首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Dental dimensions and distributions of dental dimensions of males and females were compared for great apes (Pan, Gorilla, and Pongo, and humans (Homo). The results were examined and discussed with reference to fossil primates Sivapithecus and Ramapithecus. The analyses focused on patterns of sexual dimorphism, both with regard to mean dimensions and the distribution of those dimensions. Sex differences in mean canine dimensions were large and significant for Gorilla and Pongo, significant but smaller for Pan, and small but occasionally significant for Homo. The dispersions of measures were greater for males than for females in Gorilla and Pan but did not differ significantly for Pongo or Homo. Examination of the noncanine teeth revealed complex sex differences. In the anterior teeth, sex differences in mean dimensions were generally apparent for Gorilla and Pongo, less so for Pan, and least of all in Homo. The patterns of dispersion of measures of anterior teeth differed markedly from those of the canines. Pan exhibited the same pattern for anterior and canine teeth. Gorilla showed the opposite pattern. Pongo and Homo showed similar dispersions for males and females in many cases. Sex differences in posterior teeth followed the pattern of the canines for Gorilla and were absent for Pan. Pongo exhibited mean differences in dimensions across sex, but dispersions were similar. The pattern for Homo was most like that of Pongo, but with fewer significant differences. The genera differed with regard to the number of significant differences in means or dispersions along the tooth row. It is clear that the patterns of dimorphism differ qualitatively across all extant genera of great apes and humans. It appears that the pattern for Homo most closely resembles that of Ramapithecus, whereas Pongo most closely resembles Sivapithecus. The patterns for Gorilla and Pan appear to be unlike either of the fossil forms. It is suggested that the qualitatively distinct patterns of dental sexual dimorphism indicate substantial flexibility during recent primate evolution and that the degree of structural flexibility demonstrated provides a basis for appreciating potential for plasticity of gender differences in behavioral, social, and cultural systems.  相似文献   

2.
Patterns of ectocranial suture fusion among Primates are subject to species‐specific variation. In this study, we used Guttman Scaling to compare modal progression of ectocranial suture fusion among Hominidae (Homo, Pan, Gorilla, and Pongo), Hylobates, and Cercopithecidae (Macaca and Papio) groups. Our hypothesis is that suture fusion patterns should reflect their evolutionary relationship. For the lateral‐anterior suture sites there appear to be three major patterns of fusion, one shared by Homo‐Pan‐Gorilla, anterior to posterior; one shared by Pongo and Hylobates, superior to inferior; and one shared by Cercopithecidae, posterior to anterior. For the vault suture pattern, the Hominidae groups reflect the known phylogeny. The data for Hylobates and Cercopithecidae groups is less clear. The vault suture site termination pattern of Papio is similar to that reported for Gorilla and Pongo. Thus, it may be that some suture sites are under larger genetic influence for patterns of fusion, while others are influenced by environmental/biomechanic influences. J. Morphol. 275:342–347, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

3.
Comparisons of joint surface curvature at the base of the thumb have long been made to discern differences among living and fossil primates in functional capabilities of the hand. However, the complex shape of this joint makes it difficult to quantify differences among taxa. The purpose of this study is to determine whether significant differences in curvature exist among selected catarrhine genera and to compare these genera with hominin1 fossils in trapeziometacarpal curvature. Two 3D approaches are used to quantify curvatures of the trapezial and metacarpal joint surfaces: (1) stereophotogrammetry with nonuniform rational B‐spline (NURBS) calculation of joint curvature to compare modern humans with captive chimpanzees and (2) laser scanning with a quadric‐based calculation of curvature to compare modern humans and wild‐caught Pan, Gorilla, Pongo, and Papio. Both approaches show that Homo has significantly lower curvature of the joint surfaces than does Pan. The second approach shows that Gorilla has significantly more curvature than modern humans, while Pongo overlaps with humans and African apes. The surfaces in Papio are more cylindrical and flatter than in Homo. Australopithecus afarensis resembles African apes more than modern humans in curvatures, whereas the Homo habilis trapezial metacarpal surface is flatter than in all genera except Papio. Neandertals fall at one end of the modern human range of variation, with smaller dorsovolar curvature. Modern human topography appears to be derived relative to great apes and Australopithecus and contributes to the distinctive human morphology that facilitates forceful precision and power gripping, fundamental to human manipulative activities. Am J Phys Anthropol, 2010. © 2009 Wiley‐Liss, Inc. 1 The term “hominin” refers to members of the tribe Hominini, which includes modern humans and fossil species that are related more closely to modern humans than to extant species of chimpanzees, Wood and Lonergan (2008). Hominins are in the family Hominidae with great apes.  相似文献   

4.
Primate shoulder morphology has been linked with locomotor habits, oftentimes irrespective of phylogenetic heritage. Among hominoids, juvenile African apes are known to climb more frequently than adults, while orangutans and gibbons maintain an arboreal lifestyle throughout ontogeny. This study examined if these ontogenetic locomotor differences carry a morphological signal, which should be evident in the scapulae of chimpanzees and gorillas but absent in taxa that do not display ontogenetic behavioral shifts. The scapular morphology of five hominoid primates and one catarrhine outgroup was examined throughout ontogeny to evaluate if scapular traits linked with arboreal activities are modified in response to ontogenetic behavioral shifts away from climbing. Specifically, the following questions were addressed: 1) which scapular characteristics distinguish taxa with different locomotor habits; and 2) do these traits show associated changes during development in taxa known to modify their behavioral patterns? Several traits characterized suspensory taxa from nonsuspensory forms, such as cranially oriented glenohumeral joints, obliquely oriented scapular spines, relatively narrow infraspinous fossae, and inferolaterally expanded subscapularis fossae. The relative shape of the dorsal scapular fossae changed in Pan, Gorilla, and also Macaca in line with predictions based on reported ontogenetic changes in locomotor behavior. These morphological changes were mostly distinct from those seen in Pongo, Hylobates, and Homo and imply a unique developmental pattern, possibly related to ontogenetic locomotor shifts. Accordingly, features that sorted taxa by locomotor habits and changed in concert with ontogenetic behavioral patterns should be particularly useful for reconstructing the locomotor habits of fossil forms. Am J Phys Anthropol 152:239–260, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
A highly resolved primate cladogram based on DNA evidence is congruent with extant and fossil osteological evidence. A provisional primate classification based on this cladogram and the time scale provided by fossils and the model of local molecular clocks has all named taxa represent clades and assigns the same taxonomic rank to those clades of roughly equivalent age. Order Primates divides into Strepsirhini and Haplorhini. Strepsirhines divide into Lemuriformes and Loriformes, whereas haplorhines divide into Tarsiiformes and Anthropoidea. Within Anthropoidea when equivalent ranks are used for divisions within Platyrrhini and Catarrhini, Homininae divides into Hylobatini (common and siamang gibbon) and Hominini, and the latter divides into Pongina forPongo(orangutans) and Hominina forGorillaandHomo. Homoitself divides into the subgeneraH.(Homo) for humans andH.(Pan) for chimpanzees and bonobos. The differences between this provisional age related phylogenetic classification and current primate taxonomies are discussed.  相似文献   

6.
Although most mammals develop relatively large double anterior palatine fenestrae that patently communicate with the nasal cavity, four extant primates—Homo sapiens, Pongo, Pan andGorilla—do not. While these four have closed-down these foramenal structures,Homo sapiens andPongo are unique in forming a single foramen palatally. Among fossil taxa,Homo, Australopithecus, Sivapithecus (=Ramapithecus) andRudapithecus also develop a single foramen palatally. Dryopithecines, the presumed fossil apes, preserve the two patent fenestrae. In light of dental features that are considered diagnostically “hominid,” which are also found in the orangutan, it is suggested that this “ape,” rather thanPan, is phylogenetically closer toHomo.  相似文献   

7.
Morphological integration refers to coordinated variation among traits that are closely related in development and/or function. Patterns of integration can offer important insight into the structural relationship between phenotypic units, providing a framework to address questions about phenotypic evolvability and constraints. Integrative features of the primate cranium have recently become a popular subject of study. However, an important question that still remains under-investigated is: what is the pattern of cranial shape integration among closely related hominoids? To address this question, we conducted a Procrustes-based geometric morphometrics study to quantify and analyze shape covariation patterns between different cranial regions in Homo, Pan, Gorilla and Pongo. A total of fifty-six 3D landmarks were collected on 407 adult individuals. We then sub-divided the landmarks corresponding to cranial units as outlined in the ‘functional matrix hypothesis.’ Sub-dividing the cranium in this manner allowed us to explore patterns of covariation between the face, basicranium and cranial vault, using the two-block partial least squares approach. Our results suggest that integrated shape changes in the hominoid cranium are complex, but that the overall pattern of integration is similar among human and non-human apes. Thus, despite having very distinct morphologies the way in which the face, basicranium and cranial vault covary is shared among these taxa. These results imply that the pattern of cranial integration among hominoids is conserved.  相似文献   

8.
Bivariate femoral length allometry in recent humans, Pan, and Gorilla is investigated with special reference to the diminutive Liang Bua (LB) 1 specimen (the holotype of Homo floresiensis) and six early Pleistocene femora referred to the genus Homo. Relative to predicted body mass, Pan and Gorilla femora show strong negative length allometry while recent human femora evince isometry to positive allometry, depending on sample composition and line-fitting technique employed. The allometric trajectories of Pan and Homo show convergence near the small body size range of LB 1, such that LB 1 manifests a low percentage deviation (dyx of Smith [1980]) from the Pan allometric trajectory and falls well within the 95% confidence limits around the Pan individuals (but also outside the 95% confidence limits for recent Homo). In contrast, the six early Pleistocene Homo femora, belonging to larger individuals, show much greater dyx values from both Pan and Gorilla and fall well above the 95% confidence limits for these taxa. All but one of these Pleistocene Homo specimens falls within the 95% confidence limits of the recent human sample. Similar results are obtained when femoral length is regressed on femoral head diameter in unlogged bivariate space. Regardless of the ultimate taxonomic status of LB 1, these findings are consistent with a prediction made by us (Franciscus and Holliday, 1992) that hominins in the small body size range of A.L. 288-1 (“Lucy”), including members of the genus Homo, will tend to possess short, ape-like lower limbs as a function of body size scaling.  相似文献   

9.
Since australopithecines display humanlike traits such as short ilia, relatively small front teeth and thick molar enamel, they are usually assumed to be related toHomo rather than toPan orGorilla. However, this assumption is not supported by many other of their features. This paper briefly surveys the literature concerning craniodental comparisons of australopith species with those of bonobos, common chimps, humans and gorillas, adult and immature. It will be argued, albeit on fragmentary data, that the large australopiths of East Africa were in many instances anatomically and therefore possibly also evolutionarily nearer toGorilla than toPan orHomo, and the South African australopiths nearer toPan andHomo than toGorilla. An example of a possible evolutionary tree is provided. It is suggested that the evidence concerning the relation of the different australopithecines with humans, chimpanzees and gorillas should be re-evaluated.  相似文献   

10.
We examined the histology of canine teeth in extant hominoids and provided a comparative database on several aspects of canine development. The resultant data augment the known pattern of differences in aspects of tooth crown formation among great apes and more importantly, enable us to determine the underlying developmental mechanisms responsible for canine dimorphism in them. We sectioned and analyzed a large sample (n = 108) of reliably-sexed great ape mandibular canines according to standard histological techniques. Using information from long- and short-period incremental markings in teeth, we recorded measurements of daily secretion rates, periodicity and linear enamel thickness for specimens of Pan troglodytes, Gorilla gorilla, Pongo pygmaeus and Homo sapiens. Modal values of periodicities in males and females, respectively, are: Pan 7/7; Gorilla 9/10; Pongo 10/10; and Homo 8/8. Secretion rates increase from the inner to the outer region of the enamel cap and decrease from the cuspal towards the cervical margin of the canine crown in all great ape species. Female hominoids tend to possess significantly thicker enamel than their male counterparts, which is almost certainly related to the presence of faster daily secretion rates near the enamel-dentine junction, especially in Gorilla and Pongo. Taken together, these results indicate that sexual differences in canine development are most apparent in the earlier stages of canine crown formation, while interspecific differences are most apparent in the outer crown region. When combined with results on the rate and duration of canine crown formation, the results provide essential background work for larger projects aimed at understanding the developmental basis of canine dimorphism in extant and extinct large-bodied hominoids and eventually in early hominins.  相似文献   

11.
The relative positions of the orbital and nasal openings in African apes and humans were studied by a new methodological approach based on the automatic determination, by image analysis techniques, of horizontal and vertical lines of reference. The material used consisted ofGorilla gorilla (38 males and 20 females),Pan troglodytes (19 males and 13 females), and modernHomo spaiens (51 males and 41 females). This allowed the relative positions of the orbital and nasal openings to be quantified by the determination of medio-lateral and vertical orbitonasal indices of overlap. In all the species studied, a medio-lateral orbitonasal overlap was systematically observed. This indicates that nasal breadth is always larger than interorbital distance. Medio-lateral overalp was greatest inGorilla, reduced inHomo, and intermediate inPan. By contrast, onlyHomo presents systematically a vertical overlap: a vertical overlap was sometimes observed inPan, but never inGorilla. Homo presented the greatest vertical overlap, andGorilla the least; the disposition inPan was intermediate. The interspectific study of the relationships between medio-lateral and vertical overlap inGorilla, Pan, andHomo demonstrated that an increase in veritical overlap was correlated with a decrease of medio-lateral overlap. Sexual dimorphism in orbitonasal relationships was systematically greatest inGorilla, and reduced inPan andHomo, this is also the case for the orbital, nasal, and orbitonasal parameters measured in this study. All these results provide interesting elements for understanding the morphological evolution of the middle face in hominoids.  相似文献   

12.
Two contrasting patterns of lumbar vertebral morphology generally characterize anthropoids. “Long‐backed” monkeys are distinguished from “short‐backed” apes [Benton: The baboon in medical research, Vol. 2 (1967:201)] with respect to several vertebral features thought to afford greater spinal flexibility in the former and spinal rigidity in the latter. Yet, discussions of spinal mobility are lacking important functional insight that can be gained by analysis of the zygapophyses, the spine's synovial joints responsible for allowing and resisting intervertebral movements. Here, prezygapophyseal articular facet (PAF) shape in the thoracolumbar spine of Papio, Hylobates, Pongo, Gorilla, and Pan is evaluated in the context of the “long‐backed” versus “short‐backed” model. A three‐dimensional geometric morphometric approach is used to examine how PAF shape changes along the thoracolumbar vertebral column of each taxon and how PAF shape varies across taxa at corresponding vertebral levels. The thoracolumbar transition in PAF shape differs between Papio and the hominoids, between Hylobates and the great apes, and to a lesser extent, among great apes. At the level of the first lumbar vertebra, the PAF shape of Papio is distinguished from that of hominoids. At the level of the second lumbar vertebra, there is variation to some extent among all taxa. These findings suggest that morphological and functional distinctions in primate vertebral anatomy may be more complex than suggested by a “long‐backed” versus “short‐backed” dichotomy. Am J Phys Anthropol 142:600–612, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

13.
14.
Hominoidea have adapted to various forms of locomotion, each of which has specific requirements that are reflected in the shape of the scapula. We compared several qualitative and quantitative methods for characterizing the dorsal side of the scapula to detect morphological differences that reflect the adaptations of the scapula to locomotor behaviors. Our sample included 55 specimens of Hominoidea, representing five genera, including Homo, focusing specifically on the relative sizes of the scapular supraspinous and infranspinous fossae. In addition, we weighed the supraspinatus and infraspinatus muscles of 23 of the specimens to examine the feasibility of extrapolating muscle characteristics from osteological data. Our findings confirmed that the five genera exhibit significant differences in the relative size of the supraspinous and the infraspinous fossae that are related to their forms of locomotion. The supraspinous fossa was relatively small in Homo and Pongo but large in Pan, Gorilla, and Hylobates. The analysis of muscle weights showed that a substantial amount of information about soft tissues is lost in osteological analyses, leading us to recommend caution when drawing conclusions regarding forms of locomotion based only on osteological analyses.  相似文献   

15.
The subject of this review is an issue that was hotly debated even before the emergence of molecular data into the field of primate systematics. It is an understatement to say that dissenting opinions exist as to whether the chimpanzee (Pan) or gorilla (Gorilla) is the closest relative of humans (Homo) or whether, in fact, a three-way split in an ancestral population resulted in three separate lineages that are evolutionarily equidistant. The purpose of this review is to introduce the novice to the problems and methodologies of molecular phylogenetic analysis and to summarize the studies that have applied this approach in attempting to resolve the human-African ape trichotomy. The intent is to present the contribution of each study to the resolution of higher primate relationships.  相似文献   

16.
The possibility of a Middle-Late Miocene separation of the human lineage from the lineages leading to the extant great apes, based on paleontological and phenetic evidence, is presented. Middle Miocene Sivapithecus, rather then Early Miocene Dryopithecus, is supported as a last common ancestor of Pongo, Pan, Gorilla, and Homo. Estimates for the branching of the lineages are a maximum of 15 m.y.a. for the Pongo lineage and a range from 14-6 m.y.a. for the Pan, Gorilla, and Ausralopithecus/Homo lineages. Weaknesses of the late divergence hypothesis are discussed.  相似文献   

17.
Molecular analyses of the last decades helped solving the major open questions on the external and internal phylogenetic relationships of primates. The present review uses these data for the inference of character evolution along the branches of the primate tree. Altogether, more than 200 evolutionary changes in hard and soft tissue anatomy/morphology, behavior, physiology, and protein constitution are presented in the context of their functional relevance and adaptive value. The compilation focuses on primates as a whole and on the higher-ranked primate subtaxa with living representatives: Strepsirhini: Lorisiformes, Galagidae, Lorisidae, Lemuriformes; Haplorhini: Tarsioidea, Anthropoidea, Platyrrhini, Atelidae + Cebidae, Atelidae, Cebidae, Aotinae, Callithrichinae, Cebinae, Pitheciidae, Pithecinae, Catarrhini, Cercopithecoidea, Cercopithecinae, Colobinae, Colobini, and Hominoidea. Within Hominoidea character evolution is traced down to more peripheral branches: Hylobatidae, Hominidae, Pongo, Homininae, Gorilla, Pan + Homo, Pan, and modern humans. Character states in extinct representatives of Plesiadapiformes, Omomyoidea, Propliopithecidae, Hominini, etc. are always taken into account; they are presented in detail whenever character-state distribution in living species is ambiguous or misleading. The taxonomic sample and the characters included combine to a phylogenetic system that illustrates primate evolution and diversity. The data presented additionally provide a detailed picture of the evolutionary steps and trends involved in hominization. Reflections on the frequently underestimated role of polymorphisms in phylogenetic analyses complete the survey.  相似文献   

18.
Evolution of the human shoulder: some possible pathways   总被引:1,自引:0,他引:1  
Osteometric data, apparently reflecting functional parameters of the shoulder in the Anthropoidea, have been examined by a combination of multivariate techniques in an attempt to define minimum pathways possibly followed in the evolution of the human shoulder. Principal components analysis has been used to gauge size-related shape effects. The combination of D2 and canonical analysis has suggested that the shoulder in man is unlikely to have evolved (a) from one similar to that of any extant monkey whether arboreal or terrestrial, (b) from one similar to that of any terrestrial ape (like present-day Pan and Gorilla), or (c) from one similar to that of a highly specialised ricochetal armswinging ape (such as present day Hylobates and Symphalangus). The analyses suggest positively that the minimum evolutionary pathway may well have been from the shoulder of a totally arboreal ape, presumably genetically related to Pan and Gorilla, but functionally similar to that evolved in parallel in the highly arboreal orang-utan, Pongo. Information from fragmentary fossils (the scapula from Sterkfontein and the clavicle from Olduvai) supports these conclusions.  相似文献   

19.
The order in which ectocranial sutures undergo fusion displays species-specific variation among primates. However, the precise relationship between suture closure and phylogenetic affinities is poorly understood. In this study, we used Guttman Scaling to determine if the modal progression of suture closure differs among Homo sapiens, Pan troglodytes, and Gorilla gorilla. Because DNA sequence homologies strongly suggest that P. troglodytes and Homo sapiens share a more recent common ancestor than either does with G. gorilla, we hypothesized that this phylogenetic relationship would be reflected in the suture closure patterns of these three taxa. Results indicated that while all three species do share a similar lateral-anterior closure pattern, G. gorilla exhibits a unique vault pattern, which, unlike humans and P. troglodytes, follows a strong posterior-to-anterior gradient. P. troglodytes is therefore more like Homo sapiens in suture synostosis.  相似文献   

20.
J. R. Grehan & J. H. Schwartz (Journal of Biogeography, 2009, 36 , 1823–1844) argued that humans (Homo) are more closely related to orangutans (Pongo) than to chimpanzees (Pan), and used this scenario to draw biogeographical conclusions about human origins. They discussed a contradiction between phenotypical and molecular results that has led to a debate about the reliability of genetic versus phenotypic data. The main aim of our study is to test the conflicting phylogenetic hypotheses by a total‐evidence analysis based on simultaneous optimization of extensive phenotypic and molecular data sets. Our results supported the human–chimpanzee clade, without any phenotypical–molecular data conflict, as the same phylogeny emerged both from the total analysis and when the molecular and phenotypic data were analysed separately. Sensitivity analyses showed that the result was not dependent on the parameters chosen for character weighting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号