首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
For the first time, in situ electromagnetic field exposure of the general public to fields from long term evolution (LTE) cellular base stations is assessed. Exposure contributions due to different radiofrequency (RF) sources are compared with LTE exposure at 30 locations in Stockholm, Sweden. Total exposures (0.2–2.6 V/m) satisfy the International Commission on Non‐Ionizing Radiation Protection (ICNIRP) reference levels (from 28 V/m for frequency modulation (FM), up to 61 V/m for LTE) at all locations. LTE exposure levels up to 0.8 V/m were measured, and the average contribution of the LTE signal to the total RF exposure equals 4%. Bioelectromagnetics 31:576–579, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

2.
We investigated whether domestic and professional induction cooktops comply with the basic restrictions defined by the International Commission on Non‐Ionizing Radiation Protection (ICNIRP). Based on magnetic field measurements, a generic numerical model of an induction cooktop was derived in order to model user exposure. The current density induced in the user was simulated for various models and distances. We also determined the exposure of the fetus and of young children. While most measured cooktops comply with the public exposure limits at the distance specified by the International Electrotechnical Commission (standard IEC 62233), the majority exceeds them at closer distances, some of them even the occupational limits. The maximum current density in the tissue of the user significantly exceeds the basic restrictions for the general public, reaching the occupational level. The exposure of the brains of young children reaches the order of magnitude of the limits for the general public. For a generic worst‐case cooktop compliant with the measurement standards, the current density exceeds the 1998 ICNIRP basic restrictions by up to 24 dB or a factor of 16. The brain tissue of young children can be overexposed by 6 dB or a factor of 2. The exposure of the tissue of the central nervous system of the fetus can exceed the limits for the general public if the mother is exposed at occupational levels. This demonstrates that the methodology for testing induction cooktops according to IEC 62233 contradicts the basic restrictions. This evaluation will be extended considering the redefined basic restrictions proposed by the ICNIRP in 2010. Bioelectromagnetics 33:695–705, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
In this article, personal electromagnetic field measurements are converted into whole‐body specific absorption rates for exposure of the general public. Whole‐body SAR values calculated from personal exposure meter data are compared for different human spheroid phantoms: the highest SAR values (at 950 MHz) are obtained for the 1‐year‐old child (99th percentile of 17.9 µW/kg for electric field strength of 0.36 V/m), followed by the 5‐year‐old child, 10‐year‐old child, average woman, and average man. For the 1‐year‐old child, whole‐body SAR values due to 9 different radiofrequency sources (FM, DAB, TETRA, TV, GSM900 DL, GSM1800 DL, DECT, UMTS DL, WiFi) are determined for 15 different scenarios. An SAR matrix for 15 different exposure scenarios and 9 sources is provided with the personal field exposure matrix. Highest 95th percentiles of the whole‐body SAR are equal to 7.9 µW/kg (0.36 V/m, GSM900 DL), 5.8 µW/kg (0.26 V/m, DAB/TV), and 7.1 µW/kg (0.41 V/m, DECT) for the 1‐year‐old child, with a maximal total whole‐body SAR of 11.5 µW/kg (0.48 V/m) due to all 9 sources. All values are below the basic restriction of 0.08 W/kg for the general public. 95th percentiles of whole‐body SAR per V/m are equal to 60.1, 87.9, and 42.7 µW/kg for GSM900, DAB/TV, and DECT sources, respectively. Functions of the SAR versus measured electric fields are provided for the different phantoms and frequencies, enabling epidemiological and dosimetric studies to make an analysis in combination with both electric field and actual whole‐body SAR. Bioelectromagnetics 31:286–295, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
Human exposure to background radiofrequency electromagnetic fields (RF‐EMF) has been increasing with the introduction of new technologies. There is a definite need for the quantification of RF‐EMF exposure but a robust exposure assessment is not yet possible, mainly due to the lack of a fast and efficient measurement procedure. In this article, a new procedure is proposed for accurately mapping the exposure to base station radiation in an outdoor environment based on surrogate modeling and sequential design, an entirely new approach in the domain of dosimetry for human RF exposure. We tested our procedure in an urban area of about 0.04 km2 for Global System for Mobile Communications (GSM) technology at 900 MHz (GSM900) using a personal exposimeter. Fifty measurement locations were sufficient to obtain a coarse street exposure map, locating regions of high and low exposure; 70 measurement locations were sufficient to characterize the electric field distribution in the area and build an accurate predictive interpolation model. Hence, accurate GSM900 downlink outdoor exposure maps (for use in, e.g., governmental risk communication and epidemiological studies) are developed by combining the proven efficiency of sequential design with the speed of exposimeter measurements and their ease of handling. Bioelectromagnetics 34:300–311, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
While electric fields at intermediate frequencies are not widely utilized for industrial technologies, surprisingly, certain toys emit the highest electric fields found in our living environment. These toys, plasma balls, are devices that use high voltage to create ionized light discharges. In this study, we assessed exposure to electric fields and contact/induced current from a recreational plasma ball device. The electric field strength was measured as a function of distance from the device, and the contact/induced current was measured with a current clamp in different exposure situations with point or grasping contact. The characteristic spectra of the electric field and contact current were measured, and both the multiple frequency rule and weighting of the spectra were applied according to the International Commission on Non-Ionizing Radiation Protection (ICNIRP) 1998 and 2010 guidelines. The results indicate that the recommended reference levels for the general public are exceeded at distances <1.2 m, and that the contact currents in the hand may be twice higher than recommended by the general public guidelines.  相似文献   

6.
In situ electromagnetic field exposure of workers and the general public due to non-directional beacons (NDB) for air traffic control is assessed and characterized. For occupational exposure, the maximal measured electric field value is 881.6 V/m and the maximal magnetic field value is 9.1 A/m. The maximum electric fields exceed the International Commission on Non-Ionizing Radiation Protection (ICNIRP) reference levels at all seven NDB sites, and the magnetic fields at two of the seven NDB sites (occupational exposure). Recommendations and compliance distances for workers and the general public are provided.  相似文献   

7.
The objective of the study was to investigate the influence of humidity on analyzing electric field exposure using extremely low frequency (ELF) electric field measurements. The study included 322 measurements in a climate room. We used two commercial three‐axis meters, EFA‐3 and EFA‐300, and employed two measurement techniques in the climate room where we varied the temperature from 15 to 25 °C, the relative humidity from 55% to 95%, and the electric field from 1 to 25 kV/m. We calculated Pearson correlations between humidity and percentage errors for all data and for data at different levels of humidity. When the relative humidity was below 70%, the results obtained by the different measurement methods in terms of percentage errors were of the same order of magnitude for the considered temperatures and field strength, but the results were less reliable when the relative humidity was higher than 80%. In the future, it is important to take humidity into account when electric field measurement results will be compared to the values given in different exposure guidelines. Bioelectromagnetics 34:414–418, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
In five countries (Belgium, Switzerland, Slovenia, Hungary, and the Netherlands), personal radio frequency electromagnetic field measurements were performed in different microenvironments such as homes, public transports, or outdoors using the same exposure meters. From the mean personal field exposure levels (excluding mobile phone exposure), whole‐body absorption values in a 1‐year‐old child and adult male model were calculated using a statistical multipath exposure method and compared for the five countries. All mean absorptions (maximal total absorption of 3.4 µW/kg for the child and 1.8 µW/kg for the adult) were well below the International Commission on Non‐Ionizing Radiation Protection (ICNIRP) basic restriction of 0.08 W/kg for the general public. Generally, incident field exposure levels were well correlated with whole‐body absorptions (SARwb), although the type of microenvironment, frequency of the signals, and dimensions of the considered phantom modify the relationship between these exposure measures. Exposure to the television and Digital Audio Broadcasting band caused relatively higher SARwb values (up to 65%) for the 1‐year‐old child than signals at higher frequencies due to the body size‐dependent absorption rates. Frequency Modulation (FM) caused relatively higher absorptions (up to 80%) in the adult male. Bioelectromagnetics 33:682–694, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
A recent study examining the relationship between distance to nearby power lines and childhood cancer risk re‐opened the debate about which exposure metrics are appropriate for power frequency magnetic field investigations. Using data from two large population‐based UK and German studies we demonstrate that distance to power lines is a comparatively poor predictor of measured residential magnetic fields. Even at proximities of 50 m or less, the positive predictive value of having a household measurement over 0.2 µT was only 19.4%. Clearly using distance from power lines, without taking account of other variables such as load, results in a poor proxy of residential magnetic field exposure. We conclude that such high levels of exposure misclassification render the findings from studies that rely on distance alone uninterpretable. Bioelectromagnetics 30:183–188, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

10.
The relation between the incident electromagnetic field strength and both the whole‐body and the local specific absorption rate (SAR) was investigated for typical heterogeneous exposure scenarios for frequencies relevant for mobile communication. The results were compared to results from plane wave exposure. Heterogeneous exposure arises from multiple path propagation of the electromagnetic waves to the location of interest. It is shown that plane wave exposure does not represent worst‐case exposure conditions. When the electric field strength arising at plane wave exposure is compared to the electric field strength averaged over the volume of the human body occurring during multipath exposure, 12% of all heterogeneous cases examined represent worse exposure conditions than plane wave exposure for whole‐body exposure at 946 MHz, 15% at 1840 MHz, and 22% at 2140 MHz. The deviation between plane wave and heterogeneous whole‐body SAR ranges from ?54% to 54%. For partial‐body SAR averaged over 10 g of tissue, a range from ?93% to 209% was found when comparing multiple wave exposure to single incoming plane waves. The investigations performed using the Visible Human as phantom showed that the basic restrictions are met as long as the reference levels are not exceeded. However, this must not be necessarily the case when different phantoms are used to perform similar investigations because recent studies demonstrated that reference levels might not be conservative when phantoms of children are used. Therefore, the results of this work indicate the need to extend the investigations to numerical simulations with additional human phantoms representing parts of the human population having different anatomy and morphology compared to the phantom used within the frame of this project. This also applies to phantoms of children. Bioelectromagnetics 30:651–662, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
The selection of an adequate exposure assessment approach is imperative for the quality of epidemiological studies. The use of personal exposimeters turned out to be a reasonable approach to determine exposure profiles, however, certain limitations regarding the absolute values delivered by the devices have to be considered. Apart from the limited dynamic range, it has to be taken into account that these devices give only an approximation of the exposure due to the influence of the body of the person carrying the exposimeter, the receiver characteristics of the exposimeter, as well as the dependence of the measured value on frequency band, channel, slot configuration, and communication traffic. In this study, the relationship between the field strength measured close to the human body at the location of the exposimeter and the exposure, that is, the field strength at the location of the human body without the human body present, is investigated by numerical means using the Visible Human model as an anatomical phantom. Two different scenarios were chosen: (1) For FM, GSM, and UMTS an urban outdoor scenario was examined that included a transmitting antenna mounted on the roof of one of four buildings at a street crossing, (2) For WLAN an indoor scenario was investigated. For GSM the average degree of underestimation by the exposimeter (relation of the average field levels at the location of the exposimeter to the field level averaged over the volume of the human body without the body present) was 0.76, and for UMTS 0.87; for FM no underestimation was found, the ratio was 1. In the case of WLAN the degree of underestimation was more pronounced, the ratio was 0.64. This study clearly suggests that a careful evaluation of correction factors for different scenarios is needed prior to the definition of the study protocol. It has to be noted that the reference scenario used in this study does not allow for final conclusions on general correction factors. Bioelectromagnetics 31:535–545, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
This paper reports the results of an exposure level survey of radiofrequency electromagnetic energy originating from mobile telephone base station antennas. Measurements of CDMA800, GSM900, GSM1800, and 3G(UMTS) signals were performed at distances ranging over 50 to 500 m from 60 base stations in five Australian cities. The exposure levels from these mobile telecommunications base stations were found to be well below the general public exposure limits of the ICNIRP guidelines and the Australian radiofrequency standard (ARPANSA RPS3). The highest recorded level from a single base station was 7.8 x 10(-3) W/m(2), which translates to 0.2% of the general public exposure limit.  相似文献   

13.
A numerical model of a human body with an intramedullary nail in the femur was built to evaluate the effects of the implant on the current density distribution in extremely low frequency electric and magnetic fields. The intramedullary nail was chosen because it is one of the longest high conductive implants used in the human body. As such it is expected to alter the electric and magnetic fields significantly. The exposure was a simultaneous combination of inferior to superior electric field and posterior to anterior magnetic field both alternating at 50 Hz with the values corresponding to the ICNIRP reference levels: 5000 V m?1 for electric field and 100 µT for magnetic flux density. The calculated current density distribution inside the model was compared to the ICNIRP basic restrictions for general public (2 mA m?2). The results show that the implant significantly increases the current density up to 9.5 mA m?2 in the region where it is in contact with soft tissue in the model with the implant in comparison to 0.9 mA m?2 in the model without the implant. As demonstrated the ICNIRP basic restrictions are exceeded in a limited volume of the tissue in spite of the compliance with the ICNIRP reference levels for general public, meaning that the existing safety limits do not necessarily protect implanted persons to the same extent as they protect people without implants. Bioelectromagnetics 30:591–599, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
This study is aimed at evaluating the effect of microwave radiation on human brain bioelectric activity at different levels of exposure. For this purpose, 450 MHz microwave exposure modulated at 40 Hz frequency was applied to a group of 15 healthy volunteers at two different specific absorption rate (SAR) levels: a higher level of 0.303 W/kg (field strength 24.5 V/m) and a lower level of 0.003 W/kg (field strength 2.45 V/m). Ten exposure cycles (1 min off and 1 min on) at fixed SAR values were applied. A resting eyes‐closed electroencephalogram (EEG) was continuously recorded. Results showed a statistically significant increase in the EEG power in the EEG beta2 (157%), beta1 (61%) and alpha (68%) frequency bands at the higher SAR level, and in the beta2 (39%) frequency band at the lower SAR level. Statistically significant changes were detected for six individual subjects in the EEG alpha band and four subjects in the beta1 and beta2 bands at the higher SAR level; three subjects were affected in the alpha, beta1 and beta2 bands at the lower SAR level. The study showed that decreasing the SAR 100 times reduced the related changes in the EEG three to six times and the number of affected subjects, but did not exclude the effect. Bioelectromagnetics 34:264–274, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
The present study was conducted to determine whether adolescents and/or the elderly are more sensitive to mobile phone (MP)‐related bioeffects than young adults, and to determine this for both 2nd generation (2G) GSM, and 3rd generation (3G) W‐CDMA exposures. To test this, resting alpha activity (8–12 Hz band of the electroencephalogram) was assessed because numerous studies have now reported it to be enhanced by MP exposure. Forty‐one 13–15 year olds, forty‐two 19–40 year olds, and twenty 55–70 year olds were tested using a double‐blind crossover design, where each participant received Sham, 2G and 3G exposures, separated by at least 4 days. Alpha activity, during exposure relative to baseline, was recorded and compared between conditions. Consistent with previous research, the young adults' alpha was greater in the 2G compared to Sham condition, however, no effect was seen in the adolescent or the elderly groups, and no effect of 3G exposures was found in any group. The results provide further support for an effect of 2G exposures on resting alpha activity in young adults, but fail to support a similar enhancement in adolescents or the elderly, or in any age group as a function of 3G exposure. Bioelectromagnetics 31:434–444, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
Because of a heightened public awareness of issues pertaining to the use of electromagnetic energy, concurrent with a rapid growth of the cellular telephone industry, a study was initiated to characterize the electromagnetic environment associated with typical cell-site antennas. In particular, the radio-frequency electromagnetic (RF) fields in the vicinity of several antenna towers, ranging in height from 46-82 m, were characterized by measurement. In all cases, the antennas were omnidirectional co-linear arrays. The maximal power densities considered representative of public exposure were found to be less than 100 microW/m2 (10 nW/cm2) per radio channel. Comparison of measured values with the corresponding values that were calculated from the free-space transmission formula indicated that the analytical technique is conservative (i.e., overestimates field levels). The measured and corresponding analytical values were found to be well below accepted exposure limits even when extrapolated to simultaneous and continuous operation of the maximal number of transmitters that would be expected to be installed at a cell-site. Additional measurements were made in the near field of the same antenna type in a roof-mounted configuration. At a distance of 0.7 m from the antenna, the maximal power density in the main beam was found to be less than 30 W/m2 (3 mW/cm2) when normalized to sixteen radio channels (the maximal number used on a single antenna) and less than 30 mW/m2 (3 microW/m2) at 70 m. In all cases, the effective radiated power (ERP) by each radio channel was 100 W referenced to a half-wave dipole. This paper describes the instrumentation and measurement techniques used for this study and provides a summary of the results.  相似文献   

17.
The expected imminent widespread use of electromobility in transport systems draws attention to the possible effects of human exposure to magnetic fields generated inside electric vehicles and during their recharge. The current trend is to increase the capacity of the battery inside the vehicles to extend the available driving range and to increase the power of recharging columns to reduce the time required for a full recharge. This leads to higher currents and potentially stronger magnetic fields. The Interoperability Center of the Joint Research Center started an experimental activity focused on the assessment of low-frequency magnetic fields emitted by five fast-charging devices available on the market in recharge and standby conditions. The aim of this study was to contribute to the development of a standard measurement procedure for the assessment of magnetic fields emitted by direct current charging columns. The spectrum and amplitudes of the magnetic field, as well as exposure indices according to guidelines for the general public and occupational exposure, were recorded by means of a magnetic field probe analyzer. The worst-case scenario for instantaneous physical direct and indirect effects was identified. Measurements within the frequency range of 25 Hz–2 kHz revealed localized magnetic flux density peaks above 100 μT at the 50 Hz frequency in three out of five chargers, registered in close proximity during the recharge. Beyond this distance, exposure indices were recorded showing values below 50% of reference levels. Bioelectromagnetics. 2020;41:308–317 © 2020 The Authors. Bioelectromagnetics published by Wiley Periodicals, Inc.  相似文献   

18.
Effects of high‐frequency, continuous wave (CW) electromagnetic fields on mung beans (Vigna radiata L.) and water convovuluses (Ipomoea aquatica Forssk.) were studied at different growth stages (pre‐sown seed and early seedling). Specifically, the effects of the electromagnetic source's power and duration (defined as power‐duration level) on the growth of the two species were studied. Mung beans and water convolvuluses were exposed to electromagnetic fields inside a specially designed chamber for optimum field absorption, and the responses of the seeds to a constant frequency at various power levels and durations of exposure were monitored. The frequency used in the experiments was 425 MHz, the field strengths were 1 mW, 100 mW, and 10 W, and the exposure durations were 1, 2, and 4 h. Results show that germination enhancement is optimum for the mung beans at 100 mW/1 h power‐duration level, while for water convolvuluses the optimum germination power‐duration level was 1 mW/2 h. When both seed types were exposed at the early sprouting phase with their respective optimum power‐duration levels for optimum seed growth, water convolvuluses showed growth enhancement while mung bean sprouts showed no effects. Water content analysis of the seeds suggests thermal effects only at higher field strength. Bioelectromagnetics 31:519–527, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

19.
The occupational exposure to electric and magnetic fields during various work tasks at seven 110 kV substations in Finland's Tampere region was studied. The aim was to investigate if the action values (10 kV/m for the E‐field and 500 µT for the B‐field) of the EU Directive 2004/40/EC were exceeded. Electric and magnetic fields were measured during the following work tasks: (1) walking or operating devices on the ground; (2) working from a service platform; (3) working around the power transformer on the ground or using a ladder; and (4) changing a bulb from a man hoist. In work task 2 “working from a service platform” the measured electric field (maximum value 16.6 kV/m) exceeded 10 kV/m in three cases. In the future it is important to study if the limit value (10 mA/m2) of Directive 2004/40/EC is exceeded at 110 kV substations. The occupational 500 µT action value of the magnetic flux density field (B‐field) was not exceeded in any working situation. Bioelectromagnetics 31:252–254, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
Wireless mobile phones and other telecommunication devices are used extensively in daily life. We therefore examined the effects of combined exposure to radiofrequency electromagnetic fields (RF‐EMF) on rat testicular function, specifically with respect to sensitive processes such as spermatogenesis. Male rats were exposed to single code division multiple access (CDMA) and wideband code division multiple access (WCDMA) RF signals for 12 weeks. The RF exposure schedule comprised 45 min/day, 5 days/week for a total of 12 weeks. The whole‐body average specific absorption rate (SAR) of CDMA and WCDMA was 2.0 W/kg each or 4.0 W/kg in total. We then investigated the correlates of testicular function such as sperm count in the cauda epididymis, testosterone concentration in the blood serum, malondialdehyde concentrations in the testes and epididymis, frequency of spermatogenesis stages, and appearance of apoptotic cells in the testes. We also immunoblotted for p53, bcl2, GADD45, cyclin G, and HSP70 in the testes of sham‐ and combined RF‐exposed animals. Based on the results, we concluded that simultaneous exposure to CDMA and WCDMA RF‐EMFs at 4.0 W/kg SAR did not have any observable adverse effects on rat spermatogenesis. Bioelectromagnetics 33:356–364, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号