首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neuronal growth cones are capable of sophisticated discrimination of environmental cues, on cell surfaces and in the extracellular matrix, to accomplish navigation during development (generation) and following nervous system injury (regeneration). Choices made by growth cones are commonly examined using tissue culture paradigms in which molecules of interest are purified and substratum-bound. From observations of growth cone behaviors using these paradigms, assertions are made about choices neuronal growth cones may make in vivo. However, in many cases, the binding, interactions, and conformations of these molecules have not been determined. In the present study, we investigated the binding characteristics of two commonly studied outgrowth regulatory molecules: chondroitin sulfate proteoglycans (CSPGs), which are typically inhibitory to neurite outgrowth during development and following nervous system injury, and laminin, which is typically outgrowth promoting for many neuronal types. Using a novel combination of radiolabeling and quantitative fluorescence, we determined the precise concentrations of CSPGs and laminin-1 that were bound separately and together in a variety of choice assays. For identically prepared cultures, we correlated neurite outgrowth behaviors with binding characteristics. The data support-our working hypothesis that neuronal growth cones are guided by the ratio of outgrowth-promoting to outgrowth-inhibiting influences in their environment, i.e., they summate local molecular cues. The response of growth cones to these molecular combinations is most likely mediated by integrins and subsequent activation of signal transduction cascades in growth cones.  相似文献   

2.
In animal models, transplantation of bone marrow stromal cells (MSC) into the spinal cord following injury enhances axonal regeneration and promotes functional recovery. How these improvements come about is currently unclear. We have examined the interaction of MSC with neurons, using an established in vitro model of nerve growth, in the presence of substrate-bound extracellular molecules that are thought to inhibit axonal regeneration, i.e., neural proteoglycans (CSPG), myelin associated glycoprotein (MAG) and Nogo-A. Each of these molecules repelled neurite outgrowth from dorsal root ganglia (DRG) in a concentration-dependent manner. However, these nerve-inhibitory effects were much reduced in MSC/DRG co-cultures. Video microscopy demonstrated that MSC acted as “cellular bridges” and also “towed” neurites over the nerve-inhibitory substrates. Whereas conditioned medium from MSC cultures stimulated DRG neurite outgrowth over type I collagen, it did not promote outgrowth over CSPG, MAG or Nogo-A. These findings suggest that MSC transplantation may promote axonal regeneration both by stimulating nerve growth via secreted factors and also by reducing the nerve-inhibitory effects of the extracellular molecules present.  相似文献   

3.
Neuronal growth cones are capable of sophisticated discrimination of environmental cues, on cell surfaces and in the extracellular matrix, to accomplish navigation during development (generation) and following nervous system injury (regeneration). Choices made by growth cones are commonly examined using tissue culture paradigms in which molecules of interest are purified and substratum‐bound. From observations of growth cone behaviors using these paradigms, assertions are made about choices neuronal growth cones may make in vivo. However, in many cases, the binding, interactions, and conformations of these molecules have not been determined. In the present study, we investigated the binding characteristics of two commonly studied outgrowth regulatory molecules: chondroitin sulfate proteoglycans (CSPGs), which are typically inhibitory to neurite outgrowth during development and following nervous system injury, and laminin, which is typically outgrowth promoting for many neuronal types. Using a novel combination of radiolabeling and quantitative fluorescence, we determined the precise concentrations of CSPGs and laminin‐1 that were bound separately and together in a variety of choice assays. For identically prepared cultures, we correlated neurite outgrowth behaviors with binding characteristics. The data support our working hypothesis that neuronal growth cones are guided by the ratio of outgrowth‐promoting to outgrowth‐inhibiting influences in their environment, i.e., they summate local molecular cues. The response of growth cones to these molecular combinations is most likely mediated by integrins and subsequent activation of signal transduction cascades in growth cones. © 2002 Wiley Periodicals, Inc. J Neurobiol 51: 285–301, 2002  相似文献   

4.
Chondroitin sulfate proteoglycans (CSPGs) are the major class of proteoglycans synthesized by mouse uterine stroma in vitro (Jacobs, A. L., and Carson, D. D. (1991). J. Biol. Chem. 266, 15,464-15,473). In the present study, stromal CSPGs were isolated and examined with regard to their ability to bind to specific extracellular matrix (ECM) components. Of a variety of ECM components tested, only collagen type I formed stable complexes with stromal CSPGs in both solid phase and solution binding assays. Proteolytic digestion of the CSPGs did not affect binding and suggested that the protein cores did not participate directly in binding. Furthermore, free chondroitin sulfate polysaccharides do not compete effectively in the binding assays. Therefore, interactions with multiple CS chains and/or the higher charge density afforded by intact CSPGs appear to be required for retention by collagen type I. Intact CSPGs were examined for their ability to modulate embryo attachment and outgrowth in vitro on fibronectin- or collagen type I-coated surfaces. In both cases, intact CSPGs, but not their constituent protein cores or polysaccharides, inhibited both the rate and the extent of outgrowth formation. In addition, embryo outgrowth on stromal ECM was enhanced by predigestion with chondroitinase. Addition of exogenous CSPG markedly retarded embryo outgrowth on stromal matrix. Collectively, these data indicate that stromal cell-derived CSPGs are retained by collagen type I in the stromal interstitial ECM where these molecules may attenuate trophoblast invasive behavior.  相似文献   

5.
In this report we describe our studies on intracellular signals that mediate neurite outgrowth and long-term survival of cerebellar granule cells. The effect of voltage-gated calcium channel activation on neurite complexity was evaluated in cultured cerebellar granule cells grown for 48 h at low density; the parameter measured was the fractal dimension of the cell. We explored the contribution of two intracellular pathways, Ca2+ calmodulin-dependent protein kinase II and mitogen-activated protein kinase kinase (MEK1), to the effects of high [K+ ]e under serum-free conditions. We found that 25 mm KCl (25K) induced an increase in calcium influx through L subtype channels. In neurones grown for 24-48 h under low-density conditions, the activation of these channels induced neurite outgrowth through the activation of Ca2+ calmodulin-dependent protein kinase II. This also produced an increase in long-term neuronal survival with a partial contribution from the MEK1 pathway. We also found that the addition of 25K increased the levels of the phosphorylated forms of Ca2+ calmodulin-dependent protein kinase II and of the extracellular signal-regulated kinases 1 and 2. Neuronal survival under resting conditions is supported by the MEK1 pathway. We conclude that intracellular calcium oscillations can triggered different biological effects depending on the stage of maturation of the neuronal phenotype. Ca2+ calmodulin-dependent protein kinase II activation determines the growth of neurites and the development of neuronal complexity.  相似文献   

6.
7.
8.
An immunoglobulin superfamily neuronal adhesion molecule, Contactin, has been implicated in axon guidance of spinal sensory neurons in Xenopus embryos. To identify the guidance signaling molecules that Contactin recognizes in tailbud embryos, an in situ binding assay was performed using recombinant Contactin-alkaline phosphatase fusion protein (Contactin-AP) as a probe. In the assay of whole-mount or sectioned embryos, Contactin-AP specifically bound to the notochord and its proximal regions. This binding was completely blocked by either digestion of embryo sections with chondroitinase ABC or pretreatment of Contactin-AP with chondroitin sulfate A. When the spinal cord and the notochord explants were co-cultured in collagen gel, growing Contactin-positive spinal axons were repelled by notochord-derived repulsive activity. This repulsive activity was abolished by the addition of either a monoclonal anti-Contactin antibody, chondroitin sulfate A or chondroitinase ABC to the culture medium. An antibody that recognizes chondroitin sulfate A and C labeled immunohistochemically the notochord in embryo sections and the collagen gel matrix around the cultured notochord explant. Addition of chondroitinase ABC into the culture eliminated the immunoreactivity in the gel matrix. These results suggest that the notochord-derived chondroitin sulfate proteoglycan acts as a repulsive signaling molecule that is recognized by Contactin on spinal sensory axons.  相似文献   

9.
Stimulation of the neuronal cell adhesion molecule L1 in cerebellar granule neurons (CGNs) enhances neurite outgrowth and this response is inhibited by the primary alcohol ethanol. Because primary alcohols suppress the formation of the signaling lipid phosphatidic acid (PA) by phospholipase D (PLD), this observation prompted us to investigate whether PLD plays a role in the L1-mediated neurite outgrowth in CGNs. In the cerebellum of postnatal day 8 mice, PLD2 protein was abundantly expressed, while PLD1 expression was not detected. The L1-stimulated neurite outgrowth was inhibited by primary alcohols and by overexpression of lipase-deficient PLD2. Increases in cellular PA levels by direct PA application or overexpression of wild-type PLD2 mimicked the L1-dependent stimulation of neurite outgrowth. Furthermore, it was found that L1 stimulation in CGNs increased PLD activity concomitantly with phosphorylation of extracellular signal-regulated kinase (ERK), both of which were inhibited by the MAP kinase-ERK kinase (MEK) inhibitor. These results provide evidence that PLD2 functions as a downstream signaling molecule of ERK to mediate the L1-dependent neurite outgrowth of CGNs, a mechanism that may be related to alcohol-related neurodevelopmental disorders.  相似文献   

10.
Li YF  Kawashima H  Watanabe N  Miyasaka M 《FEBS letters》1999,444(2-3):201-205
Ligands for the leukocyte adhesion molecule L-selectin are expressed not only in lymph node high endothelial venules (HEV) but also in the renal distal tubuli. Here we report that L-selectin-reactive molecules in the kidney are chondroitin sulfate and heparan sulfate proteoglycans of 500-1000 kDa, unlike those in HEV bearing sialyl Lewis X-like carbohydrates. Binding of L-selectin to these molecules was mediated by the lectin domain of L-selectin and required divalent cations. Binding was inhibited by chondroitinase and/or heparitinase but not sialidase. Thus, L-selectin can recognize chondroitin sulfate and heparan sulfate glycosaminoglycans structurally distinct from sialyl Lewis X-like carbohydrates.  相似文献   

11.
Metastatic ovarian carcinoma metastasizes by intra-peritoneal, non-hematogenous dissemination. The adhesion of the ovarian carcinoma cells to extracellular matrix components, such as types I and III collagen and cellular fibronectin, is essential for intra-peritoneal dissemination. The purpose of this study was to determine whether cell surface proteoglycans (a class of matrix receptors) are produced by ovarian carcinoma cells, and whether these proteoglycans have a role in the adhesion of ovarian carcinoma cells to types I and III collagen and fibronectin. Proteoglycans were metabolically labeled for biochemical studies. Both phosphatidylinositol-anchored and integral membrane-type cell surface proteoglycans were found to be present on the SK-OV-3 and NIH:OVCAR-3 cell lines. Three proteoglycan populations of differing hydrodynamic size were detected in both SK-OV-3 and NIH:OVCAR-3 cells. Digestions with heparitinase and chondroitinase ABC showed that cell surface proteoglycans of SK-OV-3 cells had higher proportion of chondroitin sulfate proteoglycans (75:25 of chondroitin sulfate:heparan sulfate ratio), while NIH:OVCAR-3 cells had higher proportion of heparan sulfate proteoglycans (10:90 of chondroitin sulfate:heparan sulfate ratio). RT-PCR indicated the synthesis of a unique assortment of syndecans, glypicans, and CD44 by the two cell lines. In adhesion assays performed on matrix-coated titer plates both cell lines adhered to types I and III collagen and cellular fibronectin, and cell adhesion was inhibited by preincubation of the matrix with heparin, heparan sulfate, chondroitin sulfate, dermatan sulfate, or chondroitin glycosaminoglycans. Treatment of the cells with heparitinase, chondroitinase ABC, or methylumbelliferyl xyloside also interfered with adhesion confirming the role of both heparan sulfate and chondroitin sulfate cell surface proteoglycans as matrix receptors on ovarian carcinoma cells.  相似文献   

12.
We provide the first characterization of a novel signaling adapter, Nesca, in neurotrophic signal transduction. Nesca contains a RUN domain, a WW domain, a leucine zipper, a carboxyl-terminal SH3 domain, and several proline-rich regions. Nesca is highly expressed in the brain, is serine phosphorylated, and mobilizes from the cytoplasm to the nuclear membrane in response to neurotrophin, but not epidermal growth factor, stimulation in a MEK-dependent process. Overexpression studies in PC12 cells indicate that Nesca facilitates neurotrophin-dependent neurite outgrowth at nonsaturating doses of nerve growth factor (NGF). Similarly, short interfering RNA studies significantly reduce NGF-dependent neuritogenesis in PC12 cells. Mutational analyses demonstrate that the RUN domain is an important structural determinant for the nuclear translocation of Nesca and that the nuclear redistribution of Nesca is essential to its neurite outgrowth-promoting properties. Collectively, these works provide the first functional characterization of Nesca in the context of neurotrophin signaling and suggest that Nesca serves a novel, nuclear-dependent role in neurotrophin-dependent neurite outgrowth.  相似文献   

13.
Hemolymph of adultAplysia californica significantly affects neurite outgrowth of identified neurons of the land snailHelix pomatia. The metacerebral giant cell (MGC) and the motoneuron C3 from the cerebral ganglion and the neuron B2 from the buccal ganglion ofH. pomatia were isolated by enzymatic and mechanical dissociation and plated onto poly-l-lysine-coated dishes either containing culture medium conditioned byHelix ganglia, or pre-treated withAplysia hemolymph. To determine the extent of neuronal growth we measured the neurite elongation and the neuritic field of cultured neurons at different time points.Aplysia hemolymph enhances the extent and rate of linear outgrowth and the branching domain ofHelix neurons. With the hemolymph treatment the MGC neuron more consistently forms specific chemical synapses with its follower cell B2, and these connections are more effective than those established in the presence of the conditioned medium.  相似文献   

14.
We have previously shown that aggregation of microbeads coated with N- CAM and Ng-CAM is inhibited by incubation with soluble neurocan, a chondroitin sulfate proteoglycan of brain, suggesting that neurocan binds to these cell adhesion molecules (Grumet, M., A. Flaccus, and R. U. Margolis. 1993. J. Cell Biol. 120:815). To investigate these interactions more directly, we have tested binding of soluble 125I- neurocan to microwells coated with different glycoproteins. Neurocan bound at high levels to Ng-CAM and N-CAM, but little or no binding was detected to myelin-associated glycoprotein, EGF receptor, fibronectin, laminin, and collagen IV. The binding to Ng-CAM and N-CAM was saturable and in each case Scatchard plots indicated a high affinity binding site with a dissociation constant of approximately 1 nM. Binding was significantly reduced after treatment of neurocan with chondroitinase, and free chondroitin sulfate inhibited binding of neurocan to Ng-CAM and N-CAM. These results indicate a role for chondroitin sulfate in this process, although the core glycoprotein also has binding activity. The COOH-terminal half of neurocan was shown to have binding properties essentially identical to those of the full-length proteoglycan. To study the potential biological functions of neurocan, its effects on neuronal adhesion and neurite growth were analyzed. When neurons were incubated on dishes coated with different combinations of neurocan and Ng-CAM, neuronal adhesion and neurite extension were inhibited. Experiments using anti-Ng-CAM antibodies as a substrate also indicate that neurocan has a direct inhibitory effect on neuronal adhesion and neurite growth. Immunoperoxidase staining of tissue sections showed that neurocan, Ng-CAM, and N-CAM are all present at highest concentration in the molecular layer and fiber tracts of developing cerebellum. The overlapping localization in vivo, the molecular binding studies, and the striking effects on neuronal adhesion and neurite growth support the view that neurocan may modulate neuronal adhesion and neurite growth during development by binding to neural cell adhesion molecules.  相似文献   

15.
16.
Axonal miRNAs locally regulate axonal growth by modulating local protein composition. Whether localized miRNAs in the axon mediate the inhibitory effect of Chondroitin sulfate proteoglycans (CSPGs) on the axon remains unknown. We showed that in cultured cortical neurons, axonal application of CSPGs inhibited axonal growth and altered axonal miRNA profiles, whereas elevation of axonal cyclic guanosine monophosphate (cGMP) levels by axonal application of sildenafil reversed the effect of CSPGs on inhibition of axonal growth and on miRNA profiles. Specifically, CSPGs elevated and reduced axonal levels of miR‐29c and integrin β1 (ITGB1) proteins, respectively, while elevation of cGMP levels overcame these CSPG effects. Gain‐of‐ and loss‐of‐function experiments demonstrated that miR‐29c in the distal axon mediates axonal growth downstream of CSPGs and cGMP by regulating axonal protein levels of ITGB1, FAK, and RhoA. Together, our data demonstrate that axonal miRNAs play an important role in mediating the inhibitory action of CSPGs on axonal growth and that miR‐29c at least partially mediates this process. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 75: 1402–1419, 2015  相似文献   

17.
Hedgehog (Hh) proteins are morphogens involved in short- and long-range effects during early embryonic development. Genetic analysis in fly and vertebrate embryos showed that heparan sulfate proteoglycans (HSPGs) are required for Hh transport and signaling. To further understand how HSPGs regulate Sonic hedgehog (Shh), we performed experiments using cell culture and biochemical assays. When the synthesis of HSPGs was reduced, a decrease in Shh activity was observed. Contrary to that, addition of a peptide that competes the binding of Shh to HSPGs resulted in augmentation of Shh activity. From these results, we concluded that HSPGs exert positive and negative effects in Shh activity. This dual effect correlates with the finding that Shh interacts preferentially with two HSPGs. The current model for the role of HSPGs in Shh diffusion is discussed in view of our findings.  相似文献   

18.
The intracellular compartments of chondrocytes involved in the synthesis and processing of type II procollagen and chondroitin sulfate proteoglycan (CSPG) monomer were investigated using simultaneous double immunofluorescence and lectin localization reactions. Type II procollagen was distributed in vesicles throughout the cytoplasm, whereas intracellular precursors of CSPG monomer were accumulated in the perinuclear cytoplasm. In this study, cytoplasmic vesicles that stained intensely with antibodies directed against CSPG monomer but did not react with type II collagen antibodies, also were observed. A monoclonal antibody, 5-D-4, that recognizes keratan sulfate determinants was used to identify the Golgi complex (the site of keratan sulfate chain elongation). Staining with 5-D-4 was restricted to the perinuclear cytoplasm. The vesicles outside the perinuclear cytoplasm that stained intensely with antibodies to CSPG monomer did not react with 5-D-4. Fluorescent lectins were used to characterize further subcellular compartments. Concanavalin A, which reacts with mannose-rich oligosaccharides, did not stain the perinuclear region, but it did stain vesicles throughout the rest of the cytoplasm. Because mannose oligosaccharides are added cotranslationally, the stained vesicles throughout the cytoplasm presumably correspond to the rough endoplasmic reticulum. Wheat germ agglutinin, which recognizes N-acetyl-D-glucosamine and sialic acid (carbohydrates added in the Golgi), stained exclusively the perinuclear cytoplasm. By several criteria (staining with the monoclonal antibody 5-D-4 and with wheat germ agglutinin), the perinuclear cytoplasm seems to correspond to the Golgi complex. The cytoplasmic vesicles that react with anti-CSPG monomer and not with anti-type II collagen contain precursors of CSPG monomer not yet modified by Golgi-mediated oligosaccharide additions (because they are not stained with wheat germ agglutinin or with the anti-keratan sulfate antibody); these vesicles may have a unique function in the processing of CSPG.  相似文献   

19.
The role of protein kinase C (PKC) in N-methyl-d-aspartate (NMDA) receptor-mediated biochemical differentiation and c-fos protein expression was investigated in cultured cerebellar granule neurons. The biochemical differentiation of glutamatergic granule cells was studied in terms of the specific activity of phosphate-activated glutaminase, an enzyme important in the synthesis of the putative neurotransmitter pool of glutamate. When the partially depolarized cells were treated with NMDA for the last 1 to 3 days (between 2 and 5 days in vitro), it elevated the specific activity of glutaminase. In contrast, NMDA had little effect on the activity of aspartate aminotransferase or of lactate dehydrogenase. Treatment of 10-day old granule neurons with NMDA also resulted in a marked increase in the immunocytochemically measured expression of c-fos protein. The increases in both the activity of glutaminase and the steady state level of c-fos protein were specific to the activation of NMDA receptors, as they were completely blocked byd,l-2-amino-5-phosphonovaleric acid. The specific stimulation of NMDA receptors in PKC-depleted granule neurons or in the presence of reasonably specific PKC inhibitors also produced significant elevation in the activity of glutaminase and the expression of c-fos protein. These increases were similar in magnitude to those observed in the granule neurons of the respective control groups. Our findings demonstrate that PKC is not directly involved in the NMDA receptor-mediated signal transduction processes associated with biochemical differentiation and c-fos induction in cerebellar granule neurons.  相似文献   

20.
Myosins belong to a large superfamily of actin-dependent molecular motors. Nonmuscle myosin II (NM II) is involved in the morphology and function of neurons, but little is known about how NM II activity is regulated. Brain-derived neurotrophic factor (BDNF) is a prevalent neurotrophic factor in the brain that encourages growth and differentiation of neurons and synapses. In this study, we report that BDNF upregulates the phosphorylation of myosin regulatory light chain (MLC2), to increases the activity of NM II. The role of BDNF on modulating the phosphorylation of MLC2 was validated by using Western blotting in primary cultured hippocampal neurons. This result was confirmed by injecting BDNF into the dorsal hippocampus of mice and detecting the phosphorylation level of MLC2 by Western blotting. We further perform coimmunoprecipitation assay to confirm that this process depends on the activation of the LYN kinase through binding with tyrosine kinase receptor B, the receptor of BDNF, in a kinase activity-dependent manner. LYN kinase subsequently phosphorylates MLCK, further promoting the phosphorylation of MLC2. Taken together, our results suggest a new molecular mechanism by which BDNF regulates MLC2 activity, which provides a new perspective for further understanding the functional regulation of NM II in the nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号