首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Some breeding facilities in the United States have crossbred Chinese and Indian rhesus macaque (Macaca mulatta) founders either purposefully or inadvertently. Genetic variation that reflects geographic origins among research subjects has the potential to influence experimental outcomes. The use of animals from different geographic regions, their hybrids, and animals of varying degrees of kinship in an experiment can obscure treatment effects under study because high interanimal genetic variance can increase phenotypic variance among the research subjects. The intent of this study, based on a broad genomic analysis of 2,808 single nucleotide polymorphisms (SNPs), is to ensure that only animals estimated to be of pure Indian or Chinese ancestry, based on both demographic and genetic information, are used as sources of infants for derivation and expansion of the California National Primate Research Center's (CNPRC) super‐Specific Pathogen Free (SSPF) rhesus macaque colony. Studies of short tandem repeats (STRs) in Indian and Chinese rhesus macaques have reported that heterozygosity of STRs is higher in Chinese rhesus macaques than in Indian rhesus macaques. The present study shows that heterozygosity of SNPs is actually higher in Indian than in Chinese rhesus macaques and that the Chinese SSPF rhesus macaque colony is far less differentiated from their founders compared to the Indian‐origin animals. The results also reveal no evidence of recent gene flow from long‐tailed and pig‐tailed macaques into the source populations of the SSPF rhesus macaques. This study indicates that many of the long‐tailed macaques held in the CNPRC are closely related individuals. Most polymorphisms shared among the captive rhesus, long‐tailed, and pig‐tailed macaques likely predate the divergence among these groups. Am. J. Primatol. 74:747‐757, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
The California National Primate Research Center (CNPRC) houses more than 1,000 rhesus macaques (Macaca mulatta) of mixed Chinese-Indian ancestry. Most of these animals are kept in outdoor field cages, the colony's long term breeding resource. Since 2001, hybrids comprised between 4 and 49% of the field cage populations, but in most cases have represented a maximum of 10% of those populations. The increasing prevalence of hybrids is partly due to management efforts to distribute genetic diversity effectively and minimize genetic subdivisions. However, other factors may also contribute to the spread of hybrids within the colony, most notably variance in socio-sexual behaviors and physical attributes. It is known that hybrids of some species exhibit heterosis, such as early maturation, that can enhance reproductive success, and anecdotal observations of mixed groups of hybrid, Indian and Chinese animals at the CNPRC suggest that hybrids are more sexually active. To determine whether hybrids experienced a reproductive advantage, a study was conducted using birth records of 5,611 offspring born in the CNPRC colony between 2003 and 2009. We found that while the degree of Chinese ancestry (DCA) appeared to influence the maturational schedule of both males and females (maturation was inversely related to proportion of Chinese ancestry), DCA had no independent effect on either male or female RS or rank. Therefore, we have found no evidence that a hybrid phenotype confers an absolute reproductive advantage in our colony.  相似文献   

3.
Pigtailed macaques (Macaca nemestrina) provide an important model for biomedical research on human disease and for studying the evolution of primate behavior. The genetic structure of captive populations of pigtailed macaques is not as well described as that of captive rhesus (M. mulatta) or cynomolgus (M. fascicularis) macaques. The Washington National Primate Research Center houses the largest captive colony of pigtailed macaques located in several different housing facilities. Based on genotypes of 18 microsatellite (short tandem repeat [STR]) loci, these pigtailed macaques are more genetically diverse than captive rhesus macaques and exhibit relatively low levels of inbreeding. Colony genetic management facilitates the maintenance of genetic variability without compromising production goals of a breeding facility. The periodic introduction of new founders from specific sources to separate housing facilities at different times influenced the colony's genetic structure over time and space markedly but did not alter its genetic diversity significantly. Changes in genetic structure over time were predominantly due to the inclusion of animals from the Yerkes National Primate Research Center in the original colony and after 2005. Strategies to equalize founder representation in the colony have maximized the representation of the founders’ genomes in the extant population. Were exchange of animals among the facilities increased, further differentiation could be avoided. The use of highly differentiated animals may confound interpretations of phenotypic differences due to the inflation of the genetic contribution to phenotypic variance of heritable traits. Am. J. Primatol. 74:1017‐1027, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

4.

Background

The rhesus macaque is an important biomedical model organism, and the Tulane National Primate Research Center (TNPRC) has one of the largest rhesus macaque breeding colonies in the United States.

Methods

SNP profiles from 3266 rhesus macaques were used to examine the TNPRC colony genetic composition over time and across conventional or SPF animals of Chinese and Indian ancestry.

Results

Chinese origin animals were the least genetically diverse and the most inbred; however, since their derivation from their conventional forebearers, neither the Chinese nor the Indian SPF animals exhibit any significant loss of genetic diversity or differentiation.

Conclusions

The TNPRC colony managers have successfully minimized loss in genetic variation across generations. Although founder effects and bottlenecks among the Indian animals have been successfully curtailed, the Chinese subpopulation still show some influences from these events.  相似文献   

5.
Background  Fullbred Chinese and Indian rhesus macaques represent genetically distinct populations. The California National Primate Research Center introduced Chinese founders into its Indian-derived rhesus colony in response to the 1978 Indian embargo on exportation of animals for research and the concern that loss of genetic variation in the closed colony would hamper research efforts. The resulting hybrid rhesus now number well over a thousand animals and represent a growing proportion of the animals in the colony.
Methods  We characterized the population genetic structure of the hybrid colony and compared it with that of their pure Indian and Chinese progenitors.
Results  The hybrid population contains higher genetic diversity and linkage disequilibrium than their full Indian progenitors and represents a resource with unique research applications.
Conclusions  The genetic diversity of the hybrids indicates that the strategy to introduce novel genes into the colony by hybridizing Chinese founders and their hybrid offspring with Indian-derived animals was successful.  相似文献   

6.
The concepts of “founder equivalent” and “founder genome equivalent” are introduced to facilitate analysis of the founding stocks of captive or other populations for which pedigrees are available. The founder equivalents of a population are the number of equally contributing founders that would be expected to produce the same genetic diversity as in the population under study. Unequal genetic contributions by founders decrease the founder equivalents, portend greater inbreeding in future generations than would be necessary, and reflect a greater loss of the genetic diversity initially present in the founders. The number of founder genome equivalents of a population is that number of equally contributing founders with no random loss of founder alleles in descendants that would be expected to produce the same genetic diversity as in the population under study. The number of founder genome equivalents is approximately that number of wild-caught animals that would be needed to obtain the same amount of genetic diversity as is in the descendant captive population. Founder equivalents and founder genome equivalents allow comparison of the genetic merits of adding new wild-caught stock vs. further equalizing founder representations in a captive population.  相似文献   

7.
Kevin Willis 《Zoo biology》1993,12(2):161-172
Whether to incorporate animals with unknown ancestries as founders into scientifically managed captive breeding programs, can be a difficult decision. If the animals are offspring of known founders, their inclusion in the breeding program will result in an increased incidence of inbreeding in the captive population. If the animals are additional founders, excluding them from the breeding program will result in the loss of valuable genetic variation. In general, the practice in scientifically managed captive breeding programs is to exclude animals with unknown ancestries to avoid possible inbreeding. A method of estimating the cost of making an incorrect decision on whether to use animals of unknown ancestry as founders both in terms of lost genetic variation and increased inbreeding is presented. It was determined that the loss of genetic variation resulting from excluding founders is always greater than the loss of genetic variation caused by unequal founder line representation resulting from including related animals, as if they were founders. In addition, the increased rate of accumulation of inbreeding resulting from excluding founders will eventually overcome the initial inbreeding resulting from including related animals. However, in some cases, it will take a substantial number of generations for this to occur, and the benefits of possible lowered future expected inbreeding may never be realized. The decision concerning whether to use animals with unknown ancestry should, therefore, be based on the estimated relative costs of making an error, in terms of both lost genetic variation and expected future inbreeding, rather than on avoiding the immediate possibility of increased inbreeding alone. Two examples using studbook data are given to show how this method can be practically applied to the management of captive populations. © 1993 Wiley-Liss, Inc.  相似文献   

8.
Colombia is a country with great geographic heterogeneity and marked regional differences in pre‐Columbian native population density and in the extent of past African and European immigration. As a result, Colombia has one of the most diverse populations in Latin America. Here we evaluated ancestry in over 1,700 individuals from 24 Colombian populations using biparental (autosomal and X‐Chromosome), maternal (mtDNA), and paternal (Y‐chromosome) markers. Autosomal ancestry varies markedly both within and between regions, confirming the great genetic diversity of the Colombian population. The X‐chromosome, mtDNA, and Y‐chromosome data indicate that there is a pattern across regions indicative of admixture involving predominantly Native American women and European and African men. Am J Phys Anthropol 143:13–20, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
Background While rates of gene flow between rhesus and longtail macaque populations near their hybrid zone in Indochina have been quantified elsewhere, this study demonstrates that the inter‐specific introgression is not limited to the Indochinese hybrid zone but is more geographically widespread. Methods Twelve rhesus and longtail macaque populations were analyzed using single nucleotide polymorphic (SNP) loci. Results There is evidence for inter‐specific admixture between Chinese rhesus and mainland longtails, with implications for genetic diversity both in the Chinese super‐SPF population at the California National Primate Research Center and in other primate facilities. Eastern Chinese rhesus appeared more highly derived than western Chinese rhesus, and allele sharing between longtails and Chinese rhesus was not random with regard to geographic distance, but no significant nuclear genetic differences between eastern and western Chinese rhesus were detected among the 245 genic SNPs assayed. Conclusion The implications of this inter‐specific admixture for the use of Chinese rhesus and mainland longtail in biomedical research should be considered.  相似文献   

10.
Multi‐parent advanced generation inter‐cross (MAGIC) populations are an emerging type of resource for dissecting the genetic structure of traits and improving breeding populations. We developed a MAGIC population for cowpea (Vigna unguiculata L. Walp.) from eight founder parents. These founders were genetically diverse and carried many abiotic and biotic stress resistance, seed quality and agronomic traits relevant to cowpea improvement in the United States and sub‐Saharan Africa, where cowpea is vitally important in the human diet and local economies. The eight parents were inter‐crossed using structured matings to ensure that the population would have balanced representation from each parent, followed by single‐seed descent, resulting in 305 F8 recombinant inbred lines each carrying a mosaic of genome blocks contributed by all founders. This was confirmed by single nucleotide polymorphism genotyping with the Illumina Cowpea Consortium Array. These lines were on average 99.74% homozygous but also diverse in agronomic traits across environments. Quantitative trait loci (QTLs) were identified for several parental traits. Loci with major effects on photoperiod sensitivity and seed size were also verified by biparental genetic mapping. The recombination events were concentrated in telomeric regions. Due to its broad genetic base, this cowpea MAGIC population promises breakthroughs in genetic gain, QTL and gene discovery, enhancement of breeding populations and, for some lines, direct releases as new varieties.  相似文献   

11.
The lesser kudu (Tragelaphus imberbis) has been kept in North American zoological parks since 1930 but has never been a common species in collections. In 1987 this population totaled 28 animals: 15 males and 13 females. A pedigree evaluation in 1987 of the existing population indicated that eight effective founders and one potential founder were represented in the North American herd. Three new potential founders from European captive populations were added to the population in 1987 to increase the number of existing founder lines to 12 animals. As this species is not endangered or threatened in its native habitat, it is not a high priority to qualify for designation as an SSP species. Because of this, the institutions holding lesser kudu in North America decided to join informally and draft a breeding program to better manage this small captive population. This program was designed to minimize inbreeding and equalize genetic representation of founder animals to maximize genetic diversity. It requires a shift in management philosophy to establish stable groups of breeding females at participating institutions while rotating appropriate breeder males through these herds in a controlled manner to ensure minimization of inbreeding and maximization of genetic diversity. It is hoped that this program can serve as a model for the management of other small captive populations of non-SSP species.  相似文献   

12.
Islands are generally colonized by few individuals which could lead to a founder effect causing loss of genetic diversity and rapid divergence by strong genetic drift. Insular conditions can also induce new selective pressures on populations. Here, we investigated the extent of genetic differentiation within a white‐tailed deer (Odocoileus virginianus) population introduced on an island and its differentiation with its source mainland population. In response to their novel environmental conditions, introduced deer changed phenotypically from mainland individuals, therefore we investigated the genetic bases of the morphological differentiation. The study was conducted on Anticosti Island (Québec, Canada) where 220 individuals were introduced 120 years ago, resulting in a population size over 160,000 individuals. We used genotyping‐by‐sequencing (GBS) to generate 8,518 filtered high‐quality SNPs and compared patterns of genetic diversity and differentiation between the continental and Anticosti Island populations. Clustering analyses indicated a single panmictic island population and no sign of isolation by distance. Our results revealed a weak, albeit highly significant, genetic differentiation between the Anticosti Island population and its source population (mean FST = 0.005), which allowed a population assignment success of 93%. Also, the high genetic diversity maintained in the introduced population supports the absence of a strong founder effect due to the large number of founders followed by rapid population growth. We further used a polygenic approach to assess the genetic bases of the divergent phenotypical traits between insular and continental populations. We found loci related to muscular function and lipid metabolism, which suggested that these could be involved in local adaptation on Anticosti Island. We discuss these results in a harvest management context.  相似文献   

13.
目的检测和评估金黄地鼠封闭群SPF化后的遗传学变化,为SPF金黄地鼠遗传质量的控制提供技术资料。方法应用小鼠和大鼠的微卫星标记筛选适于金黄地鼠遗传检测的微卫星标记,并结合微卫星荧光标记-半自动基因分型技术,对成都生物制品研究所的SPF级金黄地鼠及其来源的普通级金黄地鼠进行遗传检测,计算其群体遗传学参数。结果对18个小鼠和6个大鼠微卫星标记进行了筛选,分别有2个小鼠和2个大鼠微卫星标记在金黄地鼠种群中具PCR扩增多态性。4个检测的微卫星位点在普通级金黄地鼠和SPF金黄地鼠种群分别发现25和20个等位基因,两群体的期望杂合度分别为0.4979和0.5048,其群体遗传多样性无显著差异;群体间的不同微卫星位点FST范围从0.0095到0.0367,平均为0.0315,表明两群体间的遗传分化很弱,其遗传多样性主要存在于群体内;Nei(1972)遗传距离和Nei(1978)无偏遗传距离分别为0.0678和0.0570,表明了2群体之间很高的遗传相似度和非常近的亲缘关系;Hardy-Weinberg平衡检验表明普通级和SPF金黄地鼠分别有2个和3个位点偏离遗传平衡,且偏离位点均表现为杂合子缺陷。结论该SPF金黄地鼠基本保持了其来源普通级黄地鼠的遗传多样性,两群体间遗传分化程度和遗传差异很小,但应进一步加强其封闭群的繁育控制,保持其遗传稳定性。  相似文献   

14.
Background As in other model organisms, genetic background in the non‐human primates Macaca mulatta and Macaca fascicularis is an experimental variable that affects the response of other study variables. Genetic background in model organisms is manipulated by breeding schemes but is generally pre‐determined by the source population used to found captive stocks. In M. fascicularis three such sources have been distinguished, however, these are not routinely taken into consideration when designing research. Methods We exemplify a mitochondrial DNA (mtDNA)‐based strategy to trace the maternal geographic origins of M. fascicularis animals of unspecified origins. Results Macaca fascicularis of unspecified origins kept at primate research centers carry mtDNA haplotypes representing all three major genetic subdivisions. Conclusions We suggest that the genetic background of study animals could be better specified in the future using an mtDNA‐based approach, which would enable informed selection of study animals and help reduce variation within and among studies.  相似文献   

15.
Rufiji tilapia (Oreochromis urolepis urolepis) is an endemic cichlid in Tanzania. In addition to its importance for biodiversity conservation, Rufiji tilapia is also attractive for farming due to its high growth rate, salinity tolerance, and the production of all‐male hybrids when crossed with Nile tilapia (Oreochromis niloticus). The aim of the current study was to assess the genetic diversity and population structure of both wild and farmed Rufiji tilapia populations in order to inform conservation and aquaculture practices. Double‐digest restriction‐site‐associated DNA (ddRAD) libraries were constructed from 195 animals originating from eight wild (Nyamisati, Utete, Mansi, Mindu, Wami, Ruaha, Kibasira, and Kilola) and two farmed (Bwawani and Chemchem) populations. The identified single nucleotide polymorphisms (SNPs; n = 2,182) were used to investigate the genetic variation within and among the studied populations. Genetic distance estimates (Fst) were low among populations from neighboring locations, with the exception of Utete and Chemchem populations (Fst = 0.34). Isolation‐by‐distance (IBD) analysis among the wild populations did not detect any significant correlation signal (r = .05; p‐value = .4) between the genetic distance and the sampling (Euclidean distance) locations. Population structure and putative ancestry were further investigated using both Bayesian (Structure) and multivariate approaches (discriminant analysis of principal components). Both analysis indicated the existence of three distinct genetic clusters. Two cross‐validation scenarios were conducted in order to test the efficiency of the SNP dataset for discriminating between farmed and wild animals or predicting the population of origin. Approximately 95% of the test dataset was correctly classified in the first scenario, while in the case of predicting for the population of origin 68% of the test dataset was correctly classified. Overall, our results provide novel insights regarding the population structure of Rufiji tilapia and a new database of informative SNP markers for both conservation management and aquaculture activities.  相似文献   

16.
We used enzyme electrophoresis to evaluate genetic diversity in 32 populations of Calystegia collina, a clonal plant species endemic to serpentine outcrops in northern California (USA). Of 34 loci examined 56% were polymorphic, but on average only 17% were polymorphic within local populations. Neither the total number of alleles nor the number of multilocus genotypes differed significantly between populations in small vs. large serpentine outcrops. Genetic and geographic distances between populations were positively correlated, but this relationship was not significantly affected by the isolation of serpentine outcrops. Populations were highly differentiated (F(st) = 0.417) and little genetic variation was explained by geographic region or serpentine outcrop.Observed heterozygosity within populations almost always exceeded Hardy-Weinberg expectations. In many populations, all 30 sample ramets were uniformly heterozygous at one or more loci yet were genetically variable at other loci. These results imply that many C. collina populations originate from one or a few genetic founders, with little recruitment from seeds. Genetic variation within uniformly heterozygous populations must be the product of multiple, closely related founders or somatic mutations within the population. We conclude that vegetative reproduction, perhaps coupled with somatic mutation, helps maintain genetic diversity in these isolated but long-lived populations.  相似文献   

17.
Electrophoretic polymorphism of glucosephosphate isomerase (Gpi*) and phosphoglucomutase (Pgm *) polymorphisms were assayed in the bipolardisjunct species pairsPriapulus caudatus/P. tuberculatospinosus andPriapulopsis bicaudatus/Priapulopsis australis (phylum Priapulida). Numbers of genotypes fromGpi * alleles and 14Pgm * alleles generally did not show deviations from Hardy-Weinberg expectations in composite populations sampled over geographic distances up to 500 km linearly measured. This genetic pattern suggests efficient population cohesion in a phylum where pelagic larvae have not been observed. Sibling species in generaPriapulus orPriapulopsis from northern and southern polar seas did not share identical allozyme alleles.  相似文献   

18.
We used mitochondrial and nuclear genetic markers to investigate population structure of common bottlenose dolphins, Tursiops truncatus, around the main Hawaiian Islands. Though broadly distributed throughout the world's oceans, bottlenose dolphins are known to form small populations in coastal waters. Recent photo‐identification data suggest the same is true in Hawaiian waters. We found genetic differentiation among (mtDNA ΦST= 0.014–0.141, microsatellite FST= 0.019–0.050) and low dispersal rates between (0.17–5.77 dispersers per generation) the main Hawaiian Island groups. Our results are consistent with movement rates estimated from photo‐identification data and suggest that each island group supports a demographically independent population. Inclusion in our analyses of samples collected near Palmyra Atoll provided evidence that the Hawaiian Islands are also occasionally visited by members of a genetically distinct, pelagic population. Two of our samples exhibited evidence of partial ancestry from Indo‐Pacific bottlenose dolphins (T. aduncus), a species not known to inhabit the Hawaiian Archipelago. Our findings have important implications for the management of Hawaiian bottlenose dolphins and raise concerns about the vulnerability to human impacts of pelagic species in island ecosystems.  相似文献   

19.
Translocations are an increasingly common tool in conservation. The maintenance of genetic diversity through translocation is critical for both the short‐ and long‐term persistence of populations and species. However, the relative spatio‐temporal impacts of translocations on neutral and functional genetic diversity, and how this affects genetic structure among the conserved populations overall, have received little investigation. We compared the impact of translocating different numbers of founders on both microsatellite and major histocompatibility complex (MHC) class I diversity over a 23‐year period in the Seychelles warbler (Acrocephalus sechellensis). We found low and stable microsatellite and MHC diversity in the source population and evidence for only a limited loss of either type of diversity in the four new populations. However, we found evidence of significant, but low to moderate, genetic differentiation between populations, with those populations established with fewer founders clustering separately. Stochastic genetic capture (as opposed to subsequent drift) was the main determinant of translocated population diversity. Furthermore, a strong correlation between microsatellite and MHC differentiation suggested that neutral processes outweighed selection in shaping MHC diversity in the new populations. These data provide important insights into how to optimize the use of translocation as a conservation tool.  相似文献   

20.
Molecular‐marker‐aided evaluation of germplasm plays an important role in defining the genetic diversity of plant genotypes for genetic and population improvement studies. A collection of African cassava landraces and elite cultivars was analysed for genetic diversity using 20 amplified fragment length polymorphic (AFLP) DNA primer combinations and 50 simple sequence repeat (SSR) markers. Within‐population diversity estimates obtained with both markers were correlated, showing little variation in their fixation index. The amount of within‐population variation was higher for landraces as illustrated by both markers, allowing discrimination among accessions along their geographical origins, with some overlap indicating the pattern of germplasm movement between countries. Elite cultivars were grouped in most cases in agreement with their pedigree and showed a narrow genetic variation. Both SSR and AFLP markers showed some similarity in results for the landraces, although SSR provided better genetic differentiation estimates. Genetic differentiation (Fst) in the landrace population was 0.746 for SSR and 0.656 for AFLP. The molecular variance among cultivars in both populations accounted for up to 83% of the overall variation, while 17% was found within populations. Gene diversity (He) estimated within each population varied with an average value of 0.607 for the landraces and 0.594 for the elite lines. Analyses of SSR data using ordination techniques identified additional cluster groups not detected by AFLP and also captured maximum variation within and between both populations. Our results indicate the importance of SSR and AFLP as efficient markers for the analysis of genetic diversity and population structure in cassava. Genetic differentiation analysis of the evaluated populations provides high prospects for identifying diverse parental combinations for the development of segregating populations for genetic studies and the introgression of desirable genes from diverse sources into the existing genetic base.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号