首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract In Gryllus bimaculatus, more digestive enzymes (amylase, trypsin, aminopeptidase) are secreted in the caecum of fed crickets than in unfed crickets, but the enzymes are released continuously at a basal rate in unfed animals. The rate of synthesis of the enzymes appears to parallel their rate of release. Digestive enzymes are released in response to a specific ratio of nutrients, although a high nutrient component in the food does not necessarily induce a high digestive enzyme release for that component. Rinsed flat‐sheet preparations of the caecum are incubated with specific nutrients (carbohydrates and proteins) and various concentrations of a neuropeptide (type‐A allatostatin), which affects generally the basal rates of secretion. Both maltose and glucose increase the release of amylase in vitro, but starch produces an inhibition of amylase release at lower concentrations. Bovine serum albumin (BSA), peptone and a mixture of amino acids have almost no effect on the release of aminopeptidase or carboxypeptidase, and only low concentrations of peptone increase trypsin release. High concentrations of both BSA and peptone strongly inhibit trypsin activity, perhaps by excess substrate binding to the trypsin active site. The allatostatin Grybi‐AST 5 elevates the release of amylase in vitro, but not of trypsin or aminopeptidase, in 2‐day‐old fed females. In the caeca from 1‐day‐old unfed crickets, both amylase and the trypsin release are stimulated in the presence of AST 5. The paracrine AST 5 is probably released from the gut endocrine cells and binds to the enzyme‐producing caecal cells.  相似文献   

2.
The oral toxicity of the C‐type allatostatin, Manduca sexta allatostatin (Manse‐AS) and the analogue δR3δR5Manse‐AS, where R residues were replaced by their D‐isomers, were tested against the peach‐potato aphid Myzus persicae by incorporation into an artificial diet. Both peptides had significant dose‐dependent effects on mortality, growth, and fecundity compared with control insects. The analogue, δR3δR5Manse‐AS, had an estimated LC50 of 0.31 µg/µl diet and was more potent than Manse‐AS (estimated LC50 of 0.58 µg/µl diet). At a dose of 0.35 µg δR3δR5Manse‐AS/µl diet, 76% of the aphids were dead after 6 days and all were dead after 10 days. In comparison, three times the dose of Manse‐AS was required to achieve 74% mortality after 8 days and 98% mortality after 16 days. The degradation of both peptides by extracts prepared from the gut of M. persicae was investigated. The estimated half‐life of Manse‐AS, when incubated with the gut extract from M. persicae, was 31 min. Degradation was due to a cathepsin L‐like cysteine protease, carboxypeptidase‐like activity, endoprotease activity with glutamine specificity, pyroglutamate aminopeptidase activity, and possibly trypsin‐like proteases. The half‐life of the δR3δR5 Manse‐AS analogue was enhanced (73 min) with the D‐isomers of R appearing to prevent cleavage around the R residues by cathepsin L‐like cysteine proteases or from trypsin‐like proteases. The greater stability of the analogue may explain its increased potency in M. persicae. This work demonstrates the potential use of Manse‐AS and analogues, with greater resistance to enzymatic attack, in aphid control strategies. © 2010 Wiley Periodicals, Inc.  相似文献   

3.
A dose‐dependent inhibition of endogenous trypsin and aminopeptidase occurs in the lumen of Spodoptera frugiperda after feeding L6 larvae exogenous inhibitors soybean trypsin inhibitor (SBTI), tosyl‐L‐lysine chloromethyl ketone‐HCl (TLCK), or bestatin, respectively, for 3 days. TLCK inhibits trypsin in tissue extracts and in secretions more strongly than SBTI. The aminopeptidase released into the lumen (containing the peritrophic membrane) is strongly inhibited by bestatin, but the membrane‐bound enzyme is not. A bound enzyme may be more resistant to an inhibitor than unbound. A cross‐class elevation of aminopeptidase activity occurs in response to ingested trypsin inhibitor, but there was no cross‐class effect of aminopeptidase inhibitor (bestatin) on trypsin activity. An endogenous trypsin and aminopeptidase inhibitor is present in the lumen and ventricular cells. The strength of the endogenous trypsin inhibition seems to be in the same range as that resulting from ingestion of the exogenous inhibitor SBTI. In some insect species, considerable trypsin secretion occurs in unfed as well as in fed animals, and endogenous protease inhibitors might function to protect the ventricular epithelium by inactivation of trypsin when less food is available. © 2010 Wiley Periodicals, Inc.  相似文献   

4.
The flow of enzymes, the ratio of bound to unbound enzymes, and their inactivation in the cricket Gryllus bimaculatus was studied. The digestive enzymes are forced forward into the crop by caecal contraction and then they are mixed with freshly chewed food and saliva, forming a crop‐chyme. This chyme is blended by crop peristalsis, and periodic opening of the preproventricular valve (PPV) allows posterior movement into the proventriculus and further into the midgut. The contraction of the crop is modulated by Grybi‐AST and Grybi‐SK peptides, which are partially secreted by the caecal endocrine cells. Most of the aminopeptidase and the four disaccharidases examined are membrane bound (62–80%); the remaining (20–38%) as well all trypsin, chymotrypsin, lipase, and amylase are secreted free into the caecal lumen. Cricket trypsin loses only 30% of its activity in 4 h and very little thereafter. The presence of digestive products in the lumen appears to retard further trypsin autolysis. Cricket trypsin digests 42% of the chymotrypsin, 37% of the lipase, and 45% of the amylase in the caecal fluids over 24 h in vitro no significant difference. Without Ca ion amylase was almost completely digested. About 50% of the membrane bound and free aminopeptidase was digested in the caecal lumen, and about 30–38% of the bound and free maltase. This loss of digestive enzyme activity is possible, because enzyme secretion rates are high, the unbound enzymes are effectively recycled, and the time of nutrient passage is short.  相似文献   

5.
The role of the adipokinetic hormone (AKH) in the control of protease, amylase and lipase activities is examined using the cockroach Periplaneta americana and the fruit fly Drosophila melanogaster as model species. The effects of Peram‐CAH‐I and ‐II on the activity of cockroach digestive enzymes in the gastric caeca and midgut are measured both in vivo and in vitro. The results show the activity of proteases, amylases and lipases in both parts of the gut: amylase activity is higher in the gastric caeca than in the midgut; lipase activity presents the opposite trend; and protease activity is similar in both organs. The applied hormones stimulate the activity of all digestive enzymes, although this stimulation is not uniform; AKHs affect enzymes selectively, and in some cases unequally, in the gastric caeca and midgut. No substantial differences between Peram‐CAH‐I and ‐II stimulation are recorded. The in vitro results demonstrate that AKH stimulates digestive enzyme activity directly. In agreement with the cockroach results, enzymatic activity in D. melanogaster larvae producing nonfunctional AKH is lower than that in the larvae with ectopically expressed Akh gene, where enzyme activity reaches or even exceeds that of the controls. Overall, the results demonstrate the active role of AKHs in the stimulation of digestive enzyme activity in insects.  相似文献   

6.
Cholecystokinin (CCK) and neuropeptide Y (NPY)-related peptides are key regulators of pancreatic enzyme secretion in vertebrates. CCK stimulates enzyme secretion whereas peptide Y (PY), a NPY-related peptide, plays an antagonistic role to that of CCK. In fish, very little is known about how different nutrients affect the synthesis of CCK and PY in the digestive tract, and the mechanism by which CCK and PY actually regulate digestive enzyme secretion is not well understood. In order to determine how different nutrients stimulate the synthesis of CCK and PY in yellowtail (Seriola quinqueradiata), CCK and PY mRNA levels in the digestive tract were measured after oral administration of a single bolus of either phosphate-buffered saline (PBS: control), starch (carbohydrate), casein (protein), oleic acid (fatty acid) or tri-olein (triglyceride). In addition, in order to confirm the synthesis and secretion of digestive enzymes, the mRNA levels and enzymatic activities of three digestive enzymes (lipase, trypsin and amylase) were also analyzed. Casein, oleic acid and tri-olein increased the synthesis of lipase, trypsin and amylase, while starch and PBS did not affect the activity of any of these enzymes. CCK mRNA levels rose, while PY mRNA levels were reduced in fish administered casein, oleic acid and tri-olein. These results suggest that in yellowtail, CCK and PY maintain antagonistic control of pancreatic enzyme secretion after intake of protein and/or fat.  相似文献   

7.
The adaptation of the activity of the digestive enzymes of Brycon cf. melanopterus (Characidae) to diets were studied. The activity of amylase, trypsin and lipase can be increased respectively with a diet rich in carbohydrate, protein, or fat. Pepsin did not show change in activity.  相似文献   

8.
Amylase, cellulase, trehalase, aminopeptidase and trypsin were determined using the midgut and trehalose using the haemolymph of starved and of subsequently fed larvae of Rhynchosciara americana. Midgut trehalase activity decreases steadily during starvation and increases again on feeding, whereas haemolymph trehalose titres remain constant, suggesting that trehalase is a true digestive enzyme. The decrease in amylase, cellulase and trypsin activity in the midgut during starvation is of the same order as that recovered from the excreta. Since this finding is exactly what one would expect if enzyme production stops in response to starvation, this supports the hypothesis that synthesis that synthesis of these enzymes is controlled. The excretion rate of amylase, cellulase and trypsin is very low in comparison to their activity inside the peritrophic membrane and the travel time of the food bolus through the gut. It is proposed that the peritrophic membrane separates two extracellular sites for digestion as an adaptation to conserve secreted enzymes. This could be accomplished by the existence of an endo-ectoperitrophic circulation of the enzymes involved in the initial attack on the food and by restricting to the ectoperitrophic fluid the enzymes which participate only in intermediary digestion of food.  相似文献   

9.
In the midgut of Spodoptera frugiperda larvae, subcellular fractionation data suggest that aminopeptidase and part of amylase, carboxypeptidase A, dipeptidase, and trypsin are bound to the microvillar membranes; that major amounts of soluble dipeptidase, cellobiase, and maltase are trapped in the cell glycocalyx; and finally that soluble carboxypeptidase, amylase, and trypsin occur in intracellular vesicles. Most luminal acetylglucosaminidase is soluble and restricted to the ectoperitrophic contents. Aminopeptidase occurs in minor amounts bound to membranes both in the ectoperitrophic contents and incorporated in the peritrophic membrane. Amylase, carboxypeptidase A, and trypsin are found in minor amounts in the ectoperitrophic contents (both soluble and membrane-bound) and in major amounts in the peritrophic membrane with contents. Part of the activities recovered in the last mentioned contents corresponds to enzyme molecules incorporated in the peritrophic membrane. The results suggest that initial digestion is carried out in major amounts by enzymes in the endoperitrophic space and, in minor amounts, by enzymes immobilized in the peritrophic membrane. Intermediate and final digestion occur at the ectoperitrophic space or at the surface of midgut cells. The results also lend support to the hypothesis that amylase and trypsin are derived from membrane-bound forms, are released in soluble form by a microapocrine mechanism, and are partly incorporated into the peritrophic membrane. © 1994 Wiley-Liss, Inc.  相似文献   

10.
Changes in major digestive enzymes through developmental and molt stages were studied for the spiny lobster Panulirus argus. There were significant positive relationships between specific activity of trypsin and amylase enzymes and lobster size, whereas esterase and lipase specific activities decreased as lobsters aged. No relationship was found between amylase/trypsin ratio and lobster size. Positive trends were found, however, for trypsin/lipase and amylase/lipase ratios. Results suggest that changes in enzyme activity respond to the lobsters' physiological needs for particular dietary components although multivariate analysis suggested that enzyme activities could be not totally independent of diet. On the other hand, the pattern of changes of major enzyme activities through molt cycle was similar for most enzymes studied. Following molt, trypsin, chymotrypsin, amylase, and lipase activities gradually increased to maximal levels at late intermolt (C4) and premolt (D). There were no variations in the electrophoretic pattern of digestive enzymes through developmental and molt stages and thus, it is demonstrated that regulation is exerted quantitatively rather than qualitatively. Further studies on the effect of other intrinsic and extrinsic factors on digestive enzyme activities are needed to fully understand digestive abilities and regulation mechanisms in spiny lobsters.  相似文献   

11.
Digestive enzyme distribution and activity in the digestive tracts of the rabbitfish, Siganus canaliculatus and the sea bass, Lates calcarifer were studied. Quantitative determinations of digestive enzymes in the guts of both fishes showed that they were capable of digesting carbohydrates and proteins in their diet. The carbohydrases, amylase, laminarinase, maltase, sucrase and trehalase were detected in the rabbitfish; their activities being mainly in the stomach, intestine and pyloriccaeca. Amylase, maltase, trehalase and chitinase activities were recorded in the gut of the sea bass, primarily in the intestine and the pyloriccaeca. Their activities were significantly lower than those in the rabbitfish. Proteases (pepsin, chymotrypsin, elastase, leucine aminopeptidase and trypsin) were found in both the rabbitfish and the sea bass. Pepsin activity however, was higher in the sea bass; while trypsin and chymotrypsin activities were higher in the rabbitfish. The activities of the various digestive enzymes in both fishes are discussed in relation to their feeding habits.  相似文献   

12.
The proteolytic enzymes in the gut of the banana weevil, Cosmopolites sordidus (Germar) (Coleoptera: Curculionidae), have been characterized. Both larvae and adults rely on a complex proteolytic system based on at least cathepsin D‐, cathepsin B‐, trypsin‐, chymotrypsin‐, leucine aminopeptidase‐, carboxypeptidase A‐, and carboxypeptidase B‐like activities. All endoproteolytic activities were higher in the anterior section of the gut, whereas the exopeptidases were evenly distributed in the anterior and middle sections, and almost no activity was detected in the posterior section. Gelatin‐containing gels confirmed the spatial organization of the proteolytic digestive process. According to this proteolytic profile, the STI (soybean Kunitz trypsin inhibitor) was tested in vivo to establish its potential as a resistance factor against C. sordidus. Newly hatched larvae fed on diets containing 0.2% (w/w) STI experience lower survival rates and display significant reductions in larval growth. Biochemical analysis carried out on guts of larvae reared on STI‐treated diet showed a reduction of trypsin‐like activity compared to that from larvae fed on control diet. This decrease was compensated with an induction of cathepsin B, whereas cathepsin D, chymotrypsin, and leucine aminopeptidase were not affected. These results are discussed as a basis for selecting appropriate inhibitors to obtain transgenic banana and plantain plants with enhanced resistance to this pest.  相似文献   

13.
14.
Brycon guatemalensis , a Neotropical characid fish, consumes an entirely terrestrial diet, shifting from eating insects as juveniles to fruits and leaves as adults. Juvenile and larger‐sized fish collected in the Rio Puerto Viejo at the La Selva Biological Station in Costa Rica were studied to test the hypotheses that, with ontogeny, (1) relative gut length increases, (2) pyloric caeca arrangement and number remain unchanged and (3) pepsin, trypsin and lipase activities decrease, while α‐amylase activity increases. These hypotheses were mainly supported in that larger fish had longer guts, unchanged pyloric caeca arrangement but fewer caeca, and, at both environmental and standard temperatures for the enzyme assays, lower pepsin and trypsin activities but higher α‐amylase activities than the juveniles. Only lipase, among the digestive enzymes, exhibited the unexpected outcome of either not differing significantly in activity (per g of tissue) between juveniles and larger fish or being significantly higher (per mg of protein) in larger fish. The overall results support the view that B. guatemalensis is specialized morphologically and biochemically to function first as a carnivore and then as a herbivore during its life history.  相似文献   

15.
Apparent egg cannibalism was investigated in the beach‐spawning California grunion Leuresthes tenuis. Three hypotheses were tested to determine whether L. tenuis regularly consumes and efficiently digests conspecific eggs. First, examination of the gut contents of adults collected at four spawning sites over two seasons showed that the intestines of most fish from all the sites (57–87%, n ≥ 30, each site) contained L. tenuis eggs. The two other hypotheses focused on digestion of the eggs. First, the force required to crush cannibalized eggs was significantly less than that for uncannibalized eggs (fertilized or unfertilized), indicating that ingestion weakens the egg chorions. Second, conspecific eggs fed to fish held in the laboratory visibly degraded as they passed through the gut. The eggs lost c. half of their protein content and about two‐thirds of their lipid content as they passed from proximal to distal regions of the gut, indicating that digestion occurred. Digestive enzyme activities of the gut further confirmed that L. tenuis can break down the contents of ingested eggs. Trypsin activity decreased and aminopeptidase activity increased posteriorly along the gut, whereas amylase and lipase activities exhibited less clear patterns by gut region. As far as is known, this study is the first to show that L. tenuis is an egg cannibal.  相似文献   

16.
The gypsy moth is a generalist insect pest with an extremely wide host range. Adaptive responses of digestive enzymes are important for the successful utilization of plant hosts that differ in the contents and ratios of constituent nutrients and allelochemicals. In the present study, we examined the responses of α‐amylase, trypsin, and leucine aminopeptidase to two tree hosts (suitable oak, Quercus cerris, and unsuitable locust tree, Robinia pseudoacacia) in the fourth, fifth, and sixth instars of gypsy moth larvae originating from oak and locust tree forest populations (hereafter assigned as Quercus and Robinia populations, respectively). Gypsy moths from the Robinia forest had been adapting to this unsuitable host for more than 40 generations. To test for population‐level host plant specialization, we applied a two‐population × two‐host experimental design. We compared the levels, developmental patterns, and plasticities of the activities of enzymes. The locust tree diet increased enzyme activity in the fourth instar and reduced activity in advanced instars of the Quercus larvae in comparison to the oak diet. These larvae also exhibited opposite developmental trajectories on the two hosts, i.e. activity increased on the oak diet and decreased on the locust tree diet with the progress of instar. Larvae of the Robinia population were characterized by reduced plasticity of enzyme activity and its developmental trajectories. In addition, elevated trypsin activity in response to an unsuitable host was observed in all instar larvae of the Robinia population, which demonstrated that Robinia larvae had an improved digestive performance than did Quercus larvae.  相似文献   

17.
Very little is known of the effects of diet and disease on panceratic enzyme syntheis in humans as conventional tests measure the secretory response to secreagogues, such as CCK, and secretion may be unrelated to synthesis because of the masking effect of a large intracellular pool of stored enzymes (zymogens). In order to obtain information on enzyme synthesis, as well as secretion, we have measured the incorporation characteristics of isotopically labelled amino acids (e.g., 14C or 13C leucine tracer) into amylase and trypsin protein, extracted by affinity chromatography from duodenal secretions during pancreatic stimulation with CCK-8The results of our studies in healthy volunteers and patients have suggested that (a) it takes between 75 and 101 min for the participation of newly synthesized pancreatic enzymes in the digestive process, and that zymogen stores are replaced at a rate of between 12 percent and 47 percent per hour in normal healthy subjects, (b) the synthesis and production rates of trypsin and amylase are parallel in healthy subjects, but can diverge under stressful conditions such as hypersecretory states, post-acute pancreatitis and protein malnutrition, (c) hyperphagia stimulates the synthesis of enzymes whilst malnutrition diminishes the synthesis of trypsin to a greater extent than amylase, (d) intravenous glucose and amino acids exert negative feedback control on the synthesis and release of amylase and trypsin, and (e) the decreased secretion of pancreatic enzymes in Type 1 insulin-dependent diabetics is more a consequence of defective enzyme release from zymogen stores than defective synthesis.In conclusion, our results indicate that changes in pancreatic enzyme secretion noted in patients do not always reflect changes in enzyme synthesis, and that the production of individual enzymes may diverge under certain circumstances. Based on the methodology described, it should be possible to develop more sensitive clinical tests of pancreatic function that provide information not only on the abiltiy of the pancreas to secrete enzymes under certain disease states, but also information on the gland''s synthetic activity  相似文献   

18.
Abstract. .Reproducing females of the firebug, Pyrrhocoris apterus (Linnaeus) (Heteroptera: Pyrrhocoridae), reared under long-day (LD 18:6h) photocycle (long-day females), and diapausing females reared under short-day (LD 12:12h) conditions (short-day females) were analysed for temporal patterns of feeding, drinking and gut digestive enzyme activities. In long-day females the highest activities of feeding and drinking were found at the beginning of each reproductive cycle. Significant correlation between feeding and drinking activities in both reproducing long-day females and short-day females during pre-diapause state was found. In pre-diapausing short-day females the cyclical pattern of feeding and drinking was maintained despite the inhibition of reproduction. After entering the diapause their feeding activity became very low. Analysis of five gut enzymes revealed that short-day females differ significantly from long-day females in higher protease, amylase and esterase activities, in case of lipase only at certain times of their adult life; no significant difference was found in the aminopeptidase activity. Positive correlations between intensity of feeding and gut enzyme activities were observed in short-day females. Using several protease inhibitors most protease activity in the gut of P.apterus was identified as cysteine and aspartyl proteases, and only a small part of the activity could be caused by some serine proteases.  相似文献   

19.
Food composition, diestive enzyme distribution and activity in the gut of pond-cultured Clarias isheriensis were studied It had an omnivorous diet but fed mainly on plancon (particularly Cyanophyceae) and detritus. Qualitative determinations of digestive enzymes in the gut showed that it is capable of digesting carbohydrates, proteins and lipids in its diet. Carbohydrases (amylase, cellulase, maltase, salicinase, sucrase and trehalase) were detected and their activities restricted to the stomach, duodenum and ileum. The incidence of cellulase activity could be responsible for the capacity of this fish species to digest large quantities of Cyanophyceae present in the pond. Lower activity of proteases (chymotrypsin, pepsin and trypsin) and lipases were recorded. Enzyme activity was not recorded in either oesophagus or rectum. The relative distribution and activity of the various digestive enzymes were possibly induced by the nutritional requirements of this catfish species.  相似文献   

20.
Fifth-instar Erinnyis ello larvae eat 2.1 times their own weight per day of Euphorbia pulcherrima leaves, with a coefficient of digestibility of 45% and an efficiency of food conversion into tissue of 25%. The food takes about 150 min to go through the gut. Midgut contents have a pH of 9.3–9.8, depending on the region. Cellulase is absent from the gut in E. ello. Significant gut hydrolase activities are found only in midgut. Amylase and trypsin occur in the midgut tissue and contents and in regurgitated material, whereas aminopeptidase, α-glucosidase, β-glucosidase and trehalase are found in major amounts in the midgut tissue, in minor amounts in the midgut contents and are absent from regurgitated material. The results support the hypothesis that digestion starts in the endoperitrophic space under the action of amylase and trypsin and is largely completed in the ectoperitrophic space through the catalytic action of several oligomer and dimer hydrolases. Involvement of a membrane-bound aminopeptidase in the terminal digestion of oligopeptides cannot, at present, be excluded. The finding that less than 7% of the total amylase and trypsin are excreted, after a time identical to the passage time of the food bolus, leads to the proposal for the existence of some mechanism by which those enzymes are recovered from the undigested food before it is excreted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号