4 as a pretreatment medium followed by enzymatic hydrolysis resulted in the release of 100.6–93.8% (w/w) sugars from 250 to 300 g L?1 SSB, respectively. LHW or dilute H2SO4 were used to economize production of cellulosic sugars from SSB. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:960–966, 2018  相似文献   

16.
The fermentation of both glucose and xylose is important to maximize ethanol yield from renewable biomass feedstocks. In this article, we analyze growth, sugar consumption, and ethanol formation by the yeast Kluyveromyces marxianus UFV-3 using various glucose and xylose concentrations and also under conditions of reduced respiratory activity. In almost all the conditions analyzed, glucose repressed xylose assimilation and xylose consumption began after glucose had been exhausted. A remarkable difference was observed when mixtures of 5 g L?1 glucose/20 g L?1 xylose and 20 g L?1 glucose/20 g L?1 xylose were used. In the former, the xylose consumption began immediately after the glucose depletion. Indeed, there was no striking diauxic phase, as observed in the latter condition, in which there was an interval of 30 h between glucose depletion and the beginning of xylose consumption. Ethanol production was always higher in a mixture of glucose and xylose than in glucose alone. The highest ethanol concentration (8.65 g L?1) and cell mass concentration (4.42 g L?1) were achieved after 8 and 74 h, respectively, in a mixture of 20 g L?1 glucose/20 g L?1 xylose. When inhibitors of respiration were added to the medium, glucose repression of xylose consumption was alleviated completely and K. marxianus was able to consume xylose and glucose simultaneously.  相似文献   

17.
Effects of three levels of photosynthetic photon flux (PPF: 60, 160 and 300 μmol m−2s−1) were investigated in one-month-old Phalaenopsis plantlets acclimatised ex vitro. Optimal growth, chlorophyll and carotenoid concentations, and a high carotenoid:chlorophyll a ratio were obtained at 160 μmol m−2s−1, while net CO2 assimilation (A), stomatal conductance (g), transpiration rate (E) and leaf temperature peaked at 300 μmol m−2s−1, indicating the ability of the plants to grow ex vitro. Adverse effects of the highest PPF were reflected in loss of chlorophyll, biomass, non-protein thiol and cysteine, but increased proline. After acclimatisation, glucose-6-phosphate dehydrogenase, shikimate dehydrogenase, phenylalanine ammonia-lyase (PAL) and cinnamyl alcohol dehydrogenase (CAD) increased, as did lignin. Peroxidases (POD), which play an important role in lignin synthesis, were induced in acclimatised plants. Polyphenol oxidase (PPO) and β-glucosidase (β-GS) activities increased to a maximum in acclimatised plants at 300 μmol m−2s−1. A positive correlation between PAL, CAD activity and lignin concentration was observed, especially at 160 and 300 μmol m−2s−1. The study concludes that enhancement of lignin biosynthesis probably not only adds rigidity to plant cell walls but also induces defence against radiation stress. A PPF of 160 μmol m−2s−1was suitable for acclimatisation when plants were transferred from in vitro conditions.  相似文献   

18.
Low ethanol yields on xylose hamper economically viable ethanol production from hemicellulose-rich plant material with Saccharomyces cerevisiae. A major obstacle is the limited capacity of yeast for anaerobic reoxidation of NADH. Net reoxidation of NADH could potentially be achieved by channeling carbon fluxes through a recombinant phosphoketolase pathway. By heterologous expression of phosphotransacetylase and acetaldehyde dehydrogenase in combination with the native phosphoketolase, we installed a functional phosphoketolase pathway in the xylose-fermenting Saccharomyces cerevisiae strain TMB3001c. Consequently the ethanol yield was increased by 25% because less of the by-product xylitol was formed. The flux through the recombinant phosphoketolase pathway was about 30% of the optimum flux that would be required to completely eliminate xylitol and glycerol accumulation. Further overexpression of phosphoketolase, however, increased acetate accumulation and reduced the fermentation rate. By combining the phosphoketolase pathway with the ald6 mutation, which reduced acetate formation, a strain with an ethanol yield 20% higher and a xylose fermentation rate 40% higher than those of its parent was engineered.  相似文献   

19.
There is a strong demand from the wine industry for methodologies to reduce the alcohol content of wine without compromising wine''s sensory characteristics. We assessed the potential of adaptive laboratory evolution strategies under hyperosmotic stress for generation of Saccharomyces cerevisiae wine yeast strains with enhanced glycerol and reduced ethanol yields. Experimental evolution on KCl resulted, after 200 generations, in strains that had higher glycerol and lower ethanol production than the ancestral strain. This major metabolic shift was accompanied by reduced fermentative capacities, suggesting a trade-off between high glycerol production and fermentation rate. Several evolved strains retaining good fermentation performance were selected. These strains produced more succinate and 2,3-butanediol than the ancestral strain and did not accumulate undesirable organoleptic compounds, such as acetate, acetaldehyde, or acetoin. They survived better under osmotic stress and glucose starvation conditions than the ancestral strain, suggesting that the forces that drove the redirection of carbon fluxes involved a combination of osmotic and salt stresses and carbon limitation. To further decrease the ethanol yield, a breeding strategy was used, generating intrastrain hybrids that produced more glycerol than the evolved strain. Pilot-scale fermentation on Syrah using evolved and hybrid strains produced wine with 0.6% (vol/vol) and 1.3% (vol/vol) less ethanol, more glycerol and 2,3-butanediol, and less acetate than the ancestral strain. This work demonstrates that the combination of adaptive evolution and breeding is a valuable alternative to rational design for remodeling the yeast metabolic network.  相似文献   

20.
In this study, citric acid production from extract of Jerusalem artichoke tubers by the genetically engineered yeast Yarrowia lipolytica strain 30 was investigated. After the compositions of the extract of Jerusalem artichoke tubers for citric acid production were optimized, the results showed that natural components of extract of Jerusalem artichoke tubers without addition of any other components were suitable for citric acid production by the yeast strain. During 10 L fermentation using the extract containing 84.3 g L?1 total sugars, 68.3 g L?1 citric acid was produced and the yield of citric acid was 0.91 g g?1 within 336 h. At the end of the fermentation, 9.2 g L?1 of residual total sugar and 2.1 g L?1 of reducing sugar were left in the fermented medium. At the same time, citric acid in the supernatant of the culture was purified. It was found that 67.2 % of the citric acid in the supernatant of the culture was recovered and purity of citric acid in the crystal was 96 %.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号