首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 128 毫秒
1.
The hallmark of Parkinson's disease (PD) is a specific degeneration of dopaminergic neurons in the substantia nigra (SN). The cause of nigral dopaminergic neuronal cell death in PD and its underlying mechanisms remain elusive, however, involvement of inflammatory events has been postulated because inflammatory features have been described in the brain of PD patients. Some evidence also suggest that a possible deleterious effects of neuroinflammatory processes by infection in experimental models of neurodegenerative disease. In this review, we summarize and discuss the latest findings regarding inflammation in PD. Especially, we focused on the relationship between infection and PD.  相似文献   

2.
帕金森病(Parkinson's disease,PD)是常见的中枢神经系统退行性疾病之一,其主要病理学特征是中脑黑质部的多巴胺(dopamine,DA)能神经元选择性丢失.虽然已发现基因易感性、衰老、环境毒素等因素与PD发病有关,但导致DA能神经元退行性死亡的细胞分子机制仍不明确.DA代谢是DA能神经元中的重要生理过...  相似文献   

3.
Neural stem cells (NSCs) lose their competency to generate region-specific neuronal populations at an early stage during embryonic brain development. Here we investigated whether epigenetic modifications can reverse the regional restriction of mouse adult brain subventricular zone (SVZ) NSCs. Using a variety of chemicals that interfere with DNA methylation and histone acetylation, we showed that such epigenetic modifications increased neuronal differentiation but did not enable specific regional patterning, such as midbrain dopaminergic (DA) neuron generation. Only after Oct-4 overexpression did adult NSCs acquire a pluripotent state that allowed differentiation into midbrain DA neurons. DA neurons derived from Oct4-reprogrammed NSCs improved behavioural motor deficits in a rat model of Parkinson's disease (PD) upon intrastriatal transplantation. Here we report for the first time the successful differentiation of SVZ adult NSCs into functional region-specific midbrain DA neurons, by means of Oct-4 induced pluripotency.  相似文献   

4.
5.
6.
Oxidative and nitrative protein modifications in Parkinson's disease   总被引:3,自引:0,他引:3  
Parkinson's disease (PD) is a complex neurodegenerative syndrome likely involving contributions from various factors in individuals including genetic susceptibility, exposure to environmental toxins, and the aging process itself. Increased oxidative stress appears to be a common causative aspect involved in the preferential loss of dopaminergic neurons in a region of the brain prominently affected by the disorder, the substantia nigra (SN). Loss of dopaminergic SN neurons is responsible for the classic clinical motor symptoms associated with PD. Several oxidative and nitrative posttranslational modifications (PTMs) have been identified on proteins pertinent to PD that may affect this or other aspects of disease progression. In this review, we discuss several examples of such PTMs to illustrate their potential consequences in terms of initiation or progression of PD neuropathophysiology.  相似文献   

7.
Parkinson's disease: mechanisms and models   总被引:54,自引:0,他引:54  
Dauer W  Przedborski S 《Neuron》2003,39(6):889-909
Parkinson's disease (PD) results primarily from the death of dopaminergic neurons in the substantia nigra. Current PD medications treat symptoms; none halt or retard dopaminergic neuron degeneration. The main obstacle to developing neuroprotective therapies is a limited understanding of the key molecular events that provoke neurodegeneration. The discovery of PD genes has led to the hypothesis that misfolding of proteins and dysfunction of the ubiquitin-proteasome pathway are pivotal to PD pathogenesis. Previously implicated culprits in PD neurodegeneration, mitochondrial dysfunction and oxidative stress, may also act in part by causing the accumulation of misfolded proteins, in addition to producing other deleterious events in dopaminergic neurons. Neurotoxin-based models (particularly MPTP) have been important in elucidating the molecular cascade of cell death in dopaminergic neurons. PD models based on the manipulation of PD genes should prove valuable in elucidating important aspects of the disease, such as selective vulnerability of substantia nigra dopaminergic neurons to the degenerative process.  相似文献   

8.
The etiology of sporadic Parkinson's disease (PD) remains unknown. Increasing evidence has suggested a role for inflammation in the brain in the pathogenesis of PD. However, it has not been clearly demonstrated whether microglial activation, the most integral part of the brain inflammatory process, will result in a delayed and progressive degeneration of dopaminergic neurons in substantia nigra, a hallmark of PD. We report here that chronic infusion of an inflammagen lipopolysaccharide at 5 ng/h for 2 weeks into rat brain triggered a rapid activation of microglia that reached a plateau in 2 weeks, followed by a delayed and gradual loss of nigral dopaminergic neurons that began at between 4 and 6 weeks and reached 70% by 10 weeks. Further investigation of the underlying mechanism of action of microglia-mediated neurotoxicity using rat mesencephalic neuron-glia cultures demonstrated that low concentrations of lipopolysaccharide (0.1-10 ng/mL)-induced microglial activation and production of neurotoxic factors preceded the progressive and selective degeneration of dopaminergic neurons. Among the factors produced by activated microglia, the NADPH oxidase-mediated release of superoxide appeared to be a predominant effector of neurodegeneration, consistent with the notion that dopaminergic neurons are particularly vulnerable to oxidative insults. This is the first report that microglial activation induced by chronic exposure to inflammagen was capable of inducing a delayed and selective degeneration of nigral dopaminergic neurons and that microglia-originated free radicals play a pivotal role in dopaminergic neurotoxicity in this inflammation-mediated model of PD.  相似文献   

9.
10.
11.
Dopaminergic neurons represent less than 1% of the total number of neurons in the brain. This low amount of neurons regulates important brain functions such as motor control, motivation, and working memory. Nigrostriatal dopaminergic neurons selectively degenerate in Parkinson''s disease (PD). This progressive neuronal loss is unequivocally associated with the motors symptoms of the pathology (bradykinesia, resting tremor, and muscular rigidity). The main agent responsible of dopaminergic neuron degeneration is still unknown. However, these neurons appear to be extremely vulnerable in diverse conditions. Primary cultures constitute one of the most relevant models to investigate properties and characteristics of dopaminergic neurons. These cultures can be submitted to various stress agents that mimic PD pathology and to neuroprotective compounds in order to stop or slow down neuronal degeneration. The numerous transgenic mouse models of PD that have been generated during the last decade further increased the interest of researchers for dopaminergic neuron cultures. Here, the video protocol focuses on the delicate dissection of embryonic mouse brains. Precise excision of ventral mesencephalon is crucial to obtain neuronal cultures sufficiently rich in dopaminergic cells to allow subsequent studies. This protocol can be realized with embryonic transgenic mice and is suitable for immunofluorescence staining, quantitative PCR, second messenger quantification, or neuronal death/survival assessment.  相似文献   

12.
13.
Dopaminergic neurons   总被引:2,自引:0,他引:2  
  相似文献   

14.
Iron deposition is present in main lesion areas in the brains of patients with Parkinson’s disease (PD) and an abnormal iron content may be associated with dopaminergic neuronal cytotoxicity and degeneration in the substantia nigra of the midbrain. However, the cause of iron deposition and its role in the pathological process of PD are unclear. In the present study, we investigated the effects of the nasal mucosal delivery of synthetic human α-synuclein (α-syn) preformed fibrils (PFFs) on the pathogenesis of PD in Macaca fascicularis. We detected that iron deposition was clearly increased in a time-dependent manner from 1 to 17 months in the substantia nigra and globus pallidus, highly contrasting to other brain regions after treatments with α-syn PFFs. At the cellular level, the iron deposits were specifically localized in microglia but not in dopaminergic neurons, nor in other types of glial cells in the substantia nigra, whereas the expression of transferrin (TF), TF receptor 1 (TFR1), TF receptor 2 (TFR2), and ferroportin (FPn) was increased in dopaminergic neurons. Furthermore, no clear dopaminergic neuron loss was observed in the substantia nigra, but with decreased immunoreactivity of tyrosine hydroxylase (TH) and appearance of axonal swelling in the putamen. The brain region-enriched and cell-type-dependent iron localizations indicate that the intranasal α-syn PFFs treatment-induced iron depositions in microglia in the substantia nigra may appear as an early cellular response that may initiate neuroinflammation in the dopaminergic system before cell death occurs. Our data suggest that the inhibition of iron deposition may be a potential approach for the early prevention and treatment of PD.Subject terms: Parkinson''s disease, Parkinson''s disease  相似文献   

15.
During brain development, one of the most important structures is the subventricular zone (SVZ), from which most neurons are generated. In adulthood the SVZ maintains a pool of progenitor cells that continuously replace neurons in the olfactory bulb. Neurodegenerative diseases induce a substantial upregulation or downregulation of SVZ progenitor cell proliferation, depending on the type of disorder. Far from being a dormant layer, the SVZ responds to neurodegenerative disease in a way that makes it a potential target for therapeutic intervention.  相似文献   

16.
Yantiri F  Andersen JK 《IUBMB life》1999,48(2):139-141
Parkinson disease (PD) involves the specific degeneration of dopaminergic neurons of the pars compacta of the substantia nigra. Although the cause of the degeneration of nigrostriatal dopaminergic neurons in PD is unknown, there is significant evidence to suggest that oxidative stress may be involved in this process. This review specifically examines the current status of evidence suggesting iron may contribute to oxidative damage associated with PD.  相似文献   

17.
Ciliary neurotrophic factor (CNTF) is one of representative neurotrophic factors for the survival of dopaminergic neurons. Its effects are primarily mediated via CNTF receptor α (CNTFRα). It is still unclear whether the levels of CNTFRα change in the substantia nigra of Parkinson’s disease (PD) patients, but CNTF expression shows the remarkable decrease in dopaminergic neurons in the substantia nigra pars compacta (SNpc), suggesting that the support of CNTF/CNTFRα signaling pathway may be a useful neuroprotective strategy for the nigrostriatal dopaminergic projection in the adult brain. Here, we report that transduction of rat SNpc dopaminergic neurons by adeno-associated virus with a gene encoding human ras homolog enriched in brain (hRheb), with an S16H mutation [hRheb(S16H)], significantly upregulated the levels of both CNTF and CNTFRα in dopaminergic neurons. Moreover, the hRheb(S16H)-activated CNTF/CNTFRα signaling pathway was protective against 1-methyl-4-phenylpyridinium-induced neurotoxicity in the nigrostriatal dopaminergic projections. These results suggest that activation of CNTF/CNTFRα signaling pathway by specific gene delivery such as hRheb(S16H) may have therapeutic potential in the treatment of PD.  相似文献   

18.
Parkinson's disease (PD) is characterized by a progressive loss of dopaminergic neurons, and substantia nigra is primarily one of the damaged brain regions. Evidence indicates that microRNAs (miRNAs) is involved in the pathophysiology of this disease. The present study aimed to investigate the biological function of miR-326 in PD through the JNK signaling pathway by targeting X-box binding protein 1 (XBP1). After liposome complexes were prepared, healthy male C57BL/6 mice were selected to construct a mouse model of PD. The targeting relationship between miR-326 and XBP1 was confirmed. The expression of miR-326 and XBP1 was measured in PD mice, and gain- and loss-function assay was conducted to examine the regulatory effect of miR-326 and XBP1 on inducible nitric oxide synthase (iNOS) expression and autophagy of dopaminergic neurons of PD mice. Mice treated with miR-326 mimic and siRNA-XBP1 showed increased traction test scores, activation of autophagy, expression of LC3-II, c-Jun, and p-α-Syn, but diminished climbing time and expressions of iNOS, α-Syn, and p-c-Jun. The siRNA-XBP1 treatment could reverse the effect of miR-326 inhibitor on PD mice. Overexpression of miR-326 inhibits iNOS expression and promotes autophagy of dopaminergic neurons through JNK signaling by targeting XBP1.  相似文献   

19.

Background

Sporadic Parkinson''s disease (PD) is a progressive neurodegenerative disorder with unknown cause, but it has been suggested that neuroinflammation may play a role in pathogenesis of the disease. Neuroinflammatory component in process of PD neurodegeneration was proposed by postmortem, epidemiological and animal model studies. However, it remains unclear how neuroinflammatory factors contribute to dopaminergic neuronal death in PD.

Findings

In this study, we analyzed the relationship among inducible nitric oxide synthase (iNOS)-derived NO, mitochondrial dysfunction and dopaminergic neurodegeneration to examine the possibility that microglial neuroinflammation may induce dopaminergic neuronal loss in the substantia nigra. Unilateral injection of lipopolysaccharide (LPS) into the striatum of rat was followed by immunocytochemical, histological, neurochemical and biochemical analyses. In addition, behavioral assessments including cylinder test and amphetamine-induced rotational behavior test were employed to validate ipsilateral damage to the dopamine nigrostriatal pathway. LPS injection caused progressive degeneration of the dopamine nigrostriatal system, which was accompanied by motor impairments including asymmetric usage of forelimbs and amphetamine-induced turning behavior in animals. Interestingly, some of the remaining nigral dopaminergic neurons had intracytoplasmic accumulation of α-synuclein and ubiquitin. Furthermore, defect in the mitochondrial respiratory chain, and extensive S-nitrosylation/nitration of mitochondrial complex I were detected prior to the dopaminergic neuronal loss. The mitochondrial injury was prevented by treatment with L-N6-(l-iminoethyl)-lysine, an iNOS inhibitor, suggesting that iNOS-derived NO is associated with the mitochondrial impairment.

Conclusions

These results implicate neuroinflammation-induced S-nitrosylation/nitration of mitochondrial complex I in mitochondrial malfunction and subsequent degeneration of the nigral dopamine neurons.  相似文献   

20.
The mechanisms leading to degeneration of melanized dopaminergic neurons in the brain stem, and particularly in the substantia nigra zona compacta (SNZC) in patients with Parkinson's disease (PD) are still unknown. Demonstration of increased iron Fe(III) in SNZC of PD brain has suggested that Fe-melanin interaction may contribute to oxidative neuronal damage. Energy dispersive X-ray electron microscopic analysis of the cellular distribution of trace elements revealed significant Fe-peaks, similar to those of a synthetic melanin-Fe(III) complex in intracytoplasmic electron-dense neuromelanin granules of SNZC neurons, with highest levels in a case of PD and Alzheimer's disease (AD). No Fe increase was found in Lewy bodies or in SN neurons of control specimens. The relevance of chemical reactions of dopamine (DA), 5-hydroxydopamine (5-OHDA), and 6-hydroxydopamine (6-OHDA) with Fe(III) and with dioxygen for the pathogenesis of PD was investigated. An initiating mechanism related to interaction between Fe and neuromelanin is suggested which results in accumulation of Fe(III) and a continuous production of cytotoxic species inducing a cascade of pathogenic reactions ultimately leading to neuronal death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号