首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Here we describe a new mouse model with constitutive expression of the catalytic subunit of telomerase (Tert) targeted to thymocytes and peripheral T cells (Lck-Tert mice). Two independent Lck-Tert mouse lines showed higher incidences of spontaneous T-cell lymphoma than the corresponding age-matched wild-type controls, indicating that constitutive expression of Tert promotes lymphoma. Interestingly, T-cell lymphomas in Lck-Tert mice were more disseminated than those in wild-type controls and affected both lymphoid and nonlymphoid tissues, while nonlymphoid tissues were never affected with lymphoma in age-matched wild-type controls. Importantly, these roles of Tert constitutive expression in promoting tumor progression and dissemination were independent of the role of telomerase in telomere length maintenance, since telomere length distributions on a single-cell basis were identical in Lck-Tert and wild-type thymocytes. Finally, Tert constitutive expression did not interfere with telomere capping in Lck-Tert primary thymocytes, although it resulted in greater chromosomal instability upon gamma irradiation in Lck-Tert primary lymphocytes than in controls, suggesting that Tert overexpression may interfere with the cellular response to DNA damage.  相似文献   

7.
新药研究与开发离不开筛选模型 ,而筛选模型的关键是寻找、确定和制备药物筛选靶———药靶 .近来研究表明 ,端粒酶与恶性肿瘤的发生和发展有着密切的关系 ,端粒酶在恶性肿瘤细胞中表达率占80 %~ 90 % ,而在正常体细胞中不表达[1~ 4 ] .这表明端粒酶在维持肿瘤细胞的增殖中起着重要作用 .抑制端粒酶的活性有可能抑制肿瘤的生长 ,因而端粒酶被认为是恶性肿瘤诊断和治疗的新靶标 .以端粒酶为抗癌药物作用的靶标 ,建立抗癌药物筛选模型 ,在分子水平上筛选针对端粒酶的抑制剂 ,进而获得特异性高、针对性强、毒副作用小的新型广谱的抗癌药物 ,…  相似文献   

8.
9.
Telomerase is a ribonucleoprotein that synthesizes telomere repeats onto chromosome ends and is involved in maintaining telomere length in germline tissues and in immortal and cancer cells. In the present study, the temporal regulation of expression of telomerase activity was examined in human germline and somatic tissues and cells during development. Telomerase activity was detected in fetal, newborn, and adult testes and ovaries, but not in mature spermatozoa or oocytes. Blastocysts expressed high levels of telomerase activity as did most human somatic tissues at 16–20 weeks of development with the exception of human brain tissue. This activity could no longer be detected in the somatic tissues examined from the neonatal period onward. Neither placenta nor cultured fetal amniocytes contained detectable telomerase activity. Fetal tissues explanted into primary cell culture showed a dramatic decline in telomerase activity which became undetectable after the first passage in vitro. Elucidation of the regulatory pathways involved in the repression of telomerase activity during development may lead to the ability to manipulate telomerase levels and explore the consequences both for cellular aging and for the survival of cancer cells. © 1996 Wiley-Liss, Inc.  相似文献   

10.
Inefficiency in the production of cloned animals is most likely due to epigenetic reprogramming errors after somatic cell nuclear transfer (SCNT). In order to investigate whether nuclear reprogramming restores cellular age of donor cells after SCNT, we measured telomere length and telomerase activity in cloned pigs and cattle. In normal pigs and cattle, the mean telomere length was decreased with biological aging. In cloned or transgenic cloned piglets, the mean telomere length was elongated compared to nuclear donor fetal fibroblasts and age-matched normal piglets. In cloned cattle, no increases in mean telomere length were observed compared to nuclear donor adult fibroblasts. In terms of telomerase activity, significant activity was observed in nuclear donor cells and normal tissues from adult or new-born pigs and cattle, with relatively higher activity in the porcine tissues compared to the bovine tissues. Cloned calves and piglets showed the same level of telomerase activity as their respective donor cells. In addition, no difference in telomerase activity was observed between normal and transgenic cloned piglets. However, increased telomerase activity was observed in porcine SCNT blastocysts compared to nuclear donor cells and in vitro fertilization (IVF)-derived blastocysts, suggesting that the elongation of telomere lengths observed in cloned piglets could be due to the presence of higher telomerase activity in SCNT blastocysts. In conclusion, gathering from the comparative studies with cattle, we were able to demonstrate that telomere length in cloned piglets was rebuilt or elongated with the use of cultured donor fetal fibroblasts.  相似文献   

11.
Development patterns of telomerase activity in barley and maize   总被引:5,自引:0,他引:5  
Eukaryotic chromosomes terminate with specialized structures called telomeres. Maintenance of chromosomal ends in most eukaryotes studied to date requires a specialized enzyme, telomerase. Telomerase has been shown to be developmentally regulated in man and a few other multicellular organisms, while it is constitutively expressed in unicellular eukaryotes. Recently, we demonstrated telomerase activity in plant extracts using the PCR-based TRAP (Telomeric Repeat Amplification Protocol) assay developed for human cells. Here we report telomerase activities in two grass species, barley and maize, using a modified, semi-quantitative TRAP assay. Telomerase was highly active in very young immature embryos and gradually declined during embryo development. The endosperm telomerase activity was detectable, but significantly lower than in the embryo and declined during kernel development with no detectable activity in later stages. Telomerase activity in dissected maize embryo axis was several orders of magnitude higher than in the scutellum. Telomerase activity was not detected in a range of differentiated tissues including those with active meristems such as root tips as well as the internode and leaf base. The role of telomerase repression during differentiation and the relationship between chromosome healing and telomerase activity is discussed.  相似文献   

12.
13.
人端粒酶逆转录酶核酶抑制端粒酶活性   总被引:9,自引:0,他引:9  
为有效切割端粒酶逆转录酶mRNA以降低端粒酶活性 ,从而使肿瘤细胞生长变慢 ,凋亡增加。设计并合成了针对端粒酶逆转录酶mRNA的锤头状核酶基因 ,构建了该核酶基因的体外转录和真核表达质粒。检测了该核酶对端粒酶逆转录酶mRNA的体外切割效力。并将该核酶基因转染至肿瘤细胞中 ,检测其对肿瘤细胞端粒酶活性和生物学性状的影响。结果表明 ,该核酶在体外和细胞内均能有效切割端粒酶逆转录酶mRNA ;在细胞内能明显抑制端粒酶活性 ,使细胞生长变慢 ,倍增时间延长。因而 ,该核酶可望成为有效的端粒酶抑制剂 ,在抑制肿瘤生长中发挥作用  相似文献   

14.
15.
16.
17.
Telomerase is a specialized RNA-directed DNA polymerase that adds telomeric repeats to the ends of linear eukaryotic chromosomes. This activity is developmentally regulated in mammals. Here, we investigated the expression of telomerase activities in various cell types of tobacco plants using the telomere repeat amplification protocol (TRAP) assay. The greatest telomerase activity was detected in BY-2 suspension culture cells, while a relatively high level of activity was also found in roots. Because these two cell types contain a high proportion of actively dividing cells, our results indicate a close correlation between telomerase activity and the capacity for division in tobacco cells. Consistent with this observation was the very low level of telomerase activity in stems, leaves, and flowers, all tissues that had negligible activity of cell division. The specific expression of telomerase in actively dividing plant cells suggests that the pattern of telomerase regulation is largely conserved between higher plants and mammals.  相似文献   

18.
端粒的生物学功能主要是保护染色体末端,避免核酸酶对染色体末端的降解,防止染色体之间发生融合和重排。大多数人类肿瘤细胞通常通过端粒酶活性的重新激活来延长端粒,从而稳定染色体端粒DNA的长度。端粒酶是由端粒酶逆转录酶和端粒酶RNA模板组成的具有特殊逆转录活性的核糖核蛋白复合物。抑制端粒酶阳性细胞中的端粒酶活性会导致细胞凋亡或衰老。目前有多种以端粒和端粒酶为靶点来进行肿瘤治疗的策略。  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号