首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chromosome 18 abnormalities rank among the most common autosomal anomalies with 18q being the most frequently affected. A deletion of 18q has been attributed to microcephaly, mental retardation, short stature, facial dysmorphism, myelination disorders, limb and genitourinary malformations and congenital aural atresia. On the other hand, duplications of 18q have been associated with the phenotype of Edwards syndrome. Critical chromosomal regions for both phenotypes are contentious. In this report, we describe the first case of an 11-year old male with a combined interstitial duplication 18q22.1, triplication 18q22.1q22.2 and terminal deletion 18q22.2q23 with phenotypic features of isolated 18q deletion syndrome and absence of phenotypic features characteristic of Edwards syndrome despite duplication of the suggested critical region. This report allows for reevaluation of proposed critical intervals for the phenotypes in deletion 18q syndrome and Edwards syndrome.  相似文献   

2.
We report an 18-year-old Turkish girl with an 18q- deletion and abnormalities of face, mental and growth retardation, mitral deficiency and hypothyroidism. Mitral deficiency has not been reported in 18q deletion syndrome cases previously. We performed cytogenetic and molecular cytogenetic analysis, and brain MRI. Her karyotype was 46,XX,del(18)(q21.2-->qter). This report compares the symptoms and features of the present patient with previously reported cases with 18q syndrome.  相似文献   

3.
The ablepharon-macrostomia (AMS) and Barber-Say syndromes (BSS) are rare disorders characterized by absence of the eyelids or ectropion, macrostomia, ambiguous genitalia, abnormal ears, rudimentary nipples, and dry, redundant skin. Patients with Barber-Say syndrome also have hypertrichosis. We present a patient with a phenotype similar to AMS who has a complex rearrangement of chromosome 18, involving both an inversion and interstitial deletion. Our patient lacks the typical features of the 18q deletion syndrome. We review AMS and BSS as compared with our patient, and recognize cutis laxa as a feature shared by all. We propose that the gene(s) for this phenotype may lie on chromosome 18 in the region of the deletion or inversion breakpoints. Received: 1 March 1995 / Revised: 20 May 1995  相似文献   

4.
Intercalary de novo deletion of chromosome 1: del(1) (q24 to q32)   总被引:1,自引:0,他引:1  
We present one unrelated girl with a de novo interstitial deletion of a segment in the long arm of chromosome 1 (q24----q32). Comparison of the phenotypic characteristics of this proband with those of six previously described patients with similar deletion, does not suggest the existence of a 1q interstitial deletion syndrome. Clinical manifestations of these patients are variable and non specific: intrauterine growth retardation, low set ears, height and weight failure and mental retardation, clinodactyly of the fifth fingers. Other well detailed cases will be necessary to prove the existence of a 1 q interstitial deletion syndrome (q24----q32).  相似文献   

5.
18q deletion syndrome in a child with steroid-17,20-lyase deficiency   总被引:1,自引:0,他引:1  
The del (18q) syndrome is characterised by poor growth, variable mental retardation, facial dysmorphism, and abnormalities of the genitalia. In genetic males, genital abnormalities vary from testicular ectopia, and microphallus to severe hypospadias. Genetic females frequently have hypoplasia of the labia minora. We describe a child with del (18q) syndrome and severe ambiguous genitalia. Serum testosterone after 4 doses of hCG (5000 IU/m2/dose) was only 50 ng/dL (expected greater than 300 ng/dL). When testicular tissue was incubated with [1,2-3H]progesterone and 17-hydroxy-[4-14C]progesterone, there was synthesis of 17-hydroxy-[1,2-3H]progesterone but no further metabolism of 17-hydroxyprogesterone to androgens. These data suggested the presence of steroid-17,20-lyase deficiency. In order to determine if steroid-17,20-lyase deficiency was a common feature in del (18q) syndrome we examined 6 other patients (3 girls; 3 boys) with a deletion of the long arm of chromosome 18 distal to band q21. All 6 had dehydroepiandrosterone sulfate (DHEA-S) levels which were lower than those of age-matched controls. Four had delayed puberty. Serum testosterone levels were also low in 2 of the 3 affected boys. These results together with the findings in the index case suggest that a structural or regulatory gene for steroid-17,20-lyase may be located on the long arm of chromosome 18, distal to band q21.  相似文献   

6.
High-resolution cytogenetics analysis of peripheral blood lymphocytes was done prospectively on 27 of 28 patients with features of DiGeorge anomaly. Twenty-two patients (81%) had normal chromosome studies with no detectable deletion in chromosome 22. Five patients (18%) had demonstrable chromosome abnormalities. Three patients had monosomy 22q11, one due to a 4q;22q translocation, one due to a 20q;22q translocation, and one due to an interstitial deletion of 22q11. One patient had monosomy 10p13, and one patient had monosomy 18q21.33, although the latter had subsequent resolution of T-cell defects. These findings are consistent with the heterogeneity of DiGeorge anomaly but confirm the association with monosomy 22q11 in some cases. However, monosomy 10p13 may also lead to this phenotype. Because of these associated chromosome findings, cytogenetic analyses should be done on patients with suspected DiGeorge anomaly. This is particularly important since many of the abnormalities involving chromosome 22 are translocations that can be familial with a higher recurrence risk. Since only one subtle, interstitial deletion of chromosome 22 was observed, it is not clear whether high-resolution cytogenetic analysis is cost beneficial for all such patients.  相似文献   

7.
The 18q- syndrome is one of several terminal deletion disorders that occur in humans. Previous G-banding studies suggest that the loss of a critical band, 18q21.3, results in mental retardation, craniofacial anomalies, and metabolic defects. However, it is difficult to reconcile the consistent loss of a single region with the large variability in clinical phenotype. The purpose of this study was to reassess the extent of chromosomal loss in a cohort of 17 18q- syndrome patients by using fluorescent-activated chromosome sorting, PCR, and FISH. Bivariate flow karyotypes revealed heterogeneity among the deletions; they ranged in size from 9 to 26 Mb. To confirm this heterogeneity at a molecular level, deleted and normal chromosomes 18 of six patients were collected by flow sorting, preamplified by random priming, and assayed for marker content by the PCR. This analysis defined five unique breakpoints among the six patients. We conclude that the terminal deletions in the 18q- syndrome occur over a broad region spanning the interval from 18q21.2 to 18q22.2. Our results suggest that the variability in clinical phenotype may be more representative of a contiguous-gene syndrome with a baseline deficit of 18q22.2-qter than of the loss of a single critical region within 18q21.3.  相似文献   

8.
The 18q deletion syndrome can be caused by several terminal and interstitial deletions of which terminal deletions of the distal part of 18q are the most frequent and known as the DeCroughy syndrome. The neuropsychiatric phenotype is not well documented and includes disorganised and disinhibited behaviours as well as language difficulties. Non development of language seems to be specific for cases with a more proximally located interstitial deletions. In the present paper a 18-year-old severely mentally retarded male with an interstitial deletion of 18q is described (46.XY,del(18)(q12.1q22.1) who was referred for behavioural problems and neuropsychiatric evaluation. No categorical psychiatric diagnosis could be established. Given this and other reports, it is advocated to describe the psychopathological phenotype of 18q deletions in a dimensional way that will result in a clinical picture characterised mainly by symptoms from the motor and motivation domains. Treatment should include primarily behavioural measures, combined if necessary with symptomatic psychopharmacotherapy.  相似文献   

9.
Aortic coarctation is a life-threatening defect when it occurs with cardiorespiratory failure. Its genetic cause remains unknown. A woman was pregnant twice, both with male fetuses that had partial trisomy 18p, partial monosomy 18q, and aortic coarctation. The syndrome may relate to the aortic coarctation and pulmonary hypoplasia and is life-threatening. ArrayCGH analysis suggested a de novo 17.7 Mb deletion of chromosome 18q21.33 → qter (58,413,193 bp to 76,116,029 bp) and a de novo 12.4 Mb duplication of chromosome 18pter → p11.21 (1543 bp to 12,438,430 bp) at the telomeric end of chromosome 18. To the best of our knowledge, the present chromosomal breakpoint with rearrangement has not been previously described. This chromosome aberration may be responsible for this syndrome.  相似文献   

10.
We report a patient with an interstitial 14q32.1-->q32.3 deletion and review the literature. The adult patient presented with moderate mental retardation, a friendly behavior and a non-specific phenotype. The deletion seemed to be terminal but with FISH probes appeared to be interstitial. Comparison with other 14q terminal and interstitial deletion patients reported in literature and those with a ring 14 chromosome is given.  相似文献   

11.
Patients with 13q deletion syndrome are characterized with different phenotypical features depending on the size and location of the deleted region on chromosome 13. These patients fall into three groups: In Group 1, deleted region is in the proximal and does not extend into q32; in Group 2, deleted region involves proximal to the q32 and in Group 3 q33-q34 is deleted. We present two cases with 13q syndrome with two different deleted region and different severity on clinical features: One case with interstitial deletion belongs to the Group 1 with mild mental retardation and minor malformations and the other case with terminal deletion belongs to Group 3 with moderate to severe mental retardation and major malformations.  相似文献   

12.
A clinically recognizable 9q subtelomeric deletion syndrome has recently been established. Common features seen in these patients are severe mental retardation, hypotonia, brachycephaly, flat face with hypertelorism, synophrys, anteverted nares, cupid bow or tented upper lip, everted lower lip, prognathism, macroglossia, conotruncal heart defects, and behavioral problems. The minimal critical region responsible for this 9q subtelomeric deletion (9q-) syndrome has been estimated to be <1 Mb and comprises the euchromatin histone methyl transferase 1 gene (EHMT1). Previous studies suggested that haploinsufficiency for EHMT1 is causative for 9q subtelomeric deletion syndrome. We have performed a comprehensive mutation analysis of the EHMT1 gene in 23 patients with clinical presentations reminiscent of 9q subtelomeric deletion syndrome. This analysis revealed three additional microdeletions that comprise the EHMT1 gene, including one interstitial deletion that reduces the critical region for this syndrome. Most importantly, we identified two de novo mutations--a nonsense mutation and a frameshift mutation--in the EHMT1 gene in patients with a typical 9q- phenotype. These results establish that haploinsufficiency of EHMT1 is causative for 9q subtelomeric deletion syndrome.  相似文献   

13.
Interstitial deletions are not the main mechanism leading to 18q deletions.   总被引:5,自引:1,他引:4  
Most patients who present with the 18q- syndrome have an apparent terminal deletion of the long arm of chromosome 18. For precise phenotypic mapping of this syndrome, it is important to determine whether the deletions are terminal deletions or interstitial deletions. A human telomeric YAC clone has been identified that hybridizes specifically to the telomeric end of 18q. This clone was characterized and used to analyze seven patients with 18q deletions. By FISH and Southern blotting analysis, all patients were found to lack this chromosomal region on their deleted chromosome, demonstrating that the patients do not have cryptic interstitial deletions.  相似文献   

14.
15.
Lee S  Chae H  Park IY  Kim M  Kim Y  Shin JC  Lee J  Son J 《Gene》2012,494(1):105-108
We describe here a newborn with a de novo 22.6 Mb interstitial deletion of chromosome 5q22.3. The clinical findings included brachycephaly, a high forehead, hypertelorism with prominent eyes, low-set ears, clenched hands, club feet, a prominent coccyx with hair, ambiguous genitalia, inguinal hernia, heart defect and severe failure to thrive. This case had a more severe phenotype, compared with the previous reports of interstitial 5q syndrome. High resolution multicolor banding and array comparative genomic hybridization (array CGH) analysis delineated the breakpoints at 5q22.3 and 5q31.2. There were no obvious candidate genes for the specific correlation with the phenotypes except a PITX1 gene associated with the phenotype of club feet. Further cumulative data based on the molecular approach are needed to establish the genotype-phenotype correlation and to understand the role and influence of the genes in the interstitial 5q syndrome.  相似文献   

16.
Previous research has suggested that individuals with constitutional hemizygosity of 18q have a higher risk of autistic-like behaviors. We sought to identify genomic factors located on chromosome 18 as well as other loci that correlate with autistic behaviors. One hundred and five individuals with 18q- were assessed by high-resolution oligo aCGH and by parental ratings of behavior on the Gilliam Autism Rating Scale. Forty-five individuals (43%) had scores within the “possibly” or “very likely” categories of risk for an autism diagnosis. We searched for genetic determinants of autism by (1) identifying additional chromosome copy number changes (2) Identifying common regions of hemizygosity on 18q, and (3) evaluating four regions containing candidate genes located on 18q (MBD1, TCF4, NETO1, FBXO15). Three individuals with a “very likely” probability of autism had a captured 17p telomere in addition to the 18q deletion suggesting a possible synergy between hemizygosity of 18q and trigosity of 17p. In addition, two of the individuals with an 18q deletion and a “very likely” probability of autism rating had a duplication of the entire short arm of chromosome 18. Although no common region of hemizygosity on 18q was identified, analysis of four regions containing candidate genes suggested that individuals were significantly more likely to exhibit autistic-like behaviors if their region of hemizygosity included TCF4, NETO1, and FBXO15 than if they had any other combination of hemizygosity of the candidate genes. Taken together, these findings identify several new potential candidate genes or regions for autistic behaviors.  相似文献   

17.
SALL3, a new member of the human spalt-like gene family, maps to 18q23   总被引:8,自引:0,他引:8  
spalt (sal) of Drosophila melanogaster is an important developmental regulator gene and encodes a zinc finger protein of unusual but characteristic structure. Two human sal-like genes have been isolated so far, SALL1 on chromosome 16q12.1 and SALL2 on chromosome 14q11.1-q12.1. Truncating mutations of SALL1 have been shown to cause Townes-Brocks syndrome and are thought to result in SALL1 haploinsufficiency. Sequence comparison of SALL1 to the related genes Msal in mouse and Xsal-1 in Xenopus laevis suggested that SALL1 was not the human orthologue of Msal and Xsal-1. By database searching and genomic cloning, we isolated an EST and a corresponding human cosmid clone, which contain coding sequence of a human gene highly similar to mouse Msal. This gene, named SALL3, was found to be expressed in different regions of human fetal brain and in different adult human tissues. The chromosomal localization of SALL3 at 18q23 suggests that haploinsufficiency of this gene might contribute to the phenotype of patients with 18q deletion syndrome.  相似文献   

18.
18q部分单体患儿的细胞和分子遗传学研究   总被引:1,自引:0,他引:1  
临床发现1例智力低下伴轻度发育迟缓的女性患儿,对患儿进行G显带高分辨染色体核型分析, 发现18q21→qter缺失, 经多色荧光原位杂交和双色荧光原位杂交证实, 确定其核型为46,XX,del(18)(pter→q21:),ish del(18)(D18Z1+, qter-)。用DNA多态性方法分析, 该患儿从18q22.1至18qter区域内至少有8.7 Mbp丢失, 有MBP基因和GALNR基因缺失。缺失的18号染色体源自父亲。患者的智力低下和生长发育迟缓是18q21→qter缺失的结果, 或许与MBP基因和GALNR基因的缺失有关。  相似文献   

19.
Summary The gene for superoxide dismutase-1 (SOD-1) is clearly on chromosome 21, although there is disagreement on the precise band location of SOD-1 on the long (q) arm of number 21. We report a patient with normal superoxide dismutase-1 (SOD-1) activity and an interstitial deletion of chromosome 21 resulting in monosomy for band q21. His phenotype is characterized by moderate mental retardation, a long narrow face, high and arched palate, cardiac murmur, undescended testes, and long hyperflexible extremities. The normal SOD-1 activity supports localization of this enzyme to 21q22.1.  相似文献   

20.
Summary In two unrelated families, males have been identified who suffer from choroideremia and at the same time have an interstitial deletion on the proximal long arm of the X chromosome. By high-resolution banding we have characterized the deletion chromosomes as del(X)(q21.1-q21.33) and del(X)(q21.2-q21.31) respectively. By Southern blot analysis we have mapped ten different polymorphic DNA loci relative to the position of the deletion and the choroideremia locus TCD. One probe, p31, was shown to cover one of the breakpoints of the smallest deletion. The following order of the loci was suggested by deletion mapping: cen-DXS106-DXS72-TCD-(DXYS1/DXYS23/DXYS5)-DXYS2-(DXYS12/DXS3)-(DXS17/DXS101)-Xqter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号