首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Equipment with counterbalance weight systems is commonly used for the assessment of performance in explosive resistance exercise movements, but it is not known if such systems affect performance measures. The purpose of this study was to determine the effect of using a counterbalance weight system on measures of smith machine bench press throw performance. Ten men and 14 women (mean ± SD: age, 25 ± 4 years; height, 173 ± 10 cm; weight, 77.7 ± 18.3 kg) completed maximal smith machine bench press throws under 4 different conditions (2 × 2; counterbalance × load): with or without a counterbalance weight system and using 'light' or 'moderate' net barbell loads. Performance variables (peak force, peak velocity, and peak power) were measured using a linear accelerometer attached to the barbell. The counterbalance weight system resulted in significant (p < 0.001) reductions in measures of peak force (mean difference ± standard error: light: -112 ± 20 N; moderate: -140 ± 23 N), peak velocity (light: -0.49 ± 0.10 m·s; moderate: -0.33 ± 0.07 m·s), and peak power (light: -220 ± 43 W; moderate: -143 ± 28 W) compared with no counterbalance system for both load conditions. Load condition did not affect absolute or percentage reductions from the counterbalance weight system for any variable. In conclusion, the use of a counterbalance weight system reduces accelerometer-based performance measures for the bench press throw exercise at light and moderate loads. This reduction in measures is likely because of an increase in the external resistance during the movement, which results in a discrepancy between the manually input and the actual value for external load. A counterbalance weight system should not be used when measuring performance in explosive resistance exercises with an accelerometer.  相似文献   

2.
We hypothesized that resistance training with combined eccentric and concentric actions, and concentric action only, should yield similar changes in muscular strength. Subjects in a free weight group trained three times a week for 12 wk with eccentric and concentric actions (FW, n = 16), a second group trained with concentric-only contractions using hydraulic resistance (HY; n = 12), and a control group did not train (n = 11). Training for FW and HY included five sets of supine bench press and upright squat at an intensity of 1-6 repetition maximum (RM) plus five supplementary exercises at 5-10 RM for a total of 20 sets per session for approximately 50 min. Testing at pre-, mid-, and posttraining included 1) 1 RM bench press and squat with and 2) without prestretch using free weights; 3)isokinetic peak force and power for bench press and squat at 5 degrees/s, and isotonic peak velocity and power for bench press with 20-kg load and squat with 70-kg load; 4) hydraulic peak bench press force and power, and peak knee extension torque and power at fast and slow speeds; and 5) surface anthropometry (fatfolds and girths to estimate upper arm and thigh volume and muscle area). Changes in overall fatness, muscularity, and muscle + bone cross-sectional area of the limbs did not differ between groups (P greater than 0.05). Improvements in free weight bench press and squat were similar (P greater than 0.05) in FW (approximately 24%) and HY (approximately 22%, P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Twelve experienced male weight lifters performed a rebound bench press and a purely concentric bench press lift. Data were obtained pertaining to 1) the benefits to concentric motion derived from a prior stretch and 2) the movement frequency adopted during performance of the stretch-shorten cycle (SSC) portion of the rebound bench press lift. The subjects also performed a series of quasi-static muscular actions in a position specific to the bench press movement. A brief perturbation was applied to the bar while these isometric efforts were maintained, and the resulting damped oscillations provided data pertaining to each subject's series elastic component (SEC) stiffness and natural frequency of oscillation. A significant correlation (r = -0.718, P less than 0.01) between maximal SEC stiffness and augmentation to concentric motion derived from prior stretch was observed. Subjects were also observed to perform the SSC portion of the rebound bench press movement to coincide with the natural frequency of oscillation of their SEC. These results are interpreted as demonstrating that the optimal stiffness in a rebound bench press lift was a resonant-compliant SEC.  相似文献   

4.
Variable range of motion (ROM) training consists of partial ROM resistance training with the countermovement being performed at a different phase of the movement for each set. In this study, we assessed the effect of this method of training on peak force, load lifted, and concentric work performed. Six male subjects with resistance training backgrounds (age 20.2 +/- 1.3 years, height 179.4 +/- 4.6 cm, weight 89.6 +/- 9.9 kg, 6-repetition maximum [6RM] bench press 92.5 +/- 14.3 kg) participated in this study. Testing consisted of 6RM bench press strength tests during full (FULL), three quarter ((3/4)), one half ((1/2)), and one quarter ((1/4)) ROM from full elbow extension bench press performed on a Smith machine. The 6RM load, peak force (PF), and concentric work (W) performed during each ROM was examined using a one-way analysis of variance performed at an alpha level of p < 0.05. The 6RM load increased significantly as the ROM was decreased for all tests (FULL = 92.5 +/- 14.3 kg, (3/4) = 102.1 +/- 14.3 kg, (1/2) = 123.3 +/- 23.6 kg, (1/4) = 160.9 +/- 26.2 kg). PF during each test was significantly higher during the (1/4) (1924.8 +/- 557.9 N) and (1/2) (1859.4 +/- 317.1 N) ROM from full elbow extension bench press when compared with the (3/4) (1242.2 +/- 254.6 N) and FULL (1200.5 +/- 252.5 N) ROM exercise. Although higher force levels were evident, the restriction in barbell displacement resulted in a subsequent reduction in W as the lifting ROM was reduced. These results suggest that variable ROM resistance training results in increased force production as the ROM diminishes.  相似文献   

5.
The purpose of this study was to investigate the force-velocity response of the neuromuscular system to a variety of concentric only, stretch-shorten cycle, and ballistic bench press movements. Twenty-seven men of an athletic background (21.9 +/- 3.1 years, 89.0 +/- 12.5 kg, 86.3 +/- 13.6 kg 1 repetition maximum [1RM]) performed 4 types of bench presses, concentric only, concentric throw, rebound, and rebound throw, across loads of 30-80% 1RM. Average force output was unaffected by the technique used across all loads. Greater force output was recorded using higher loading intensities. The use of rebound was found to produce greater average velocities (12.3% higher mean across loads) and peak forces (14.1% higher mean across loads). Throw or ballistic training generated greater velocities across all loads (4.4% higher average velocity and 6.7% higher peak velocity), and acceleration-deceleration profiles provided greater movement pattern specificity. However, the movement velocities (0.69-1.68 m.s(-1)) associated with the loads used in this study did not approach actual movement velocities associated with functional performance. Suggestions were made as to how these findings may be applied to improve strength, power, and functional performance.  相似文献   

6.
The purpose of this study was to determine if explosive upper-body performance could be improved when it was preceded by conditioning contraction protocols that incorporate resistance exercise. Providing that performance was enhanced, it was also the intention to determine the optimal conditioning contraction load for enhancing performance. Eight recreationally trained men completed 4 experimental sessions. Each session consisted of a warm-up, 3 bench press throws (pre), a conditioning protocol, and 3 bench press throws (post). The different conditioning protocols consisted of 5 bench press repetitions using 100, 75, or 50% of 5 repetition maximum (5RM) strength. The fourth protocol, in which no repetitions were completed, acted as a control. Participants performed each conditioning protocol on a different day, and the order in which the protocols were performed was randomized. Average power, assessed during the bench press throws, was determined for the starting segment and the end segment (point of bar release) for each throw. Comparisons in average power, for each segment of the bench press 1RM, were made between the pre- and postconditioning protocol bench press throws. None of the conditioning protocols had an effect on bench press throw performance in either of the 2 segments of the movement. The results suggest there is no performance advantage when explosive upper-body movement is preceded by resistance exercise of varying loads. Alternatively, the performance of a set of resistance exercise did not compromise explosive upper-body performance. Considering this, training methods that combine both resistance exercise and plyometric-like exercise may offer a practical and time-efficient training system.  相似文献   

7.
Finding assessment methods that are reliable, valid, and easy to administer is important, especially when assessing large numbers of athletes. The purpose of this research therefore was to investigate whether assessment of the upper body using the chest pass throw was significantly related to strength and power as measured using the bench press. The chest pass distance of 12 experienced netball players was measured; thereafter, their bench press 1 repetition maximum and various kinematic and kinetic variables were calculated from a 10-kg bench press throw performed on an instrumented Smith machine. Pearson correlation coefficients were used to establish the relationship between the strength/power variables and the chest pass. Of the kinematic and kinetic variables calculated from the bench press throws, impulse and power were the variables most highly correlated to chest pass distance (r = 0.775-0.810), whereas the measures of initial force production (F30ms and F100ms) were the lowest (r = 0.082-0.105). Four variables had a greater than 50% (R2) shared variance with the netball chest pass-impulse, peak power, mean power and maximal strength. Power and impulse are strong predictors of chest pass performance; however, the value of the chest pass as an assessment tool to map strength and power changes in an athlete needs to be investigated using a training study approach.  相似文献   

8.
ABSTRACT: McCarthy, JP, Wood, DS, Bolding, MS, Roy, JLP, and Hunter, GR. Potentiation of concentric force and acceleration only occurs early during the stretch-shortening cycle. J Strength Cond Res 26(9): 2345-2355, 2012-The purpose of this study was to determine where stretch-shortening cycle (SSC) potentiation of force, power, velocity, and acceleration occurs across the concentric phase of ballistic leg presses. Second, we examined the influence of late eccentric phase force and length of the amortization phase on potentiated concentric phase performance variables. Twenty-one male runners (age: 31.9 ± 4.7 years) performed SSC and concentric-only (CO) ballistic leg press throws. Potentiations of concentric actions were calculated as the difference between SSC and CO contractions. An analysis splitting the concentric range of motion (ROM) into 6 equal time intervals determined force and acceleration were potentiated (p < 0.05) only during the first one-sixth time interval of concentric motion, whereas velocity and power were potentiated (p < 0.05) at all time intervals over the entire concentric motion with the exception of power over the last one-sixth time interval. A more precise analysis examining 20-millisecond time intervals across the first 200 milliseconds of concentric motion determined force was potentiated only over the first 140 milliseconds and acceleration only over the first 160 milliseconds. Eccentric force measured during the last 100 milliseconds of eccentric motion was related to potentiated force during the initial 200 milliseconds of concentric motion (r = 0.44, p < 0.05) and potentiated mean power across the full concentric ROM (r = 0.62, p < 0.01). Results indicate that in contrast to power and velocity, potentiation of force and acceleration occurs only early during the concentric phase of SSC ballistic leg presses. Correlational findings imply late eccentric phase force is important for generating force and power during the concentric phase of the SSC and thus training focusing on enhancing late phase eccentric force appears important for developing explosive force and power during SSC movements.  相似文献   

9.
During the concentric movement of the bench press, there is an initial high-power push after chest contact, immediately followed by a characteristic area of low power, the so-called "sticking region." During high-intensity lifting, a decline in power can result in a failed lift attempt. The purpose of this study was to determine the validity of an optical encoder to measure power and then employ this device to determine power changes during the initial acceleration and sticking region during fatiguing repeated bench press training. Twelve subjects performed a free weight bench press, a Smith Machine back squat, and a Smith Machine 40-kg bench press throw for power validation measures. All barbell movements were simultaneously monitored using cinematography and an optical encoder. Eccentric and concentric mean and peak power were calculated using time and position data derived from each method. Validity of power measures between the video (criterion) and optical encoder scores were evaluated by standard error of the estimate (SEE) and coefficient of variation (CV). Seven subjects then performed 4 sets of 6 free weight bench press repetitions progressively increasing from 85 to 95% of their 6 repetition maximum, with each repetition continually monitored by an optical encoder. The SEE for power ranged from 3.6 to 14.4 W (CV, 1.0-3.0%; correlation, 0.97-1.00). During the free weight bench press training, peak power declined by approximately 55% (p < 0.01) during the initial acceleration phase of the final 2 repetitions of the final set. Although decreases in power of the sticking point were significant (p < 0.01), as early as repetition 5 (-40%) they reached critically low levels in the final 2 repetitions (>-95%). In conclusion, the optical encoder provided valid measures of kinetics during free weight resistance training movements. The decline in power during the initial acceleration phase appears a factor in a failed lift attempt at the sticking point.  相似文献   

10.
The purpose of this study was to determine the vertical and lateral forces applied to the bar during a maximal and a submaximal effort bench press lifts. For this study, 10 male and 8 female recreational lifters were recruited (mean height: 1.71 ± 0.08 m; mass: 73.7 ± 13.6 kg) and were asked to perform a maximal and submaximal (80% of maximal lift) bench press. These lifts were performed with a bar instrumented to record forces applied to it, via the hands, in the vertical direction and along the long axis of the bar. To determine the position of the bar and timing of events, 3D kinematic data were recorded and analyzed for both lifts. The subjects in this study averaged a maximal lift of 63 ± 29 kg (90 ± 31% bodyweight). The peak vertical force was 115 ± 22% (percentage of load), whereas for the submaximal condition it was 113 ± 20%; these forces were statistically different between conditions; they were not when expressed as a percentage of the load (p > 0.05). During all the lifts, the lateral forces were always outward along the bar. The lateral force profile was similar to that of the vertical force, albeit at a lesser magnitude. During the lift phase, the peak lateral force was on average 26.3 ± 3.9% of the vertical force for the maximal lift and 23.7 ± 3.9% of the vertical force for the submaximal lift. Given that the amount of force applied laterally to the bar was a similar percentage of vertical force irrespective of load, it appears that the generation of lateral forces during the bench press is a result of having the muscles engaged in generating vertical force.  相似文献   

11.
The purpose of this study was to investigate the influence of upper-limb inertia on the force-velocity relationship and maximal power during concentric bench press exercise. Reference peak force values (Fpeakp) measured with a force plate positioned below the bench were compared to those measured simultaneously with a kinematic device fixed on the barbell by taking (Fpeakt) or not taking (Fpeakb) upper-limb inertia into account. Thirteen men (27.8 +/- 4.1 years, 184.6 +/- 5.5 cm, 99.5 +/- 18.6 kg) performed all-out concentric bench press exercise against 8 loads ranging between 7 and 74 kg. The results showed that for each load, Fpeakb was significantly less than Fpeakp (P < 0.0001), whereas no significant difference was found between Fpeakp and Fpeakt. The values of maximal force (F0), maximal velocity (V0), optimal velocity (Vopt), and maximal power (Pmax), extrapolated from the force- and power-velocity relationships determined with the kinematic device, were significantly underestimated when upper-limb inertia was ignored. The results underline the importance of taking account of the total inertia of the moving system to ensure precise evaluation of upper-limb muscular characteristics in all-out concentric bench press exercise with a kinematic device. A major application of this study would be to develop precise upper-limb muscular characteristic evaluation in laboratory and field conditions by using a simple and cheap kinematic device.  相似文献   

12.
The swiss is widely used in the recreational training environment as a supplement to conventional resistance training. One such application is to use the swiss ball as a bench support for bench press exercise. There is no evidence to indicate that the use of a swiss ball is beneficial for resistance training exercise. This study investigated muscle activity using surface electromyography of upper-body and abdominal muscles during the concentric and eccentric phases of the bench press on and off a swiss ball. Volunteers for this study were 14 resistance-trained subjects who performed isolated concentric and eccentric bench press repetitions using the 2 test surfaces with a 2-second cadence at a load equivalent to 60% maximum force output. The average root mean square of the muscle activity was calculated for each movement, and perceived exertion during the tasks was collected using a Borg Scale. The results of the study showed that deltoid and abdominal muscle activity was increased for repetitions performed using the swiss ball. Increased deltoid muscle activity supports previous findings for increased activity when greater instability is introduced to the bench press movement. Abdominal muscle activity increases were not hypothesized, but this finding provides scientific evidence for anecdotal reasoning behind swiss ball use as a potential core stability training device.  相似文献   

13.
Muscle contractions preceding an activity can result in increased force generation (postactivation potentiation [PAP]). Although the type of muscular contractions could affect subsequent strength and power performance, little information exists on their effects. The purpose of this study was to examine PAP effects produced by isometric (ISO), concentric (CON), eccentric (ECC), or concentric-eccentric (DYN) conditioning contractions on upper body force and power performance. Ten male, competitive rugby players (mean ± SD: age 20.4 ± 0.8 years, height 177.0 ± 8.1 cm, body mass 90.2 ± 13.8 kg) performed a ballistic bench press throw (BBPT) followed by a 10-minute rest and one of the conditioning contractions. After a 12-minute rest, the subjects performed another BBPT (post-BBPT). The conditioning contractions, applied on separate days and in counterbalanced randomized order, were a 7-second isometric barbell bench press for ISO and 1 set of 3 bench press repetitions at 3 repetition maximum for CON, ECC, and DYN (each repetition lasting 2 seconds for CON and ECC, overall execution time <7 seconds for DYN). Peak power (Ppeak), peak force (Fpeak), maximum distance (Dmax) and rate of force development (RFD) were measured using a linear position transducer. Electromyography (EMG) of the pectoralis major and triceps brachii was also recorded. The ISO produced significantly higher Ppeak (587 ± 116 and 605 ± 126 W for pre- and post-BBPT, respectively; p < 0.05). No significant differences in Ppeak were revealed for CON, ECC, and DYN (p > 0.05), and no significant differences existed in Fpeak, Dmax, and RFD for ISO, CON, ECC, and DYN (p > 0.05). Finally, EMG was not significantly different between pre- and post-BBPT for any of the conditioning contractions (p > 0.05). Isometric contractions appear to be the only conditioning contractions increasing upper body power output after long resting periods.  相似文献   

14.
Strength augmentation has been demonstrated in resistance-trained men subsequent to 4 days of training abstinence. However, this phenomenon was exhibited in an unusual circumstance in which the exercise test (seated heel raise) primarily involved an isolated skeletal muscle (soleus) that is normally comprised almost exclusively of 1 fiber type. It is unclear if similar results would be found for aggregate muscle actions. Therefore, a comparable study was designed with this in mind. Subjects were apparently healthy, young, strength-trained men (n = 25). All performed various tests of bench press strength at the beginning of their last standardized dynamic constant external resistance (DCER) training session. Subjects were subsequently randomly assigned to 1 of 4 groups and repeated the identical tests at intervals of either 2, 3, 4, or 5 days with no intervening training. Strength tests consisted of 1 repetition maximum (1RM) concentric-only isokinetic bench presses performed at 1.49 and 0.37 m.s(-1) as well as a 1RM DCER bench press. Measures of peak force and power were obtained from the isokinetic tests and maximum load from the DCER test. Results were expressed in both absolute and relative (to body weight) terms. Subsequent to the 4 abstinence intervals, groups performed similarly (p > 0.05) for all dependent variables. Concurrently, however, a small effect size (ES) was found for the group having a 4-day respite for both absolute and relative expressions of peak force and power at the slowest isokinetic bench press velocity. A small ES was also identified for the group having 2 days of rest for relative peak force at the slowest isokinetic test velocity and for relative DCER strength. Therefore, modest and transient strength augmentation appears likely in aggregate muscle actions following 2-4 days of training abstinence in resistance-trained men, but only at relatively slow velocities.  相似文献   

15.
The purpose of this study was to measure the effects of additional eccentric loading on subsequent concentric strength. Eight subjects with some experience in weight training volunteered to perform maximal attempts in the barbell bench press using detaching hooks that allowed them to lower 105% of their concentric 1 repetition maximum (RM) and raise 100%. The detaching hooks allowed attachment of extra weight to the bar and would release from the bar at the bottom of the lift, reducing the weight lifted during the concentric phase of the lift. After determining their 1RM for the bench press, the subjects attempted to increase their performance by using a heavier eccentric load with the detaching hooks. All 8 subjects who completed the study increased their 1RMs by 5 to 15 pounds. The use of additional eccentric loading significantly (p = 0.008) increased the weight that could be lifted on the subsequent concentric phase and therefore 1RM performance. This phenomenon was a result of the enhancement of stretch-shortening cycle performance by the increased eccentric load. Athletes who are interested in developing 1RM strength in the bench press may benefit from the use of additional eccentric loading.  相似文献   

16.
ABSTRACT

We have investigated the magnitude of diurnal variation in back squat and bench press performance using the MuscleLab force velocity transducer. Thirty resistance-trained males (mean ± SD: age 21.7 ± 1.4 years; body mass 80.5 ± 4.5 kg; height 1.79 ± 0.06 m) underwent two sessions at different times of day: morning (M, 07:30 h) and evening (E, 17:30 h). Each session included a period when rectal temperature (Trec) was measured at rest, a 5-min standardized 150 W warm-up on a cycle ergometer, then defined programme of bench press (at 20, 40 and 60 kg) and back squat (at 30, 50 and 70 kg) exercises. A linear encoder was attached to an Olympic bar used for the exercises and average force (AF), peak velocity (PV) and time-to-peak velocity (tPV) were measured (MuscleLab software; MuscleLab Technology, Langesund, Norway) during the concentric phase of the movements. Values for Trec at rest were higher in the evening compared to morning values (0.48°C, P < 0.0005). Daily variations were apparent for both bench press and back squat performance for AF (1.9 and 2.5%), PV (8.3 and 12.7%) and tPV (?16.6 and ?9.8%; where a negative number indicates a decrease in the variable from morning to evening). There was a main effect for load where AF and tPV increased and PV decreased from the lightest load to the heaviest for both bench press and back squat (47.1 and 80.2%; 31.7 and 57.7%; ?42.1 and ?73.9%; P < 0.0005 where a negative number indicates a decrease in the variable with increasing load). An interaction was found only for tPV, such that the tPV occurs earlier in the evening than the morning at the highest loads (60 and 70 kg) for both bench press and back squat, respectively (mean difference of 0.32 and 0.62 s). In summary, diurnal variation in back squat and bench press was shown; and the tPV in complex multi-joint movements occurs earlier during the concentric phase of exercise when back squat or bench press is performed in the evening compared to the morning. This difference can be detected using a low cost, portable and widely available commercial instrument and enables translation of past laboratory/tightly controlled experimental research in to main-stream coaching practice.  相似文献   

17.
To determine if training status directly impacted the response to postactivation potentiation, athletes in sports requiring explosive strength (ATH; n = 7) were compared to recreationally trained (RT; n = 17) individuals. Over the course of 4 sessions, subjects performed rebound and concentric-only jump squats with 30%, 50%, and 70% 1 RM loads. Jump squats were performed 5 minutes and 18.5 minutes following control or heavy load warm-ups. Heavy load warm-up consisted of 5 sets of 1 repetition at 90% 1 RM back squat. Jump squat performance was assessed with a force platform and position transducer. Heavy load warm-up did not have an effect on the subjects as a single sample. However, when percent potentiation was compared between ATH and RT groups, force and power parameters were significantly greater for ATH (p < 0.05). Postactivation potentiation may be a viable method of acutely enhancing explosive strength performance in athletic but not recreationally trained individuals. Reference Data: Chiu, L.Z.F., A.C. Fry, L.W. Weiss, B.K. Schilling, L.E. Brown, and S.L. Smith. Postactivation potentiation response in athletic and recreationally trained individuals.  相似文献   

18.
We have investigated the effects that sleep restriction (3-h sleep during two consecutive nights) have on an evening (17:00 h) submaximal weightlifting session; and whether this performance improves following a 1-h post-lunch powernap. Fifteen resistance-trained males participated in this study. Before the experimental protocol commenced, 1RM bench press and inclined leg press and normative habitual sleep were recorded. Participants were familiarised with the testing protocol, then completed three experimental conditions with two nights of prescribed sleep: (i) Normal (N): retire at 23:00 h and wake at 06:30 h, (ii) partial sleep-deprivation (SD): retire at 03:30 h and wake at 06:30 h and (iii) partial sleep-deprivation with nap (SDN): retire at 03:30 h and wake at 06:30 h with a 1-h nap at 13:00 h. Each condition was separated by at least 7 days and the order of administration was randomised and counterbalanced. Rectal (Trec) and mean skin (Ts) temperatures, Profile of Mood Scores, subjective tiredness, alertness and sleepiness values were measured at 08:00, 11:00, 14:00 and 17:00 h on the day of the weightlifting session. Following the final temperature measurements at 17:00 h, participants completed a 5-min active warm-up before a ‘strength’ protocol. Participants performed three repetitions of right-hand grip strength, then three repetitions at each incremental load (40%, 60% and 80% of 1RM) for bench press and inclined leg press, with a 5-min recovery in between each repetition. A linear encoder was attached perpendicular to the movement, to the bar used for the exercises. Average power (AP), average force (AF), peak velocity (PV), distance (D) and time-to-peak velocity (tPV) were measured (MuscleLab software) during the concentric phase of the movements for each lift. Data were analysed using general linear models with repeated measures. The main findings were that SD reduced maximal grip (2.7%), bench press (11.2% AP, 3.3% AF and 9.4% PV) and leg press submaximal values (5.7% AP) with a trend for a reduction in AF (3.3% P = 0.06). Furthermore, RPE increased for measures of grip strength, leg and bench press during SD. Following a 1-h powernap (SDN), values of grip and bench press improved to values similar in N, as did tiredness, alertness and sleepiness. There was a main effect for “load” on the bar for both bench and leg press where AP, AF, tPV values increased with load (P < 0.05) and PV decreased from the lightest to the heaviest load for both bench and leg press. An interaction of “load and condition” was present in leg press only, where the rate of change of AP is greater in the N than SD and SDN conditions. In addition, for PV and tPV the rate of change was greater for SDN than N or SD condition values. In summary, SD had a negative effect on grip strength and some components of bench and inclined leg press. The use of a 1-h power nap that ended 3 h before the “strength” assessment had a positive effect on weightlifting performance, subjective mood and ratings of tiredness.  相似文献   

19.
The purpose of this study was to determine the optimal load for the maximal power output during the acceleration phase of a power movement in bench press (BP) exercises of highly trained soccer players at the beginning of a competition period. Fifteen professional male soccer players with an average age of 26.1 ± 3.9 years, an average height of 183.3 ± 6.7 cm, an average body mass of 78.8 ± 7.2 kg, and an average 1 repetition maximum (1RM) of 83.3 ± 11.2 kg were employed as subjects in this study. Maximal mean power output during a BP at 0, 10, 30, 50, 70, and 90% of their 1RM was measured to determine whether an optimal load exists that allows for the attainment of maximal power output. Three-dimensional upper extremity kinematic data were collected. Two force plates embedded in the floor and positioned below the bench were used to measure contact forces between the bench and ground during the lift. A repeated-measures analysis of variance was performed to determine power output differences at different percentages of the 1RM. The results of this study indicated that loads of 50% of the 1RM resulted in greater mean power output during the complete positive power movement. Loads at 30 and 50% of the 1RM resulted in greater mean power output computed from the acceleration phase of the lift than did all loads and were not statistically different from each other. However, individual soccer players did not reach the maximum power output with the same relative load. In conclusion, when soccer players develop muscular power toward the end of when the most important competitions are scheduled, dynamic effort strength training with the range of load from 30 to 50% of 1RM BP should be used. During the competition period, a load of 50% of a 1RM should be used in a BP to maintain muscular power over a wide load range.  相似文献   

20.
Recent studies indicate that rotator cuff (RC) muscles are recruited in a reciprocal, direction-specific pattern during shoulder flexion and extension exercises. The main purpose of this study was to determine if similar reciprocal RC recruitment occurs during bench press (flexion-like) and row (extension-like) exercises. In addition, shoulder muscle activity was comprehensively compared between bench press and flexion; row and extension; and bench press and row exercises. Electromyographic (EMG) activity was recorded from 9 shoulder muscles sites in 15 normal volunteers. All exercises were performed at 20, 50 and 70% of subjects’ maximal load. EMG data were normalized to standard maximal voluntary contractions. Infraspinatus activity was significantly higher than subscapularis during bench press, with the converse pattern during the row exercise. Significant differences in activity levels were found in pectoralis major, deltoid and trapezius between the bench press and flexion exercises and in lower trapezius between the row and extension exercises. During bench press and row exercises, the recruitment pattern in each active muscle did not vary with load. During bench press and row exercises, RC muscles contract in a reciprocal direction-specific manner in their role as shoulder joint dynamic stabilizers to counterbalance antero-posterior translation forces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号