首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A series of nine polypyridyl-ruthenium (II) complexes (N-ligands = 2,2′-bipyridines; 2,2′-6′,2′-terpyridines, di-alkyloxy-2,2′-6,2-bipyridine-3,3′-di-carboxylates), were tested against Mycobacterium tuberculosis (MBT). The complex (11) showed remarkable activity against MBT as compared to other complexes, (1–10). The aquo ligand of complex (11), as opposed to other chloro and acetonitrile derivatives, appears to play a key role in the antitubercular potency of this new class of metal-based compounds.  相似文献   

2.
A series of oxaliplatin derivatives with (1R,2R)‐N1‐alkyl‐1,2‐cyclohexane‐1,2‐diamine (alkyl=Bu or iPr) as carrier ligands and 1‐(methoxy‐ or methyl‐substituted benzyl)azetidine‐3,3‐dicarboxylate anions as leaving groups were synthesized and spectrally characterized. Generally, Complexes 10 – 15 with an iPr substituent at N(1) showed higher activities in vitro than carboplatin against MCF‐7 human breast carcinoma and A549 human non‐small‐cell lung cell lines, although they were less potent than oxaliplatin. The typical complex 14 exhibited cytotoxicity superior to that of carboplatin and comparable to that of oxaliplatin against two selected tumor cell lines. Additionally, agarose gel electrophoresis was applied to investigate the DNA‐cleavage ability of complex 14 , which demonstrated that it has a different mode of DNA distortion from that of oxaliplatin.  相似文献   

3.
8‐Hydroxyquinoline‐7‐carboxaldehyde (8‐HQ‐7‐CA), Schiff‐base ligand 8‐hydroxyquinoline‐7‐carboxaldehyde benzoylhydrazone, and binuclear complexes [LnL(NO3)(H2O)2]2 were prepared from the ligand and equivalent molar amounts of Ln(NO3)?6 H2O (Ln=La3+, Nd3+, Sm3+, Eu3+, Gd3+, Dy3+, Ho3+, Er3+, Yb3+, resp.). Ligand acts as dibasic tetradentates, binding to LnIII through the phenolate O‐atom, N‐atom of quinolinato unit, and C?N and ? O? C?N? groups of the benzoylhydrazine side chain. Dimerization of this monomeric unit occurs through the phenolate O‐atoms leading to a central four‐membered (LnO)2 ring. Ligand and all of the LnIII complexes can strongly bind to CT‐DNA through intercalation with the binding constants at 105–106 M ?1. Moreover, ligand and all of the LnIII complexes have strong abilities of scavenging effects for hydroxyl (HO.) radicals. Both the antioxidation and DNA‐binding properties of LnIII complexes are much better than that of ligand.  相似文献   

4.
Two dinuclear macrocyclic polyamine copper(II) (CuII) complexes, which have two cyclen units linked by urea, were synthesized as DNA‐cleavage agents. The structures of these new dinuclear complexes were identified by HR‐ESI‐MS and IR analyses. The catalytic activities of DNA cleavage of these dinuclear CuII complexes were subsequently studied. The results show that 6a was the better catalyst in the DNA‐cleavage process than 6b . The effects of reaction time and concentration of complexes were also investigated. The results indicate, that the CuII complexes could catalyze the cleavage of supercoiled DNA (pUC 19 plasmid DNA; Form I) under physiological conditions to produce selectively nicked DNA (Form II; no Form III was produced) with high yields (nearly 100%) in short time in the absence of reductant or oxidant.  相似文献   

5.
6.
2‐(1H‐Tetrazol‐5‐yl)pyridine ( L ) has been reacted separately with Me2NCH2CH2Cl?HCl and ClCH2CH2OH to yield two regioisomers in each case, N,N‐dimethyl‐2‐[5‐(pyridin‐2‐yl)‐1H‐tetrazol‐1‐yl]ethanamine ( L1 )/N,N‐dimethyl‐2‐[5‐(pyridin‐2‐yl)‐2H‐tetrazol‐2‐yl]ethanamine ( L2 ) and 2‐[5‐(pyridin‐2‐yl)‐1H‐tetrazol‐1‐yl]ethanol ( L3 )/2‐[5‐(pyridin‐2‐yl)‐2H‐tetrazol‐2‐yl]ethanol ( L4 ), respectively. These ligands, L1 – L4 , have been coordinated with CuCl2?H2O in 1 : 1 composition to furnish the corresponding complexes 1 – 4 . EPR Spectra of Cu complexes 1 and 3 were characteristic of square planar geometry, with nuclear hyperfine spin 3/2. Single X‐ray crystallographic studies of 3 revealed that the Cu center has a square planar structure. DNA binding studies were carried out by UV/VIS absorption; viscosity and thermal denaturation studies revealed that each of these complexes are avid binders of calf thymus DNA. Investigation of nucleolytic cleavage activities of the complexes was carried out on double‐stranded pBR322 circular plasmid DNA by using a gel electrophoresis experiment under various conditions, where cleavage of DNA takes place by oxidative free‐radical mechanism (OH ? ). In vitro anticancer activities of the complexes against MCF‐7 (human breast adenocarcinoma) cells revealed that the complexes inhibit the growth of cancer cells. The IC50 values of the complexes showed that Cu complexes exhibit comparable cytotoxic activities compared to the standard drug cisplatin.  相似文献   

7.
Two new Ru(II) complexes, [Ru(bpy)2(FAMP)](ClO4)21 and 2, are synthesized and characterized by elemental analysis, electrospray mass spectrometry, and 1H nuclear magnetic resonance. The in vitro cytotoxicities and apoptosis-inducing properties of these complexes are extensively studied. Complexes 1 and 2 exhibit potent antiproliferative activities against a panel of human cancer cell lines. The cell cycle analysis shows that complexes 1 and 2 exhibit effective cell growth inhibition by triggering G0/G1 phase arrest and inducing apoptosis by mitochondrial dysfunction. The in vitro DNA binding properties of the two complexes are investigated by different spectrophotometric methods and viscosity measurements.  相似文献   

8.
Two new ruthenium(II) polypyridyl complexes [Ru(dmb)2(HECIP)](ClO4)2 (1) (HECIP = N-ethyl-4-[(1,10)-phenanthroline(5,6-f)imidazol-2-yl]carbazole, dmb = 4,4’-dimethyl-2,2’-bipyridine) and [Ru(dmp)2(HECIP)](ClO4)2 (2) (dmp = 2,9-dimethyl-1,10-phenanthroline) have been synthesized and characterized. The DNA-binding behaviors of the two complexes were investigated by absorption spectra, viscosity measurements, and photoactivated cleavage. The DNA-binding constants for complexes 1 and 2 were determined to be 8.03 (± 0.12) × 104 M?1 (s = 1.62) and 2.97 (± 0.15) × 104 M?1 (s = 1.82), respectively. The results suggest that these complexes interact with DNA through intercalative mode. The photocleavage of pBR322 DNA by Ru(II) complexes was investigated. The cytotoxicity of complexes 1 and 2 has been evaluated by the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide)] method. Complex 1 shows higher anticancer potency than 2 against the four tumor cell lines. Apoptosis and cellular uptake were investigated. The antioxidant activities of the ligand and these complexes were also performed.  相似文献   

9.
A series of twelve novel diamminetetrakis(carboxylato)platinum(IV) and 18 novel bis(carboxylato)dichlorido(ethane‐1,2‐diamine)platinum(IV) complexes with mixed axial carboxylato ligands was synthesized and characterized by multinuclear 1H‐, 13C‐, 15N‐, and 195Pt‐NMR spectroscopy. Their cytotoxic potential was evaluated (by MTT assay) against three human cancer cell lines derived from ovarian teratocarcinoma (CH1/PA‐1), lung (A549), and colon carcinoma (SW480). In the cisplatin‐sensitive CH1/PA‐1 cancer cell line, diamminetetrakis(carboxylato)platinum(IV) complexes showed IC50 values in the low micromolar range, whereas, for the most lipophilic compounds of the bis(carboxylato)dichlorido(ethane‐1,2‐diamine)platinum(IV) series, IC50 values in the nanomolar range were found.  相似文献   

10.
The enantiomeric separation of 21 ruthenium (II) polypyridyl complexes was achieved with a novel class of cyclofructan‐based chiral stationary phases (CSPs) in the polar organic mode. Aromatic derivatives on the chiral selectors proved to be essential for enantioselectivity. The R‐napthylethyl carbamate functionalized cyclofructan 6 (LARIHC CF6‐RN) column proved to be the most effective overall, while the dimethylphenyl carbamate cyclofructan 7 (LARIHC CF7‐DMP) showed complementary selectivity. A combination of acid and base additives was necessary for optimal separations. The retention factor vs. acetonitrile/methanol ratio plot showed a U‐shaped retention curve, indicating that different interactions take place at different polar organic solvent compositions. The separation results indicated that π–π interactions, steric effects, and hydrogen bonding contribute to the enantiomeric separation of ruthenium (II) polypyridyl complexes with cyclofructan chiral stationary phases in the polar organic mode. Chirality 27:64–70, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

11.
A new series of PdII complexes derived from thiosemicarbazone has been synthesized. The synthesized PdII complexes have been characterized on the basis of elemental analyses, FT‐IR, 1H‐ and 13C‐NMR, UV/VIS, and thermal studies. A square‐planar geometry has been assigned around PdII ions on the basis of results obtained from UV/VIS studies. The thiosemicarbazone ligand and its PdII complexes have been screened against Gram‐positive (Bacillus subtilis and Staphylococcus aureus) and Gram‐negative (Escherichia coli and Pseudomonas aeruginosa) bacteria in vitro as growth‐inhibiting agents, and the results revealed significant antibacterial activities.  相似文献   

12.
A novel Schiff base, (S,Z)‐4‐(methylthio)‐2‐((3‐oxo‐2,3‐dihydro‐1H‐inden‐1‐ylidene)amino)butanoic acid (L) and four M(II) complexes (where M = Co, Cu, Ni and Zn) were synthesized and characterized. The DNA‐binding characteristics of the complexes were investigated using various spectroscopic methods and viscosity measurements. Analysis of the results suggests that all the complexes bind to calf thymus DNA via intercalation. Among the four, Cu(II) complex was found to promote the photocleavage of plasmid DNA pBR322 under irradiation at 365 nm. These complexes also exhibit good antioxidant activities against 2,2‐diphenyl‐1‐picrylhydrazyl radical. In vitro antibacterial and antifungal assay indicates that these complexes are good antimicrobial agents.  相似文献   

13.
Four Ru(II) polypyridyl complexes, [Ru(bpy)2(7-NO2-dppz)]2+, [Ru(bpy)2(7-CH3-dppz)]2+, [Ru(phen)2(7-NO2-dppz)]2+, and [Ru(phen)2(7-CH3-dppz)]2+ (bpy = 2,2′-bipyridine, phen = 1,10-phenanthroline), (7-Nitro-dppz = 7-Nitro dipyrido[3,2-a:2′-3′-c]phenazine, 7-CH3-dppz = 7-Methyl dipyrido[3,2-a:2′-3′-c]phenazine), have been synthesized and characterized by IR, UV, elemental analysis, 1H NMR, 13C-NMR, and mass spectroscopy. The DNA-binding properties of the four complexes were investigated by spectroscopic and viscosity measurements. The results suggest that all four complexes bind to DNA via an intercalative mode. Under irradiation at 365 nm, all four complexes were found to promote the photocleavage of plasmid pBR 322 DNA. Toxicological effects of the selected complexes were performed on industrially important yeasts (eukaryotic microorganisms).  相似文献   

14.
The two complexes containing bioactive ligands of the type and [Fe(L)] (PF6)2 (1) (where L = [1-{[2-{[2-hydroxynaphthalen-1-yl)methylidine]amino}phenyl)imino] methyl}naphthalene-2-ol]) and [Co(L1L2)] (PF6)3 (2) (where L1L2 = mixed ligand of 2-seleno-4-methylquinoline and 1,10-phenanthroline in the ratio 1:2, respectively) were synthesized and structurally characterized. The DNA binding property of the complexes with calf thymus DNA has been investigated using absorption spectra, viscosity measurements, and thermal denaturation experiments. Intrinsic binding constant Kb has been estimated at room temperature. The absorption spectral studies indicate that the complexes intercalate between the base pairs of the CT-DNA tightly with intrinsic DNA binding constant of 2.8 × 105 M?1 for (1) and 4.8 × 105 M?1 for (2) in 5 mM Tris-HCl/50 mM NaCl buffer at pH 7.2, respectively. The oxidative cleavage activity of (1) and (2) were studied by using gel electrophoresis and the results show that complexes have potent nuclease activity.  相似文献   

15.
Three novel cisplatin analogues were synthesized, designed according to an approach which violates the “classical” structure-activity relationship, by replacing the diamine ligands with a planar N donor heterocycle giving a sterically hindered complex. Moreover, the sterical hindrance of antitumor drug candidates potentially makes them less susceptible to deactivation by sulphur-containing proteins and helping to overcome resistance mechanisms. The resulting mononuclear complexes of sterically hindered polidentate heterocyclic N ligands [PtCl(bbp)]Cl (1) [bbp = 2,6-bis(2-benzimidazolyl)pyridine], [PtCl2(dptdn)](H2O) (2) [dptdn = sodium 5,6-diphenyl-3-(2′-pyridyl)-1,2,4-triazine-4″,4″′-disulfonate] and [(dptdn)(dpt)Pt]Cl2(H2O) (3) [dpt = 5,6-diphenyl-3-(2′-pyridyl)-1,2,4-triazine] have been prepared and structurally characterised. Both neutral and ionic complexes are present, with monofunctional (1) and bifunctional Pt(II) moieties (2) and coordinatively saturated Pt(II) ions in the mixed ligand complex (3), whose size and shape enable them to behave as novel scaffolds for DNA binding. All complexes were tested “in vitro” for their biological activity on human HT29 colorectal carcinoma and HepG2 hepatoma cells. The complexes (1) and (3), endowed with a positive charge, showed a potent cytotoxic activity and reduced cell viability with an efficacy higher than that of cisplatin; whilst the neutral bifunctional compound (2) was inactive. IC50 values have been calculated for the active compounds. The cytotoxic effects were confirmed by the accumulation of treated cells in subG0/G1 phase of cell cycle, by the loss of mitochondrial potential (Δψm) and by the chromatin condensation or fragmentation observed by means of fluorescence microscopy after Hoechst 33258 nuclear staining. A study on intracellular platinum uptake in HT29 cell line has been also performed and data obtained strongly suggest that the cytotoxicity of new tested complexes reported in this work is based on a different pharmacodynamic pattern with respect to cisplatin.  相似文献   

16.
Several metallic compounds recognized as potent antitumor agents, have been developed and tested in vivo and in vitro. In this work, we evaluated the toxic, therapeutic, and cytotoxic properties of the cis-dichloro-tetra-amine-ruthenium(III) chloride. Transplanted animals with Sarcoma 180 cells were treated with ruthenium(III) complex and injected i.p., at different time intervals. After the 15th day, tumoral postimplant, the animals were sacrificed and their lungs, kidneys, liver, and tumors were removed and processed for histopathological analysis. Blood samples were also taken for haematological and biochemical analyses. Interaction between the ruthenium complex and the DNA was also investigated. Besides being cytotoxic for the S180 cells, the metallic compound induced tumoral volume reduction and increased survival time of the animals treated. Serum levels of LDH, creatinine, and bilirubin increased, but no serious irreversible histopathological alterations were observed in the analyzed tissues. The compound did not cause anemia, but reduced the number of leukocytes in the treated animals. The absence of viable S180 cells, necrotic cells, and the presence of granulation tissue were observed in tumor tissue of treated animals. The Ru(III) complex, in the presence of the reduction agent, caused plasmid DNA to fragment. These results suggest that cis-RuCl(2)(NH(3))(4)Cl compound is a potent antitumoral drug in vitro and in vivo, which seems to involve binding to DNA molecule.  相似文献   

17.
18.
An array of poly- and mononuclear complexes of Pt(II) with polypyridyl ligands is reported. The framework complexes [(PtCl(2))(2)(bpp)(2)(micro-PtCl(2))](H(2)O)(2) [bpp=2,3-bis(2-pyridyl)pyrazine], [PtCl(2)(micro-tptz)PtClNCPh]Cl [tptz=2,4,6-tris(2-pyridyl)-1,3,5-triazine], and mononuclear PtCl(2)(NH(2)dpt) [NH(2)dpt=4-amino-3,5-bis(2-pyridyl)-1,2,4-triazole] have been prepared and structurally characterized. Both neutral and ionic complexes are present, with bifunctional and monofunctional Pt(II) moieties, whose size and shape enable them to behave as novel scaffolds for DNA binding. Pt(II) complexes were tested for their biological activity. Cell viability assay and flow cytometric analysis demonstrated that these complexes, particularly [PtCl(2)(micro-tptz)PtClNCPh]Cl, were effective death inducers in human colon rectal carcinoma HT29 cells and their cytotoxic activity was higher than that exerted by cisplatin. Morphological analysis of treated HT29 cells, performed by fluorescence microscopy after Hoechst 33258 staining, showed the appearance of the typical features of apoptosis. Moreover, our results suggested that mitochondria are involved in apoptosis induced by Pt(II) complexes in HT29 cells as demonstrated by dissipation of mitochondrial transmembrane potential.  相似文献   

19.
Five new copper(II) complexes of type [Cu(erx)( L )Cl] (erx, enrofloxacin; thiophene‐2‐carbaldehyde ( L 1 ); pyridine‐2‐carbaldehyde ( L 2 ); 2,2′‐dipyridylamine ( L 3 ); 4,5‐diazafluoren‐9‐one ( L 4 ); bis(3,5‐dimethyl‐1‐pyrazolyl)methane ( L 5 )) have been synthesized and characterized by elemental analysis, reflectance, IR, and FAB‐MS. Complexes have been investigated for their interaction with calf thymus (CT) DNA utilizing the absorption‐titration method, viscometric and DNA thermal denaturation studies. The cleavage reaction on pUC19 DNA has been monitored by agarose gel electrophoresis. The results indicated that the CuII complexes can more effectively promote the cleavage of plasmid DNA at physiological pH and superoxide dismutase. The (SOD) activity of the complexes has been evaluated by the nitroblue tetrazolium assay, and the complexes catalyzed the dismutation of superoxide at pH 7.8 with IC50 values of 0.35–1.25 μM . The complexes have also been screened for their antibacterial activity against five pathogenic bacteria.  相似文献   

20.
Reactions of 2-(3,5-dimethylpyrazol-1-ylmethyl)pyridine (L1), 2-(3,5-diphenylpyrazol-1-ylmethyl)pyridine (L2), 2-(3,5-di-tert-butylpyrazol-1-ylmethyl)pyridine (L3) and 2-(3-p-tolylpyrazol-1-ylmethyl)pyridine (L4) with K2[PtCl4] in a mixture of ethanol and water formed the dichloro platinum complexes [PtCl2(L1)] (1), [PtCl2(L2)] (2), [PtCl2(L3)] (3) and [PtCl2(L4)] (4). Complex 1, [PtCl2(L1)], could also be prepared in a mixture of acetone and water. Performing the reactions of L2 and L3 in a mixture of acetone and water, however, led to C-H activation of acetone under mild conditions to form the neutral acetonyl complexes [Pt(CH2COCH3)Cl(L2)] (2a) and [Pt(CH2COCH3)Cl(L3)] (3a). The same ligands reacted with HAuCl4 · 4H2O in a mixture of ethanol and water to form the gold salts [AuCl2(L1)][AuCl4] (5) [AuCl2(L2)][Cl] (6) [AuCl2(L3)][Cl] (7) and [AuCl2(L4)][AuCl4] (8); however, with the pyrazolyl unit in the para position of the pyridinyl ring in 4-(3,5-dimethylpyrazol-1-ylmethyl)pyridine (L5), 4-(3,5-diphenylpyrazol-1-ylmethyl)pyridine (L6) neutral gold complexes [AuCl3(L5)] (9) and [AuCl2(L6)] (10) were formed; signifying the role the position of the pyrazolyl group plays in product formation in the gold reactions. X-ray crystallographic structural determination of L6, 2, 33a, 8 and 10 were very important in confirming the structures of these compounds; particularly for 3a and 8 where the presence of the acetonyl group confirmed C-H activation and for 8 where the counter ion is . Cytotoxicity studies of L2, L4 and complexes 1-10 against HeLa cells showed the Au complexes were much less active than the Pt complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号