首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Volumetric productivity and product quality are two key performance indicators for any biopharmaceutical cell culture process. In this work, we showed proof‐of‐concept for improving both through the use of alternating tangential flow perfusion seed cultures coupled with high‐seed fed‐batch production cultures. First, we optimized the perfusion N‐1 stage, the seed train bioreactor stage immediately prior to the production bioreactor stage, to minimize the consumption of perfusion media for one CHO cell line and then successfully applied the optimized perfusion process to a different CHO cell line. Exponential growth was observed throughout the N‐1 duration, reaching >40 × 106 vc/mL at the end of the perfusion N‐1 stage. The cultures were subsequently split into high‐seed (10 × 106 vc/mL) fed‐batch production cultures. This strategy significantly shortened the culture duration. The high‐seed fed‐batch production processes for cell lines A and B reached 5 g/L titer in 12 days, while their respective low‐seed processes reached the same titer in 17 days. The shortened production culture duration potentially generates a 30% increase in manufacturing capacity while yielding comparable product quality. When perfusion N‐1 and high‐seed fed‐batch production were applied to cell line C, higher levels of the active protein were obtained, compared to the low‐seed process. This, combined with correspondingly lower levels of the inactive species, can enhance the overall process yield for the active species. Using three different CHO cell lines, we showed that perfusion seed cultures can optimize capacity utilization and improve process efficiency by increasing volumetric productivity while maintaining or improving product quality. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:616–625, 2014  相似文献   

2.
Process intensification in biomanufacturing has attracted a great deal of interest in recent years. Manufacturing platform improvements leading to higher cell density and bioreactor productivity have been pursued. Here we evaluated a variety of intensified mammalian cell culture processes for producing monoclonal antibodies. Cell culture operational modes including fed‐batch (normal seeding density or high seeding density with N‐1 perfusion), perfusion, and concentrated fed‐batch (CFB) were assessed using the same media set with the same Chinese Hamster Ovary (CHO) cell line. Limited media modification was done to quickly fit the media set to different operational modes. Perfusion and CFB processes were developed using an alternating tangential flow filtration device. Independent of the operational modes, comparable cell specific productivity (fed‐batch: 29.4 pg/cell/day; fed‐batch with N‐1 perfusion: 32.0 pg/cell/day; perfusion: 31.0 pg/cell/day; CFB: 20.1 – 45.1 pg/cell/day) was reached with similar media conditions. Continuous media exchange enabled much higher bioreactor productivity in the perfusion (up to 2.29 g/L/day) and CFB processes (up to 2.04 g/L/day), compared with that in the fed‐batch processes (ranging from 0.39 to 0.49 g/L/day), largely due to the higher cell density maintained. Furthermore, media cost per gram of antibody produced from perfusion was found to be highly comparable with that from fed‐batch; and the media cost for CFB was the highest due to the short batch duration. Our experimental data supports the argument that media cost for perfusion process could be even lower than that in a fed‐batch process, as long as sufficient bioreactor productivity is achieved. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:867–878, 2017  相似文献   

3.
Current industry practices for large‐scale mammalian cell cultures typically employ a standard platform fed‐batch process with fixed volume bolus feeding. Although widely used, these processes are unable to respond to actual nutrient consumption demands from the culture, which can result in accumulation of by‐products and depletion of certain nutrients. This work demonstrates the application of a fully automated cell culture control, monitoring, and data processing system to achieve significant productivity improvement via dynamic feeding and media optimization. Two distinct feeding algorithms were used to dynamically alter feed rates. The first method is based upon on‐line capacitance measurements where cultures were fed based on growth and nutrient consumption rates estimated from integrated capacitance. The second method is based upon automated glucose measurements obtained from the Nova Bioprofile FLEX® autosampler where cultures were fed to maintain a target glucose level which in turn maintained other nutrients based on a stoichiometric ratio. All of the calculations were done automatically through in‐house integration with a Delta V process control system. Through both media and feed strategy optimization, a titer increase from the original platform titer of 5 to 6.3 g/L was achieved for cell line A, and a substantial titer increase of 4 to over 9 g/L was achieved for cell line B with comparable product quality. Glucose was found to be the best feed indicator, but not all cell lines benefited from dynamic feeding and optimized feed media was critical to process improvement. Our work demonstrated that dynamic feeding has the ability to automatically adjust feed rates according to culture behavior, and that the advantage can be best realized during early and rapid process development stages where different cell lines or large changes in culture conditions might lead to dramatically different nutrient demands. Biotechnol. Bioeng. 2013; 110: 191–205. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
5.
Chinese hamster ovary (CHO) cells are the primary platform for commercial expression of recombinant therapeutic proteins. Obtaining maximum production from the expression platform requires optimal cell culture medium (and associated nutrient feeds). We have used metabolite profiling to define the balance of intracellular and extracellular metabolites during the production process of a CHO cell line expressing a recombinant IgG4 antibody. Using this metabolite profiling approach, it was possible to identify nutrient limitations, which acted as bottlenecks for antibody production, and subsequently develop a simple feeding regime to relieve these metabolic bottlenecks. This metabolite profiling‐based strategy was used to design a targeted, low cost nutrient feed that increased cell biomass by 35% and doubled the antibody titer. This approach, with the potential for utilization in non‐specialized laboratories, can be applied universally to the optimization of production of commercially important biopharmaceuticals. Biotechnol. Bioeng. 2011;108: 3025–3031. © 2011 Wiley Periodicals, Inc.  相似文献   

6.
7.
Chinese hamster ovary (CHO) cells are currently the primary host cell lines used in biotherapeutic manufacturing of monoclonal antibodies (mAbs) and other biopharmaceuticals. Cellular energy metabolism and endoplasmic reticulum (ER) stress are known to greatly impact cell growth, viability, and specific productivity of a biotherapeutic; but the molecular mechanisms are not fully understood. The authors previously employed multi‐omics profiling to investigate the impact of a reduction in cysteine (Cys) feed concentration in a fed‐batch process and found that disruption of the redox balance led to a substantial decline in cell viability and titer. Here, the multi‐omics findings are expanded, and the impact redox imbalance has on ER stress, mitochondrial homeostasis, and lipid metabolism is explored. The reduced Cys feed activates the amino acid response (AAR), increases mitochondrial stress, and initiates gluconeogenesis. Multi‐omics analysis reveals that together, ER stress and AAR signaling shift the cellular energy metabolism to rely primarily on anaplerotic reactions, consuming amino acids and producing lactate, to maintain energy generation. Furthermore, the pathways are demonstrated in which this shift in metabolism leads to a substantial decline in specific productivity and altered mAb glycosylation. Through this work, meaningful bioprocess markers and targets for genetic engineering are identified.  相似文献   

8.
Increases in cell culture titers in existing facilities have prompted efforts to identify strategies that alleviate purification bottlenecks while controlling costs. This article describes the application of a database‐driven dynamic simulation tool to identify optimal purification sizing strategies and visualize their robustness to future titer increases. The tool harnessed the benefits of MySQL to capture the process, business, and risk features of multiple purification options and better manage the large datasets required for uncertainty analysis and optimization. The database was linked to a discrete‐event simulation engine so as to model the dynamic features of biopharmaceutical manufacture and impact of resource constraints. For a given titer, the tool performed brute force optimization so as to identify optimal purification sizing strategies that minimized the batch material cost while maintaining the schedule. The tool was applied to industrial case studies based on a platform monoclonal antibody purification process in a multisuite clinical scale manufacturing facility. The case studies assessed the robustness of optimal strategies to batch‐to‐batch titer variability and extended this to assess the long‐term fit of the platform process as titers increase from 1 to 10 g/L, given a range of equipment sizes available to enable scale intensification efforts. Novel visualization plots consisting of multiple Pareto frontiers with tie‐lines connecting the position of optimal configurations over a given titer range were constructed. These enabled rapid identification of robust purification configurations given titer fluctuations and the facility limit that the purification suites could handle in terms of the maximum titer and hence harvest load. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 28: 1019–1028, 2012  相似文献   

9.
10.
Genome‐scale modeling of mouse hybridoma cells producing monoclonal antibodies (mAb) was performed to elucidate their physiological and metabolic states during fed‐batch cell culture. Initially, feed media nutrients were monitored to identify key components among carbon sources and amino acids with significant impact on the desired outcome, for example, cell growth and antibody production. The monitored profiles indicated rapid assimilation of glucose and glutamine during the exponential growth phase. Significant increase in mAb concentration was also observed when glutamine concentration was controlled at 0.5 mM as a feeding strategy. Based on the reconstructed genome‐scale metabolic network of mouse hybridoma cells and fed‐batch profiles, flux analysis was then implemented to investigate the cellular behavior and changes in internal fluxes during the cell culture. The simulated profile of the cell growth was consistent with experimentally measured specific growth rate. The in silico simulation results indicated (i) predominant utilization of glycolytic pathway for ATP production, (ii) importance of pyruvate node in metabolic shifting, and (iii) characteristic pattern in lactate to glucose ratio during the exponential phase. In future, experimental and in silico analyses can serve as a promising approach to identifying optimal feeding strategies and potential cell engineering targets as well as facilitate media optimization for the enhanced production of mAb or recombinant proteins in mammalian cells. Biotechnol. Bioeng. 2009;102: 1494–1504. © 2008 Wiley Periodicals, Inc.  相似文献   

11.
This work presents a sequential data analysis path, which was successfully applied to identify important patterns (fingerprints) in mammalian cell culture process data regarding process variables, time evolution and process response. The data set incorporates 116 fed‐batch cultivation experiments for the production of a Fc‐Fusion protein. Having precharacterized the evolutions of the investigated variables and manipulated parameters with univariate analysis, principal component analysis (PCA) and partial least squares regression (PLSR) are used for further investigation. The first major objective is to capture and understand the interaction structure and dynamic behavior of the process variables and the titer (process response) using different models. The second major objective is to evaluate those models regarding their capability to characterize and predict the titer production. Moreover, the effects of data unfolding, imputation of missing data, phase separation, and variable transformation on the performance of the models are evaluated. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1633–1644, 2015  相似文献   

12.
Industrial therapeutic protein production has been greatly improved through fed‐batch development. In this study, improvement to the productivity of a tissue‐plasminogen activator (t‐PA) expressing Chinese hamster ovary (CHO) cell line was investigated in shake flask culture through the optimization of the fed‐batch feed and the reduction of ammonia generation by glutamine replacement. The t‐PA titer was increased from 33 mg/L under batch conditions to 250 mg/L with daily feeding starting after three days of culture. A commercially available fed‐batch feed was supplemented with cotton seed hydrolysate and the four depleted amino acids, aspartic acid, asparagine, cysteine, and tyrosine. The fed‐batch operation increased the generation of by‐products such as lactate and ammonia that can adversely affect the fed‐batch performance. To reduce the ammonia production, a glutamine‐containing dipeptide, pyruvate, glutamate, and wheat gluten hydrolysate, were investigated as glutamine substitutes. To minimize the lag phase as the cells adjusted to the new energy source, a feed glutamine replacement process was developed where the cells were initially cultured with a glutamine containing basal medium to establish cell growth followed by feeding with a feed containing the glutamine substitutes. This two‐step feed glutamine replacement process not only reduced the ammonia levels by over 45% but, in the case of using wheat gluten hydrolysate, almost doubled the t‐PA titer to over 420 mg/L without compromising the t‐PA product quality or glycosylation pattern. The feed glutamine replacement process combined with optimizing other feed medium components provided a simple, practical, and effective fed‐batch strategy that could be applied to the production of other recombinant therapeutic proteins. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2013  相似文献   

13.
Upstream bioprocess characterization and optimization are time and resource‐intensive tasks. Regularly in the biopharmaceutical industry, statistical design of experiments (DoE) in combination with response surface models (RSMs) are used, neglecting the process trajectories and dynamics. Generating process understanding with time‐resolved, dynamic process models allows to understand the impact of temporal deviations, production dynamics, and provides a better understanding of the process variations that stem from the biological subsystem. The authors propose to use DoE studies in combination with hybrid modeling for process characterization. This approach is showcased on Escherichia coli fed‐batch cultivations at the 20L scale, evaluating the impact of three critical process parameters. The performance of a hybrid model is compared to a pure data‐driven model and the widely adopted RSM of the process endpoints. Further, the performance of the time‐resolved models to simultaneously predict biomass and titer is evaluated. The superior behavior of the hybrid model compared to the pure black‐box approaches for process characterization is presented. The evaluation considers important criteria, such as the prediction accuracy of the biomass and titer endpoints as well as the time‐resolved trajectories. This showcases the high potential of hybrid models for soft‐sensing and model predictive control.  相似文献   

14.
15.
Methods for robust logistic modeling of batch and fed‐batch mammalian cell cultures are presented in this study. Linearized forms of the logistic growth, logistic decline, and generalized logistic equation were derived to obtain initial estimates of the parameters by linear least squares. These initial estimates facilitated subsequent determination of refined values by nonlinear optimization using three different algorithms. Data from BHK, CHO, and hybridoma cells in batch or fed‐batch cultures at volumes ranging from 100 mL–300 L were tested with the above approach and solution convergence was obtained for all three nonlinear optimization approaches for all data sets. This result, despite the sensitivity of logistic equations to parameter variation because of their exponential nature, demonstrated that robust estimation of logistic parameters was possible by this combination of linearization followed by nonlinear optimization. The approach is relatively simple and can be implemented in a spreadsheet to robustly model mammalian cell culture batch or fed‐batch data. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

16.
Despite the development of high‐titer bioprocesses capable of producing >10 g L?1 of recombinant monoclonal antibody (MAb), some so called “difficult‐to‐express” (DTE) MAbs only reach much lower process titers. For widely utilized “platform” processes the only discrete variable is the protein coding sequence of the recombinant product. However, there has been little systematic study to identify the sequence parameters that affect expression. This information is vital, as it would allow us to rationally design genetic sequence and engineering strategies for optimal bioprocessing. We have therefore developed a new computational tool that enables prediction of MAb titer in Chinese hamster ovary (CHO) cells based on the recombinant coding sequence of the expressed MAb. Model construction utilized a panel of MAbs, which following a 10‐day fed‐batch transient production process varied in titer 5.6‐fold, allowing analysis of the sequence features that impact expression over a range of high and low MAb productivity. The model identified 18 light chain (LC)‐specific sequence features within complementarity determining region 3 (CDR3) capable of predicting MAb titer with a root mean square error of 0.585 relative expression units. Furthermore, we identify that CDR3 variation influences the rate of LC‐HC dimerization during MAb synthesis, which could be exploited to improve the production of DTE MAb variants via increasing the transfected LC:HC gene ratio. Taken together these data suggest that engineering intervention strategies to improve the expression of DTE recombinant products can be rationally implemented based on an identification of the sequence motifs that render a recombinant product DTE. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 30:188–197, 2014  相似文献   

17.
Engineering of mammalian production cell lines to improve titer and quality of biopharmaceuticals is a top priority of the biopharmaceutical manufacturing industry providing protein therapeutics to patients worldwide. While many engineering strategies have been successful in the past decade they were often based on the over‐expression of a single transgene and therefore limited to addressing a single bottleneck in the cell's production capacity. We provide evidence that ectopic expression of the global metabolic sensor and processing protein mammalian target of rapamycin (mTOR), simultaneously improves key bioprocess‐relevant characteristics of Chinese hamster ovary (CHO) cell‐derived production cell lines such as cell growth (increased cell size and protein content), proliferation (increased cell‐cycle progression), viability (decreased apoptosis), robustness (decreased sensitivity to sub‐optimal growth factor and oxygen supplies) and specific productivity of secreted human glycoproteins. Cultivation of mTOR‐transgenic CHO‐derived cell lines engineered for secretion of a therapeutic IgG resulted in antibody titers of up to 50 pg/cell/day, which represents a four‐fold increase compared to the parental production cell line. mTOR‐based engineering of mammalian production cell lines may therefore have a promising future in biopharmaceutical manufacturing of human therapeutic proteins. Biotechnol. Bioeng. 2011; 108:853–866. © 2010 Wiley Periodicals, Inc.  相似文献   

18.
The Chinese hamster ovary (CHO) cell line is one of the most widely used mammalian cell lines for biopharmaceutical production. We have developed and characterized a gene expression microarray (WyeHamster2a) specific for CHO cells that has enabled the study of ~3,500 sequences. Analysis of multiple sets of replicate scans showed that data derived from the WyeHamster2a array is highly reproducible confirming it as a robust tool for profiling. Twelve gene sequences were selected for follow-up RT-qPCR to confirm the accuracy and precision of the microarray results. In all but the most subtle gene expression differences, the microarray proved to be a reliable measure of differential gene expression. Finally, we were able to quantify the difference between using a bona fide CHO-specific microarray for profiling CHO cells versus an alternate, commercially available, rodent microarray such as a mouse or rat-specific format.  相似文献   

19.
Chinese hamster ovary (CHO) cells are widely used in the biopharmaceutical industry. In the creation of mammalian cell lines plasmid DNA carrying the gene‐of‐interest integrates randomly into the host cell genome, which results in variable levels of gene expression between cell lines due to gene silencing mechanisms. In addition, cell lines often show unstable protein production during long‐term culture. This means that a large number of clones need to be screened in order to isolate stable, high producing cell lines making mammalian cell line development a long and laborious process. In this study an expression platform incorporating a Ubiquitous Chromatin Opening Element (UCOE; which are proposed to maintain chromatin in an open state) has been utilised for the expression of eGFP in CHO cells. Cell lines containing a UCOE vector, showed a significantly higher and more consistent eGFP expression than the non‐UCOE cell lines without DHFR amplification. To further improve recombinant protein production cell lines were amplified with methotrexate (MTX). UCOE cell lines showed improved growth in MTX therefore amplification to 250 nM MTX was achieved following a one‐step amplification procedure. However, non‐UCOE cell lines showed higher levels of eGFP production following MTX amplification. In addition, UCOE cell lines did not improve stability during long‐term culture in the absence of selective pressure. Stable eGFP production was achieved for all cell lines when MTX is present. Finally, UCOE cell lines displayed more consistent response to external stimuli than non‐UCOE cell lines, suggesting that UCOE cell lines are less prone to clonal variability. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1014–1025, 2015  相似文献   

20.
Monoclonal antibodies are critically important biologics as the largest class of molecules used to treat cancers, rheumatoid arthritis, and other chronic diseases. Antibody glycosylation is a critical quality attribute that has ramifications for patient safety and physiological efficacy—one that can be modified by such factors as media formulation and process conditions during production. Using a design-of-experiments approach, we examined the effect of 2-F-peracetyl fucose (2FP), uridine, and galactose on cell growth and metabolism, titer, and gene expression of key glycosylation-related proteins, and report how the glycoform distribution changed from Days 4 to 7 in a batch process used for IgG1 production from Chinese hamster ovary cells. We observed major glycosylation changes upon supplement addition, where the addition of 2FP decreased antibody fucosylation by up to 48%, galactose addition increased galactosylation by up to 21%, and uridine addition decreased fucosylation and increased galactosylation by 6% and 2%, respectively. Despite having major effects on glycosylation, neither galactose nor 2FP significantly affected cell culture growth, metabolism, or titer. Uridine improved peak cell densities by 23% but also reduced titer by ∼30%. The supplements caused significant changes in gene expression by Day 4 of the cultures where 2FP addition significantly reduced fucosyltransferase 8 and nucleotide sugar transporter gene expression (by ∼2-fold), and uridine addition significantly increased expression of UDP-GlcNAcT (SLC35A3) and B4GALT1–6 genes (by 1.5–3-fold). These gene expression data alongside glycosylation, metabolic, and growth data improve our understanding of the cellular mechanisms affected by media supplementation and suggest approaches for modifying antibody glycosylation in antibody production processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号