首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Nodal, a member of the TGF‐β superfamily, is a potent embryonic morphogen also implicated in tumor progression. As for other TGF‐βs, it triggers the signaling functions through the interaction with the extracellular domains of type I and type II serine/threonine kinase receptors and with the co‐receptor Cripto. Recently, we reported the molecular models of Nodal in complex with its type I receptors (ALK4 and ALK7) as well as with Cripto, as obtained by homology modeling and docking simulations. From such models, potential binding epitopes have been identified. To validate such hypotheses, a series of mutated Nodal fragments have been synthesized. These peptide analogs encompass residues 44–67 of the Nodal protein, corresponding to the pre‐helix loop and the H3 helix, and reproduce the wild‐type sequence or bear some modifications to evaluate the hot‐spot role of modified residues in the receptor binding. Here, we show the structural characterization in solution by CD and NMR of the Nodal peptides and the measurement of binding affinity toward Cripto by surface plasmon resonance. Data collected by both conformational analyses and binding measurements suggest a role for Y58 of Nodal in the recognition with Cripto and confirm that previously reported for E49 and E50. Surface plasmon resonance binding assays with recombinant proteins show that Nodal interacts in vitro also with ALK7 and ALK4 and preliminary data, generated using the Nodal synthetic fragments, suggest that Y58 of Nodal may also be involved in the recognition with these protein partners. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

2.
Yeo C  Whitman M 《Molecular cell》2001,7(5):949-957
Nodal ligands are essential for the patterning of chordate embryos. Genetic evidence indicates that EGF-CFC factors are required for Nodal signaling, but the molecular basis for this requirement is unknown. We have investigated the role of Cripto, an EGF-CFC factor, in Nodal signaling. We find that Cripto interacts with the type I receptor ALK4 via the conserved CFC motif in Cripto. Cripto interaction with ALK4 is necessary both for Nodal binding to the ALK4/ActR-IIB receptor complex and for Smad2 activation by Nodal. We also find that Nodal can inhibit BMP signaling by a Cripto-independent mechanism. Inhibition appears to be mediated by heterodimerization between Nodal and BMPs, indicating that antagonism between Nodal and BMPs can occur at the level of dimeric ligand production.  相似文献   

3.
4.
Cripto plays critical roles during embryogenesis and has been implicated in promoting the growth and spread of tumors. Cripto is required for signaling by certain transforming growth factor-beta superfamily members, such as Nodal, but also antagonizes others, such as activin. The opposing effects of Cripto on Nodal and activin signaling seem contradictory, however, because these closely related ligands utilize the same type I (ALK4) and type II (ActRII/IIB) receptors. Here, we have addressed this apparent paradox by demonstrating that Cripto forms analogous receptor complexes with Nodal and activin and functions as a noncompetitive activin antagonist. Our results show that activin-A and Nodal elicit similar maximal signaling responses in the presence of Cripto that are substantially lower than that of activin-A in the absence of Cripto. In addition, we provide biochemical evidence for complexes containing activin-A, Cripto, and both receptor types and show that the assembly of such complexes is competitively inhibited by Nodal. We further demonstrate that Nodal and activin-A share the same binding site on ActRII and that ALK4 has distinct and separable binding sites for activin-A and Cripto. Finally, we show that ALK4 mutants with disrupted activin-A binding retain Cripto binding and prevent the effects of Cripto on both activin-A and Nodal signaling. Together, our data indicate that Cripto facilitates Nodal signaling and inhibits activin signaling by forming receptor complexes with these ligands that are structurally and functionally similar.  相似文献   

5.
The EGF-CFC gene Cripto encodes an extracellular protein that has been implicated in the signaling pathway for the transforming growth factor beta (TGF beta) ligand Nodal. Although recent findings in frog and fish embryos have suggested that EGF-CFC proteins function as coreceptors for Nodal, studies in cell culture have implicated Cripto as a growth factor-like signaling molecule. Here we reconcile these apparently disparate models of Cripto function by using a mammalian cell culture assay to investigate the signaling activities of Nodal and EGF-CFC proteins. Using a luciferase reporter assay, we found that Cripto has activities consistent with its being a coreceptor for Nodal. However, Cripto can also function as a secreted signaling factor in cell coculture assays, suggesting that it may also act as a coligand for Nodal. Furthermore, we found that the ability of Cripto to bind to Nodal and mediate Nodal signaling requires the addition of an O-linked fucose monosaccharide to a conserved site within EGF-CFC proteins. We propose a model in which Cripto has dual roles as a coreceptor as well as a coligand for Nodal and that this signaling interaction with Nodal is regulated by an unusual form of glycosylation. Our findings highlight the significance of extracellular modulation of ligand activity as an important means of regulating TGF beta signaling pathways during vertebrate development.  相似文献   

6.
Cripto is a membrane-bound co-receptor for Nodal, a member of the transforming growth factor-beta superfamily. Mouse embryos lacking either Cripto or Nodal have the same lethal phenotype at embryonic day 7.5. Previous studies suggest that O-fucosylation of the epidermal growth factor-like (EGF) repeat in Cripto is essential for the facilitation of Nodal signaling. Substitution of Ala for the Thr to which O-fucose is attached led to functional inactivation of both human and mouse Cripto. However, embryos null for protein O-fucosyltransferase 1, the enzyme that adds O-fucose to EGF repeats, do not exhibit a Cripto null phenotype and die at about embryonic day 9.5. This suggested that the loss of O-fucose from the EGF repeat may not have led to the inactivation of Cripto in previous studies. Here we investigate this hypothesis and show the following: 1) protein O-fucosyltransferase 1 is indeed the enzyme that adds O-fucose to Cripto; 2) Pofut1(-/-) embryonic stem cells behave the same as Pofut1(+/+) embryonic stem cells in a Nodal signaling assay; 3) Pofut1(-/-) and Pofut1(+/+) embryoid bodies are indistinguishable in their ability to differentiate into cardiomyocytes; and 4) none of 10 amino acid substitutions at Thr(72), including Ser which acquires O-fucose, rescues the activity of mouse Cripto in Nodal signaling assays. Therefore, the Thr to which O-fucose is linked in Cripto plays a key functional role, but O-fucose at Thr(72) is not required for Cripto to function in cell-based signaling assays or in vivo. By contrast, we show that O-fucose, and not the Thr to which it is attached, is required in the ligand-binding domain of Notch1 for Notch1 signaling.  相似文献   

7.
The molecular mechanisms controlling inductive events leading to the specification and terminal differentiation of cardiomyocytes are still largely unknown. We have investigated the role of Cripto, an EGF-CFC factor, in the earliest stages of cardiomyogenesis. We find that both the timing of initiation and the duration of Cripto signaling are crucial for priming differentiation of embryonic stem (ES) cells into cardiomyocytes, indicating that Cripto acts early to determine the cardiac fate. Furthermore, we show that failure to activate Cripto signaling in this early window of time results in a direct conversion of ES cells into a neural fate. Moreover, the induction of Cripto activates the Smad2 pathway, and overexpression of activated forms of type I receptor ActRIB compensates for the lack of Cripto signaling in promoting cardiomyogenesis. Finally, we show that Nodal antagonists inhibit Cripto-regulated cardiomyocyte induction and differentiation in ES cells. All together our findings provide evidence for a novel role of the Nodal/Cripto/Alk4 pathway in this process.  相似文献   

8.
Studies are beginning to emerge that demonstrate intriguing differences between human‐induced pluripotent stem cells (hiPSCs) and human embryonic stem cells (hESCs). Here, we investigated the expression of key members of the Nodal embryonic signaling pathway, critical to the maintenance of pluripotency in hESCs. Western blot and real‐time RT‐PCR analyses reveal slightly lower levels of Nodal (a TGF‐β family member) and Cripto‐1 (Nodal's co‐receptor) and a dramatic decrease in Lefty (Nodal's inhibitor and TGF‐β family member) in hiPSCs compared with hESCs. The noteworthy drop in hiPSC's Lefty expression correlated with an increase in the methylation of Lefty B CpG island. Based on these findings, we addressed a more fundamental question related to the consequences of epigenetically reprogramming hiPSCs, especially with respect to maintaining a stable ESC phenotype. A global comparative analysis of 365 microRNAs (miRs) in two hiPSC versus four hESC lines ultimately identified 10 highly expressed miRs in hiPCSs with >10‐fold difference, which have been shown to be cancer related. These data demonstrate cancer hallmarks expressed by hiPSCs, which will require further assessment for their impact on future therapies. J. Cell. Physiol. 225: 390–393, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
Cripto is a multifunctional cell surface protein with important roles in vertebrate embryogenesis and the progression of human tumors. While Cripto has been shown to modulate multiple signaling pathways, its binding partners do not appear to fully explain its molecular actions. Therefore, we conducted a screen aimed at identifying novel Cripto-interacting proteins. This screen led to our identification of glucose-regulated protein 78 (GRP78), an endoplasmic reticulum (ER) chaperone that is also expressed at the surfaces of tumor cells. Here we demonstrate that Cripto and GRP78 interact at the cell surfaces of multiple cell lines and that their interaction is independent of prior association within the ER. Interestingly, short hairpin RNA knockdown of endogenous GRP78 resulted in enhanced transforming growth factor β (TGF-β) signaling, indicating that like Cripto, GRP78 inhibits this pathway. We further show that when coexpressed, GRP78 and Cripto collaborate to antagonize TGF-β responses, including Smad phosphorylation and growth inhibition of prostate cancer cells grown under anchorage-dependent or -independent conditions. Finally, we provide evidence that cells coexpressing GRP78 and Cripto grow much more rapidly in soft agar than do cells expressing either protein individually. Together, our results indicate that these proteins bind at the cell surface to enhance tumor growth via the inhibition of TGF-β signaling.  相似文献   

10.
The EGF-CFC gene cripto governs anterior-posterior (A-P) axis specification in the vertebrate embryo. Existing models suggest that Cripto facilitates binding of Nodal to an ActRII-activin-like kinase (ALK) 4 receptor complex. Cripto also has a crucial function in cellular transformation that is independent of Nodal and ALK4. However, how ALK4-independent Cripto pathways function in vivo has remained unclear. We have generated cripto mutants carrying the amino acid substitution F78A, which blocks the Nodal-ALK4-Smad2 signaling both in embryonic stem cells and cell-based assays. In cripto(F78A/F78A) mouse embryos, Nodal fails to expand its own expression domain and that of cripto, indicating that F78 is essential in vivo to stimulate Smad-dependent Nodal autoinduction. In sharp contrast to cripto-null mutants, cripto(F78A/F78A) embryos establish an A-P axis and initiate gastrulation movements. Our findings provide in vivo evidence that Cripto is required in the Nodal-Smad2 pathway to activate an autoinductive feedback loop, whereas it can promote A-P axis formation and initiate gastrulation movements independently of its stimulatory effect on the canonical Nodal-ALK4-Smad2 signaling pathway.  相似文献   

11.
Bidirectional cellular communication is integral to both cancer progression and embryological development. In addition, aggressive tumor cells are phenotypically plastic, sharing many properties with embryonic cells. Owing to the similarities between these two types of cells, the developing zebrafish can be used as a biosensor for tumor-derived signals. Using this system, we show that aggressive melanoma cells secrete Nodal (a potent embryonic morphogen) and consequently can induce ectopic formation of the embryonic axis. We further show that Nodal is present in human metastatic tumors, but not in normal skin, and thus may be involved in melanoma pathogenesis. Inhibition of Nodal signaling reduces melanoma cell invasiveness, colony formation and tumorigenicity. Nodal inhibition also promotes the reversion of melanoma cells toward a melanocytic phenotype. These data suggest that Nodal signaling has a key role in melanoma cell plasticity and tumorigenicity, thereby providing a previously unknown molecular target for regulating tumor progression.  相似文献   

12.
During gastrulation, a cascade of inductive tissue interactions converts pre-existing polarity in the mammalian embryo into antero-posterior pattern. This process is triggered by Nodal, a protein related to transforming growth factor-beta (TFG-beta) that is expressed in the epiblast and visceral endoderm, and its co-receptor Cripto, which is induced downstream of Nodal. Here we show that the proprotein convertases Spc1 and Spc4 (also known as Furin and Pace4, respectively) are expressed in adjacent extraembryonic ectoderm. They stimulate Nodal maturation after its secretion and are required in vivo for Nodal signalling. Embryo explants deprived of extraembryonic ectoderm phenocopy Spc1(-/-); Spc4(-/-) double mutants in that endogenous Nodal fails to induce Cripto. But recombinant mature Nodal, unlike uncleaved precursor, can efficiently rescue Cripto expression. Cripto is also expressed in explants treated with bone morphogenetic protein 4 (BMP4). This indicates that Nodal may induce Cripto through both a signalling pathway in the embryo and induction of Bmp4 in the extraembryonic ectoderm. A lack of Spc1 and Spc4 affects both pathways because these proteases also stimulate induction of Bmp4.  相似文献   

13.
14.
The EGF-CFC proteins have been recently recognized as a novel family of extracellular factors required during early vertebrate development. Cripto is the founder member of the EGF-CFC family initially related to the epidermal growth factor (EGF); its expression is increased in human colon, gastric, pancreatic and lung carcinoma and in different types of both mouse and human breast carcinomas. Genetic studies in the mouse have established an essential role of cripto in the formation and correct positioning of the anterior-posterior axis. Furthermore, the absence of cripto results in a defective precardiac mesoderm, unable to differentiate into functional cardiomyocytes. Although mouse and human Cripto have been shown to activate the ras/raf/MAP kinase pathway in mammary epithelial cell lines, genetic evidence in Zebrafish has been provided for a relationship between the EGF-CFC proteins and Nodal, a member of the transforming growth factor family. Here we review the biological role of cripto in development and differentiation, pointing out recent findings on the biochemical interactions of Cripto, Nodal and Activin-like receptors.  相似文献   

15.
Gene expression profiling of beta-catenin, Cripto and Wnt3 mutant mouse embryos has been used to characterise the genetic networks that regulate early embryonic development. We have defined genes whose expression is regulated by beta-catenin during formation of the anteroposterior axis and the mesoderm, and have identified Cripto, which encodes a Nodal co-receptor, as a primary target of beta-catenin signals both in embryogenesis as well as in colon carcinoma cell lines and tissues. We have also defined groups of genes regulated by Wnt3/beta-catenin signalling during primitive streak and mesoderm formation. Our data assign a key role to beta-catenin upstream of two distinct gene expression programs during anteroposterior axis and mesoderm formation.  相似文献   

16.
Several membrane-associated proteins are known to modulate the activity and range of potent morphogenetic signals during development. In particular, members of the EGF-CFC family encode glycosyl-phosphatidylinositol (GPI)-linked proteins that are essential for activity of the transforming growth factor beta (TGFbeta) ligand Nodal, a factor that plays a central role in establishing the vertebrate body plan. Genetic and biochemical studies have indicated that EGF-CFC proteins function as cell-autonomous co-receptors for Nodal; by contrast, cell culture data have suggested that the mammalian EGF-CFC protein Cripto can act as a secreted signaling factor. Here we show that Cripto acts non-cell-autonomously during axial mesendoderm formation in the mouse embryo and may possess intercellular signaling activity in vivo. Phenotypic analysis of hypomorphic mutants demonstrates that Cripto is essential for formation of the notochordal plate, prechordal mesoderm and foregut endoderm during gastrulation. Remarkably, Cripto null mutant cells readily contribute to these tissues in chimeras, indicating non-cell-autonomy. Consistent with these loss-of-function analyses, gain-of-function experiments in chick embryos show that exposure of node/head process mesoderm to soluble Cripto protein results in alterations in cell fates toward anterior mesendoderm, in a manner that is dependent on Nodal signaling. Taken together, our findings support a model in which Cripto can function in trans as an intercellular mediator of Nodal signaling activity.  相似文献   

17.
The EGF-CFC factor Oep/Cripto1/Frl1 has been implicated in embryogenesis and several human cancers. During vertebrate development, Oep/Cripto1/Frl1 has been shown to act as an essential coreceptor in the TGFbeta/Nodal pathway, which is crucial for germ layer formation. Although studies in cell cultures suggest that Oep/Cripto1/Frl1 is also implicated in other pathways, in vivo it is solely regarded as a Nodal coreceptor. We have found that Rasl11b, a small GTPase belonging to a Ras subfamily of putative tumor suppressor genes, modulates Oep function in zebrafish independently of the Nodal pathway. rasl11b down regulation partially rescues endodermal and prechordal plate defects of zygotic oep(-/-) mutants (Zoep). Rasl11b inhibitory action was only observed in oep-deficient backgrounds, suggesting that normal oep expression prevents Rasl11b function. Surprisingly, rasl11b down regulation does not rescue mesendodermal defects in other Nodal pathway mutants, nor does it influence the phosphorylation state of the downstream effector Smad2. Thus, Rasl11b modifies the effect of Oep on mesendoderm development independently of the main known Oep output: the Nodal signaling pathway. This data suggests a new branch of Oep signaling that has implications for germ layer development, as well as for studies of Oep/Frl1/Cripto1 dysfunction, such as that found in tumors.  相似文献   

18.
The Transforming Growth Factor-ß (TGFß) family ligand Nodal is an essential embryonic morphogen that is associated with progression of breast and other cancers. It has therefore been suggested that Nodal inhibitors could be used to treat breast cancers where Nodal plays a defined role. As secreted antagonists, such as Cerberus, tightly regulate Nodal signaling during embryonic development, we undertook to produce human Cerberus, characterize its biochemical activities, and determine its effect on human breast cancer cells. Using quantitative methods, we investigated the mechanism of Nodal signaling, we evaluated binding of human Cerberus to Nodal and other TGFß family ligands, and we characterized the mechanism of Nodal inhibition by Cerberus. Using cancer cell assays, we examined the ability of Cerberus to suppress aggressive breast cancer cell phenotypes. We found that human Cerberus binds Nodal with high affinity and specificity, blocks binding of Nodal to its signaling partners, and inhibits Nodal signaling. Moreover, we showed that Cerberus profoundly suppresses migration, invasion, and colony forming ability of Nodal expressing and Nodal supplemented breast cancer cells. Taken together, our studies provide mechanistic insights into Nodal signaling and Nodal inhibition with Cerberus and highlight the potential value of Cerberus as anti-Nodal therapeutic.  相似文献   

19.
Cripto has been known as an embryonic stem (ES)- or tumor-related soluble/cell membrane protein. In this study, we demonstrated that Cripto has a role as an important regulatory factor for hematopoietic stem cells (HSCs). Recombinant Cripto sustained the reconstitution ability of HSCs in vitro. Flow cytometry analysis uncovered that GRP78, one of the candidate receptors for Cripto, was expressed on a subset of HSCs and could distinguish dormant/myeloid-biased HSCs and active/lymphoid-biased HSCs. Cripto is expressed in hypoxic endosteal niche cells where GRP78(+) HSCs mainly reside. Proteomics analysis revealed that Cripto-GRP78 binding stimulates glycolytic metabolism-related proteins and results in lower mitochondrial potential in HSCs. Furthermore, conditional knockout mice for HIF-1α, a master regulator of hypoxic responses, showed reduced Cripto expression and decreased GRP78(+) HSCs in the endosteal niche area. Thus, Cripto-GRP78 is a novel HSC regulatory signal mainly working in the hypoxic niche.  相似文献   

20.
The ER resident chaperone molecule GRP78 has been shown to translocate to the cell surface where it associates with Cripto and signals cell growth, playing a still partially understood role in tumorigenesis. Consequently, a better understanding of GRP78 topology and structure at the surface of cancer cells represents an important step in the development of a new class of therapeutics. Here, we used a set of programs for creation of a complex containing GRP78 and Cripto proteins. We elucidated possible interactions of GRP78, Cripto, and their complex with the membrane. Using molecular dynamics simulations, we demonstrated that Cripto binding to GRP78 completely changes the dynamics of its behavior on the membrane, not allowing GRP78 to disconnect from it, thus enabling GRP78 tumorigenic functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号