首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transgenic silkworms produce recombinant human type III procollagen in cocoons   总被引:10,自引:0,他引:10  
We describe the generation of transgenic silkworms that produce cocoons containing recombinant human collagen. A fusion cDNA was constructed encoding a protein that incorporated a human type III procollagen mini-chain with C-propeptide deleted, a fibroin light chain (L-chain), and an enhanced green fluorescent protein (EGFP). This cDNA was ligated downstream of the fibroin L-chain promoter and inserted into a piggyBac vector. Silkworm eggs were injected with the vectors, producing worms displaying EGFP fluorescence in their silk glands. The cocoons emitted EGFP fluorescence, indicating that the promoter and fibroin L-chain cDNAs directed the synthesized products to be secreted into cocoons. The presence of fusion proteins in cocoons was demonstrated by immunoblotting, collagenase-sensitivity tests, and amino acid sequencing. The fusion proteins from cocoons were purified to a single electrophoretic band. This study demonstrates the viability of transgenic silkworms as a tool for producing useful proteins in bulk.  相似文献   

2.
In this study we produced germline transgenic silkworms that spin cocoons containing recombinant human serum albumin (rHSA) in the sericin layer. A piggyBac-based transformation vector was constructed that carried HSA cDNA driven by sericin-1 gene promoter, viral enhancer hr3, and gene encoding viral trans-activator IE1. Isolated silk glands were bombarded with the vector and transplanted into host larvae. Three days later, the transplants were immunohistochemically analyzed, which showed that middle silk gland (MSG) cells expressed rHSA and secreted it into the MSG lumen. Then, silkworm eggs were injected with the vector and developed to larvae. The obtained transgenic silkworms spun silk threads whose sericin layers contained rHSA at 3.0microg/mg of cocoons. Most (83%) of the rHSA in cocoons was extracted with phosphate buffered saline, which was then subjected to ammonium sulfate precipitation and affinity chromatography. Finally, we obtained 2.8mg of 99%-pure rHSA from 2g of cocoons. Measurements of circular dichroism spectra of rHSA, and equilibrium dissociation constants of rHSA to warfarin and naproxen indicated that rHSA was conformationally and functionally identical to natural plasma HSA. Germline transgenic silkworms will be useful for producing various recombinant proteins in the sericin layer of cocoons.  相似文献   

3.
Spider dragline silk is a unique fibrous protein with a combination of tensile strength and elasticity, but the isolation of large amounts of silk from spiders is not feasible. In this study, we generated germline-transgenic silkworms (Bombyx mori) that spun cocoons containing recombinant spider silk. A piggyBac-based transformation vector was constructed that carried spider dragline silk (MaSp1) cDNA driven by the sericin 1 promoter. Silkworm eggs were injected with the vector, producing transgenic silkworms displaying DsRed fluorescence in their eyes. Genotyping analysis confirmed the integration of the MaSp1 gene into the genome of the transgenic silkworms, and silk protein analysis revealed its expression and secretion in the cocoon. Compared with wild-type silk, the recombinant silk displayed a higher tensile strength and elasticity. The results indicate the potential for producing recombinant spider silk in transgenic B. mori.  相似文献   

4.
We constructed the fibroin H-chain expression system to produce recombinant proteins in the cocoon of transgenic silkworms. Feline interferon (FeIFN) was used for production and to assess the quality of the product. Two types of FeIFN fusion protein, each with N- and C-terminal sequences of the fibroin H-chain, were designed to be secreted into the lumen of the posterior silk glands. The expression of the FeIFN/H-chain fusion gene was regulated by the fibroin H-chain promoter domain. The transgenic silkworms introduced these constructs with the piggyBac transposon-derived vector, which produced the normal sized cocoons containing each FeIFN/H-chain fusion protein. Although the native-protein produced by transgenic silkworms have almost no antiviral activity, the proteins after the treatment with PreScission protease to eliminate fibroin H-chain derived N- and C-terminal sequences from the products, had very high antiviral activity. This H-chain expression system, using transgenic silkworms, could be an alternative method to produce an active recombinant protein and silk-based biomaterials.  相似文献   

5.
6.
7.
Spider dragline silk is a natural fiber that has excellent tensile properties; however, it is difficult to produce artificially as a long, strong fiber. Here, the spider (Araneus ventricosus) dragline protein gene was cloned and a transgenic silkworm was generated, that expressed the fusion protein of the fibroin heavy chain and spider dragline protein in cocoon silk. The spider silk protein content ranged from 0.37 to 0.61% w/w (1.4–2.4 mol%) native silkworm fibroin. Using a good silk-producing strain, C515, as the transgenic silkworm can make the raw silk from its cocoons for the first time. The tensile characteristics (toughness) of the raw silk improved by 53% after the introduction of spider dragline silk protein; the improvement depended on the quantity of the expressed spider dragline protein. To demonstrate the commercial feasibility for machine reeling, weaving, and sewing, we used the transgenic spider silk to weave a vest and scarf; this was the first application of spider silk fibers from transgenic silkworms.  相似文献   

8.
Transgenic silkworms that weave recombinant proteins into silk cocoons   总被引:1,自引:0,他引:1  
As a result of breeding for more than 4,000 years, the silkworm, Bombyx mori, has acquired the ability to synthesize bulk amounts of silk proteins in its silk glands. To utilize this capacity for mass production of useful proteins, transgenic silkworms were generated that synthesized recombinant proteins in the silk gland and secreted them into the silk cocoon. The silk gland is classified into two main regions: the posterior (PSG) and the middle silk gland (MSG). By controlling the expressed regions of the recombinant protein gene in the silk gland, we were able to control the localization of the synthesized protein in the silk thread. Expression in the PSG or MSG led to localization in the insoluble fibroin core or hydrophilic outer sericin layer, respectively. This review focuses on the expression of recombinant protein in the MSG of transgenic silkworms. The recombinant protein secreted in the sericin layer is extractable from the cocoon with only a small amount of endogenous silk protein contamination by soaking the cocoon in mild aqueous solutions. The possibility of utilizing transgenic silkworms as a valuable tool for the mass production of therapeutic and industrially relevant recombinant proteins is discussed.  相似文献   

9.
The human recombinant collagen I α1 chain monomer (rh‐gelatin) was modified by the incorporation of an azidophenyl group to prepare photoreactive human gelatin (Az‐rh‐gelatin), with approximately 90% of the lysine residues conjugated with azidobenzoic acid. Slight changes in conformation (circular dichroism spectra) and thermal properties (gelation and melting points) were noticed after modification. Ultraviolet (UV) irradiation could immobilize the Az‐rh‐gelatin on polymer surfaces, such as polystyrene and polytetrafluoroethylene. Az‐rh‐gelatin was stably retained on the polymer surfaces, while unmodified gelatin was mostly lost by brief washing. Human mesenchymal cells grew more efficiently on the immobilized surface than on the coated surface. The immobilized Az‐rh‐gelatin on the polymer surfaces was able to capture engineered growth factors with collagen affinity, and the bound growth factors stimulated the growth of cells dose‐dependently. It was also possible to immobilize Az‐rh‐gelatin in micropatterns (stripe, grid, and so on) using photomasks, and the cells grew according to the patterns. These results suggest that the photoreactive human gelatin, in combination with collagen‐binding growth factors, will be clinically useful for surface modification of synthetic materials for cell culture systems and tissue engineering. Biotechnol. Bioeng. 2011;108: 2468–2476. © 2011 Wiley Periodicals, Inc.  相似文献   

10.
Prolyl 4-hydroxylase (P4H) is a heterotetramer enzyme consisting of alpha-subunits (P4Halpha) and beta-subunits (P4Hbeta), and is required for collagen biosynthesis. Previously, we generated transgenic silkworms that produced human type III collagen fragments (mini-collagens) in the posterior silk gland (PSG). However, prolyl 4-hydroxylation did not occur on the mini-collagens, because in spite of an abundant expression of P4Hbeta in PSGs, P4Halpha expression was quite low there, thus resulting in an insufficient activity of P4H. In this study we aimed at generating hybrid transgenic silkworms whose PSGs are capable of producing mini-collagens and enough P4H for their prolyl 4-hydroxylation. Isolated PSGs were bombarded with fibroin L-chain gene promoter-driven vectors containing Bombyx mori P4Halpha (BmP4Halpha) cDNAs and were transplanted into the hemolymphatic cavity. The P4H activity in the PSG cells significantly increased, indicating that the expressed BmP4Halpha formed active tetramers with endogenous BmP4Hbeta. Using germ-line transgenesis technology, silkworms were generated that synthesized BmP4Halpha in PSG cells. The P4H activity in the transgenic silkworms was 130-fold higher than that of wild-type counterparts. Finally, we generated hybrid transgenic silkworms that expressed cDNAs of both BmP4Halpha and mini-collagen in PSG cells. They spun cocoons that contained mini-collagens whose appropriate proline residues had been adequately hydroxylated.  相似文献   

11.
Calcium ions (Ca2+) are crucial for the conformational transition of silk fibroin in vitro, and silk fibroin conformations correlate with the mechanical properties of silk fibers. To investigate the relationship between Ca2+ and mechanical properties of silk fibers, CaCl2 was injected into silkworms (Bombyx mori). Fourier-transform infrared spectroscopy (FTIR) analysis and mechanical testing revealed that injection of CaCl2 solution (7.5 mg/g body weight) significantly increased the levels of α-helix and random coil structures of silk proteins. In addition, extension of silk fibers increased after CaCl2 injection. In mammals, sarcoplasmic reticulum Ca2+-ATPase in muscle and endoplasmic reticulum Ca2+-ATPase in other tissues (together denoted by SERCA) are responsible for calcium balance. Therefore, we analyzed the expression pattern of silkworm SERCA (BmSERCA) in silk glands and found that BmSERCA was abundant in the anterior silk gland (ASG). After injection of thapsigargin (TG) to block SERCA activity, silkworms showed a silk-spinning deficiency and their cocoons had higher calcium content compared to that of controls. Moreover, FTIR analysis revealed that the levels of α-helix and β-sheet structures increased in silk fibers from TG-injected silkworms compared to controls. The results provide evidence that BmSERCA has a key function in calcium transportation in ASG that is related to maintaining a suitable ionic environment. This ionic environment with a proper Ca2+ concentration is crucial for the formation of silk fibers with favorable mechanical performances.  相似文献   

12.
Major royal jelly protein-1 (MRJP1) is the most abundant glycoprotein of royal jelly (RJ) and is considered a potential component of functional foods. In this study, we used silkworm transgenic technology to obtain five transgenic silkworm lineages expressing the exogenous recombinant Chinese honeybee, Apis cerana cerana, protein-1 (rAccMRJP1) under the control of a fibroin light chain (Fib-L) promoter in the posterior silk glands. The protein was successfully secreted into cocoons; specifically, the highest rAccMRJP1 protein content was 0.78% of the dried cocoons. Our results confirmed that the protein band of the exogenous rAccMRJP1 protein expressed in the transgenic silkworm lineages was a glycosylated protein. Therefore, this rAccMRJP1 protein could be used as an alternative standard protein sample to measure the freshness of RJ. Moreover, we also found that the overall trend between the expression of the endogenous and exogenous genes was that the expression level of the endogenous Fib-L gene declined as the expression of the exogenous rAccMRJP1 gene increased in the transgenic silkworm lineages. Thus, by employing genome editing technology to reduce silk protein expression levels, a silkworm bioreactor expression system could be developed as a highly successful system for producing various valuable heterologous proteins, potentially broadening the applications of the silkworm.  相似文献   

13.
Silk of Bombyx mori can be used as various biomaterials. Especially, it is useful as a protein for coating the surface of cell culture plates since the silk possesses a biocompatibility to the cultured cells. However, the cell-adhesive ability is weaker than collagen or fibronectin, which are used for coating the plate more frequently (Yao et al. J. Biochem., 2004, 136, 643-649). To increase the biocompatibility of the silk, we constructed transgenic silkworms, inserting the modified fibroin light-chain genes for making recombinant silks that possessed partial collagen or fibronectin sequences, that is, [GERGDLGPQGIAGQRGVV(GER)3GAS]8GPPGPCCGGG or [TGRGDSPAS]8, respectively. Films were made from the recombinant silks, and the cell-adhesive activity for cultured mammalian cells was observed. The results showed that the two types of recombinant silk films possessed a much higher cell-adhesive activity as compared to the original unmodified silk. Especially, the recombinant silk with the sequence [TGRGDSPAS]8, produced by a transgenic Nd-sD mutant, gave a 6 times higher activity than the original unmodified silk.  相似文献   

14.
Xue R  Chen H  Cui L  Cao G  Zhou W  Zheng X  Gong C 《Transgenic research》2012,21(1):101-111
The silk gland of the silkworm is a highly specialized organ that has the wonderful ability to synthesize and secrete silk protein. To express human granucyto-macrophage colony-stimulating factor (hGM-CSF) in the posterior silk glands of gene-targeted silkworms, a targeting vector pSK-FibL-L-A3GFP-PH-GMCSF-LPA-FibL-R was constructed, harboring a 1.2 kb portion of the left homogenous arm (FibL-L), a 0.5 kb portion of the right homogenous arm (FibL-R), fibroin H-chain-promoter-driven hGM-CSF and silkworm actin 3-promoter-driven gfp. The targeting vector was then introduced into the eggs of silkworm, and the transgenic silkworms were verified by PCR and DNA hybridization after being screened for the gfp gene. Western blotting analysis using an antibody against hGM-CSF demonstrated a specific band with a molecular weight of 22 kD in the silk glands of the G3 generation transgenic silkworms. The level of expression of hGM-CSF in the posterior silk glands of the G3 generation transgenic silkworms was approximately 2.70 ng/g of freeze-dried powdered posterior silk gland. These results showed that the heterologous gene could be introduced into the silkworm genome and expressed successfully. Further more, the exogenous genes existing in the G5 transgenic silkworm identified by PCR confirmed its integration stability. In addition, the silk glands containing expressed hGM-CSF performed the function of significantly increasing leukocyte count of CY-treated mice in a time-and-dose-dependent manner.  相似文献   

15.
Silkworms contain a powerful and effective fibroin promoter, which controls the expression of fibroin, a silk protein. The fibroin promoter and well-known characteristics of silkworm, the application of transgenic technique to silkworm will provide an excellent opportunity to mass-produce biomolecules. In this study, the production of recombinant human insulin like growth factor-I (rhIGF-I) in the silkworm system was designed. The method makes use of the microinjection technique and P element vector to transfer foreign genes into the chromosomes. We constructed the expression vector using the fibroin gene promoter and P element vector containing IGF-I gene (pFpIGF-I). We then microinjected this vector into eggs, and through PCR screening, transgenic silkworms were selected. We isolated and purified rhIGF-I from silkworm cocoons, returning a concentration of rhIGF-I of about 1,300 ng/g from transgenic silkworm cocoons. In a comparison of transgenic silkworm rhIGF-I and colostral IGF-I on cell proliferation, colostral IGF-I was better able to increase the proliferation rate of the cell line relative to the transgenic silkworm rhIGF-I, and showed a similar cell proliferation pattern. The anti-cancer effects of transgenic silkworm rhIGF-I were higher than that of colostral IGF-I on HeLa and SNU-C1 cancer cells. These results confirmed the construction of new transgenic silkworm strains producing rhIGF-I.  相似文献   

16.
非转座子载体介导的转基因家蚕表达hIL-28A   总被引:1,自引:0,他引:1  
为了探讨非转座子载体介导转基因家蚕表达外源基因的可能性,将hIL-28A克隆进昆虫细胞表达载体pIZT/V5-His,构建了重组载体pIZT/V5-His-hIL-28A.利用精子介导法将该重组载体导入家蚕卵,通过绿色荧光筛选并结合PCR、DNA杂交等分子鉴定,证实成功获得了转基因家蚕.Western blotting结果显示,转基因家蚕表达重组hIL-28A的分子质量为25 ku,ELISA检测结果显示,hIL-28A在G3代转基因蚕、后部丝腺、脂肪组织冻干粉中的含量分别为0.198、0.320和0.238 ng/g.表明通过非转座子载体介导可以将外源基因导入家蚕基因组并实现外源基因的表达.  相似文献   

17.
In order to investigate possible cell positional effects on the gene expression of human dermal fibroblasts, the authors cultured the cells on non-coated polystyrene culture dishes, type I collagen-coated dishes, or collagen gels formed by type I collagen, or suspended them in type I collagen gels and measured collagen synthesis by the cells. The production rate of type I collagen was similar whether cells were cultured on non-coated polystyrene or on type I collagen-coated dishes, but it was suppressed significantly when the cells were placed within the collagen gel matrix. Time-dependent expression of genes for α1(I) and α2(I) collagen chains was measured by Northern blot analysis. A significant increase in mRNA levels for these chains was observed when the cells were cultured for three days on type I collagen-coated dishes or on collagen gels. On the other hand, a significant decrease in the mRNA levels was observed after 2 days and later, when the cells were cultured within type I collagen gel matrix. These results indicate that human dermal fibroblasts recognize their position on or in type I collagen (extracellular matrix) and respond by changing their expression patterns of type I collagen chain genes. The results of the kinetics of gene expression also suggest that upregulation and downregulation of type I collagen genes are controlled by different mechanisms.  相似文献   

18.
To realize the secretory expression of human insulin-like growth factor-I (hIGF-I) in the posterior silk glands (PSGs) of transgenic silkworms, the piggyBac transposon vector pigA3GFP-fibHS-hIGF-i.e.-neo containing a neomycin-resistance gene (neo), green fluorescent protein gene (gfp) and human insulin-like growth factor I (hIGF-I) gene controlled by the Bombyxmori fibroin heavy chain gene (fib-H) promoter with its downstream signal peptide sequence, and a helper plasmid containing the piggyBac transposase sequence under the control of the B. mori actin 3 gene (A3) promoter were transferred into silkworm eggs by sperm-mediated gene transfer. Transformed silkworms were obtained after being screened for green fluorescence and by the antibiotic G418. In the PSGs of the transformed silkworms, a specific band representing hIGF-I could be detected by Western blotting, and the content of the hIGF-I estimated by ELISA was approximately 1.84 μg/gram of cocoon and 19.18 μg/gram of freeze-dried PSG powder. To further estimate the biological activity of the expressed hIGF-I, streptozotocin-induced TIDM mice were orally administered with the PSG powder of the transgenic silkworms, the results showed the blood glucose levels of mice were significantly reduced, suggesting that the the PSGs powder of transgenic hIGF-I silkworms could possibly be used as a perorally administered medicine.  相似文献   

19.
Metabolic profiling of silkworm, especially the factors that affect silk synthesis at the metabolic level, is little known. Herein, metabolomic method based on gas chromatography-mass spectrometry was applied to identify key metabolic changes in silk synthesis deficient silkworms. Forty-six differential metabolites were identified in Nd group with the defect of silk synthesis. Significant changes in the levels of glycine and uric acid (up-regulation), carbohydrates and free fatty acids (down-regulation) were observed. The further metabolomics of silk synthesis deficient silkworms by decreasing silk proteins synthesis using knocking out fibroin heavy chain gene or extirpating silk glands operation showed that the changes of the metabolites were almost consistent with those of the Nd group. Furthermore, the increased silk yields by supplying more glycine or its related metabolite confirmed that glycine is a key metabolite to regulate silk synthesis. These findings provide important insights into the regulation between metabolic profiling and silk synthesis.  相似文献   

20.
Silk proteins were isolated from the cocoons of the nonmulberry silkworm, Philosamia ricini. Three polypeptides of 97, 66, and 45 kDa were identified. The 66-kDa molecule represented sericin, whereas the 97-kDa and the 45-kDa polypeptides linked together through a disulfide bond constituted the fibroin protein. Antibodies raised against the 97-kDa P. ricini fibroin heavy chain reacted specifically with this molecule and did not recognize fibroin heavy chain from another nonmulberry silkworm, Antheraea assama or from the mulberry silkworm, Bombyx mori, suggesting the presence of P. ricini species-specific determinants in this heavy chain. Antibodies generated against fibroin light chain of P. ricini also showed similar reactivity pattern. Immunoblot analysis with proteins isolated from the silk glands of P. ricini at different stages of larval development showed that the expression of fibroin heavy chain was developmentally and spatially regulated. The protein was most abundant in the 5th instar larva, and could be detected in the middle and the posterior but not the anterior silk glands. The amino acid composition of the 97-kDa fibroin protein showed abundance of glutamic acid and did not contain (Gly-Ala)(n) motifs, a characteristic feature of B. mori fibroin heavy chain. Our study reveals significant differences between the nonmulberry silkworm P. ricini and the mulberry silkworm B. mori in the biochemical composition and immunochemical characteristics of fibroin heavy chain. These differences might be responsible for the differences seen in the quality of silk produced by these two silkworms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号