首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Most previous studies of tooth development have used fractional stages of tooth formation to construct growth standards suitable for aging juvenile skeletal material. A simple alternative for determining dental age is to measure tooth length throughout development. In this study, data on tooth length development are presented from 63 individuals of known age at death, between birth and 5.4 years, from an archeological population recovered from the crypt of Christ Church, Spitalfields, London. Isolated developing teeth (304 deciduous, 269 permanent) were measured in millimeters and plotted against individual age. Regression equations to estimate age from a given tooth length, are presented for each deciduous maxillary and mandibular tooth type and for permanent maxillary and mandibular incisors, canines, and first permanent molars. Data on the earliest age of root completion of deciduous teeth and initial mineralization and crown completion of some permanent teeth in this sample are given, as well as the average crown height and total tooth length from a small number of unworn teeth. This method provides an easy, quantitative and objective measure of dental formation appropriate for use by archeologists and anthropologists. © 1993 Wiley-Liss, Inc.  相似文献   

3.
Previous studies, mostly in European populations, found sex differences in the pattern of deciduous tooth emergence. Most studies find that the anterior dentition in males is precocial relative to the female dentition, and the pattern reverses so that females lead males in the emergence of the posterior deciduous dentition. Less is known about sex differences in the dental development and emergence of non-European populations. Here we examine the pattern of sex differences in deciduous tooth emergence in Japanese, Javanese, Guatemalan, and Bangladeshi children. The data come from four longitudinal or mixed longitudinal studies using similar study protocols. Survival analysis was used to estimate parameters of a log-normal distribution of emergence for each of the 10 teeth of the left dentition, and sexual dimorphism was assessed by sex-specific differences in mean emergence times and by Bennett's index. The results support the pattern of developmental cross-over observed in other populations. We conclude that there is little evidence to support the hypothesis of Tanguay et al. ([1984] J. Dent. Res. 63:65-68) that ethnic factors mediate sex differences in the emergence of deciduous teeth.  相似文献   

4.
Menarche is an indicator frequently used to study variation in growth, development, and related health conditions among members of living populations. As a life event, menarche is often associated with changes in an individual's social identity. The reproductive lifespan, which for females starts with menarche, is a paramount feature of palaeodemographic studies. Determination of menarche status from the skeletal remains of individuals of past populations can be obtained by assessing the developmental status of the iliac crest, as well as the hand and wrist bones, which are, unlike teeth, often poorly recovered in bioarchaeological contexts. The present study seeks to evaluate the link between dental mineralization and menarche in a population of known menarche status. The relationship between permanent teeth mineralization and menarche status was investigated by using data of developing permanent teeth (167 radiographs) rated in accordance with the well‐known standards of Demirjian et al. and Moorrees et al. collected among 73 living French females of known menarcheal status. Using correlation ratios, GLMM and CART algorithm, menarcheal status is correlated with mineralization of the premolars. Menarcheal status is predicted correctly for 92 and 77% of radiographs of the learning and validation samples, respectively. Although promising, the results require caution prior to generalization to other populations. The age of menarche in this particular sample may simply coincide with the development of the premolars in this particular sample. Therefore, further investigation applied to populations with various mean ages of menarche is required in order to provide new evidence of variation in human growth and development from the correspondence between the mineralization of the permanent teeth and menarche.  相似文献   

5.
We present a form of parametric survival analysis that incorporates exact, interval-censored, and right-censored times to deciduous tooth emergence. The method is an extension of common cross-sectional procedures such as logit and probit analysis, so that data arising from mixed longitudinal and cross-sectional studies can be properly combined. We extended the method to incorporate and estimate a proportion of agenic teeth. While we concentrate on deciduous tooth emergence, the method is relevant to studies of permanent tooth emergence and other developmental events. Deciduous tooth emergence data were analyzed from four longitudinal studies. The samples are 1,271 rural Guatemalan children examined every three months up to age two and every six months thereafter as part of the INCAP study; 397 rural Bangladeshi children examined monthly to age one and quarterly thereafter as part of the Meheran Growth and Development Study; 468 rural Indonesian children examined monthly as part of the Ngaglik study; and 114 urban Japanese children examined monthly in studies from 1910 and 1920. Although all four studies were longitudinal, many observations from the Guatemala and Bangladesh studies were effectively cross-sectionally observed. Three different parametric forms were used to model the eruption process: a normal distribution, a lognormal distribution, and a lognormal distribution with age shifted to shortly after conception. All three distributions produced reliable estimates of central tendencies, but the shifted lognormal distribution produced the best overall estimates of shape (variance) parameters. Estimates of emergence were compared to other studies that used similar methods. Japanese children showed relatively fast emergence times for all teeth. Bangladeshi and Javanese children showed emergence times that were slower than are found in most previous studies. Estimates of agenesis were not significantly different from zero for most teeth. One or two central incisors showed significant agenesis that ranged from 0.1 to 0.8% in three of the samples; even so, failure to model the agenic proportion did not seriously bias the estimates. Am J Phys Anthropol 105:209–230, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

6.
In this paper we present the development of the Advanced System for Implant Stability Testing (ASIST) for application to natural teeth. The ASIST uses an impact measurement combined with an analytical model of the system and surrounding support to provide a measure of the interface stiffness. In this study, an analytical model is developed for a single-rooted natural tooth allowing the ASIST to estimate the stiffness characteristics of the periodontal ligament (PDL). The geometry and inertia parameters of the tooth model are presented in two ways: (1) using full CT scans of the individual tooth and (2) using an approximate geometry model with estimates of only the tooth length and diameter. The developed system is evaluated with clinical data for patients undergoing orthodontic treatment. This study shows that ASIST technique can be applied to natural teeth to estimate the stiffness characteristics of the PDL. The developed system can provide a valuable clinical tool for assessment of tooth stability properties and PDL stiffness in a variety of clinical situations such as dental trauma, orthodontics, and periodontology.  相似文献   

7.
Several authors have already observed the dyschronic growth between Neanderthals and modern Humans permanent teeth but they never quantified it. Dental maturation is the best and mostly used way to evaluate precisely the decease age of Neanderthals. We thus present here an extensive study realised with deciduous and immature permanent Neanderthals teeth, which lead us to propose a new mode! Of dental maturation allowing to estimate their age without using the classical modern populations dental growth tables. We propose two methods, one using two mathematical formulas, the other one using a new table, which permits to directly obtain the age of a Neanderthal from his deciduous and permanent teeth degree of maturation data.  相似文献   

8.

Objectives

Validation studies in juvenile dental age estimation primarily focus on point estimates while interval performance for reference samples of different ancestry group compositions has received minimal attention. We tested the effect of reference sample size and composition by sex and ancestry group on age interval estimates.

Materials and Methods

The dataset consisted of Moorrees et al. dental scores from panoramic radiographs of 3334 London children of Bangladeshi and European ancestry and 2–23 years of age. Model stability was assessed using standard error of mean age-at-transition for univariate cumulative probit and sample size, group mixing (sex or ancestry), and staging system as factors. Age estimation performance was tested using molar reference samples of four sizes, stratified by year of age, sex, and ancestry. Age estimates were performed using Bayesian multivariate cumulative probit with 5-fold cross-validation.

Results

Standard error increased with decreasing sample size but showed no effect from mixing by sex or ancestry. Estimating ages using a reference and target sample of different sex reduced success rate significantly. The same test by ancestry groups had a lesser effect. Small sample size (n < 20/year of age) negatively affected most performance metrics.

Discussion

We found that reference sample size, followed by sex, primarily drove age estimation performance. Combining reference samples by ancestry produced equivalent or better estimates of age by all metrics than using a single-demographic reference of smaller size. We further proposed that population specificity is an alternative hypothesis of intergroup difference that has been erroneously treated as a null.  相似文献   

9.
The understanding of the role of genetic factors in phenotypic variation in the emergence of secondary teeth in humans remains is incomplete. Dental emergence data based on a mixed longitudinal study were collected on 111 twin pairs from an urban population of Chandigarh. The observations over time on a single individual varied from one to nine, thus giving a total of 595 entities. Female twins manifested emergence priority over males. The differences between zygosities in mean emergence ages were significant for only 6 of 16 (37%) instances. Magnitude of variations seen between twins and singletons in their mean emergence timings and duration of the hiatus between two dental phases of emergence were of the order observed among different samples from the same population/ethnic group. Heritability estimates for the specified number of the teeth emerged showed age variations. These estimates were highest in the first two age groups (from 5 to 7 years), when the first molars and incisors emerged. Maxilla-mandible differences were seen for tooth emergence timings and sequence patterns. Heritability for tooth emergence timings was higher in maxilla than in mandible. Multifactorial model of inheritance was the best fit model to explain variations observed in dental emergence timings and dental sequence pattern polymorphisms and there were significant genetic components of variation for both of these. There were sex differences in heritability; females had higher estimates than males. Genetic factors accounted for about 60% of the total phenotypic variation in the length of hiatus interval between two active stages of permanent teeth emergence.  相似文献   

10.
The dentitions of lamniform sharks are said to exhibit a unique heterodonty called the "lamnoid tooth pattern." The presence of an inflated hollow "dental bulla" on each jaw cartilage allows the recognition of homologous teeth across most modern macrophagous lamniforms based on topographic correspondence through the "similarity test." In most macrophagous lamniforms, three tooth rows are supported by the upper dental bulla: two rows of large anterior teeth followed by a row of small intermediate teeth. The lower tooth row occluding between the two rows of upper anterior teeth is the first lower anterior tooth row. Like the first and second lower anterior tooth rows, the third lower tooth row is supported by the dental bulla and may be called the first lower intermediate tooth row. The lower intermediate tooth row occludes between the first and second upper lateral tooth rows situated distal to the upper dental bulla, and the rest of the upper and lower tooth rows, all called lateral tooth rows, occlude alternately. Tooth symmetry cannot be used to identify their dental homology. The presence of dental bullae can be regarded as a synapomorphy of Lamniformes and this character is more definable than the "lamnoid tooth pattern." The formation of the tooth pattern appears to be related to the evolution of dental bullae. This study constitutes the first demonstration of supraspecific tooth-to-tooth dental homologies in nonmammalian vertebrates.  相似文献   

11.
Development of the upper dentition in Alligator mississippiensis was investigated using a close series of accurately staged and aged embryos, hatchlings, and young juveniles up to 11 days posthatching, as well as some young and old adult specimens. Studies from scanning electron microscopy, light microscopy, acetate and computer reconstructions, radiography and macroscopy were combined to elucidate the details of embryonic dental development, tooth initiation pattern, dentitional growth, and erupted functional dentition. The results were compared with those from the lower jaw and related to the development of other craniofacial structures. Approximately 17 early teeth in each jaw half develop as surface teeth, of which 13 project for 1 to 12 days before sinking into the mesenchyme. The first three teeth initiate directly from the oral epithelium at Ferguson stages 14-15 (days 15-19 after egg laying), before there is any local trace of dental lamina formation. All other teeth develop from a dental prolamina or lamina; and with progressive lamina development, submerged teeth initiate from the aboral end leading to the formation of replacement teeth. All teeth form dentin matrix, but 12 early teeth do not form enamel. Approximately 20 embryonic teeth are resorbed, 6 are transitional, and 42 function for longer periods after hatching. The embryonic tooth initiation pattern (illustrated by defining a tooth position formula) does not support the previous models of Odontostichi, Zahnreihen, and Tooth Families, each of which postulates perfect regularity. Up to three interstitial tooth positions develop between sites of primary tooth initiation, and families with up to five generations at hatching are at first arbitrarily defined.  相似文献   

12.
A method for partitioning genetic variance estimated from twin data into additive and dominance variances was presented using Falconer's variance component model. The effects of dominance and environmental variances on a number of heritability estimates were also reviewed. A heritability estimate, based on the analysis of variance and the genetic variance estimates presented by HASEMAN and ELSTON and CHRISTIAN et al. which utilizes all available information from twin data, was proposed and discussed. This estimate seems to be the least affected by fluctuations in the magnitudes of dominance and environmental variances.  相似文献   

13.
The effect of nutrition on the timing of human tooth formation is poorly understood. Delays and advancements in dental maturation have all been reported as well as no effect. We investigated the effect of severe malnutrition on the timing of human tooth formation in a large representative sample of North Sudanese children. The sample (1102 males, 1013 females) consisted of stratified randomly selected healthy individuals in Khartoum, Sudan, aged 2-22 years using a cross-sectional design following the STROBE statement. Nutritional status was defined using WHO criteria of height and weight. Body mass index Z-scores and height for age Z-scores of ≤−2 (cut-off) were used to identify the malnourished group (N = 474) while the normal was defined by Z-scores of ≥0 (N = 799). Clinical and radiographic examination of individuals, with known ages of birth was performed including height and weight measurements. Mandibular left permanent teeth were assessed using eight crown and seven root established tooth formation stages. Mean age at entry and mean age within tooth stages were calculated for each available tooth stage in each group and compared using a t-test. Results show the mean age at entry and mean age within tooth stages were not significantly different between groups affected by severe malnutrition and normal children (p>0.05). This remarkable finding was evident across the span of dental development. We demonstrate that there is little measurable effect of sustained malnutrition on the average timing of tooth formation. This noteworthy finding supports the notion that teeth have substantial biological stability and are insulated from extreme nutritional conditions compared to other maturing body systems.  相似文献   

14.
In order to test whether the formation of a replacement tooth bud in a continuously replacing dentition is linked to the functional state of the tooth predecessor, I examined the timing of development of replacement teeth with respect to their functional predecessors in the pharyngeal dentition of the zebrafish. Observations based on serial semithin sections of ten specimens, ranging in age from four week old juveniles to adults, indicate that (i) a replacement tooth germ develops at the distal end of an epithelial structure, called the successional dental lamina, budding off from the crypt epithelium surrounding the erupted part of a functional tooth; (ii) there appears to be a developmental link between the eruption of a tooth and the formation of a successional dental lamina and (iii) there can be a time difference between successional lamina formation and initiation of the new tooth germ, i.e., the successional dental lamina can remain quiescent for some time. The data suggest that the formation of a successional lamina and the differentiation of a replacement tooth germ from this lamina, are two distinct phases of a process and possibly under a different control. The strong spatio-temporal coincidence of eruption of a tooth and development of a successional dental lamina is seen as evidence for a local control over tooth replacement.  相似文献   

15.
V. L. Roth    J. Shoshani 《Journal of Zoology》1988,214(4):567-588
The dentition of an elephant (fossil or extant) can yield clues to the animal's age species identity, provided the teeth are correctly identified. Identifying the serial category of elephant teeth is difficult because the size, shape and position of each tooth changes throughout life, as the teeth form, erupt, wear and move throught the jaw. In the present study, teeth from over 100 museum specimens of the Asian elephant ( Elephas maximus ) were the basis for establishing size ranges for cheek teeth in six serial categories (designated by Roman numerals I to VI). Although the teeth vary greatly and overlap in their dimensions, reliable identifications (as well as estimates of an individual's age in years) can be obtained using three or more measurements. An appreciation for dental variability in Elephas maximus will demand a re-evaluastion of frequently-cited examples of macroevolutionary patterns within the Elephantidae.  相似文献   

16.
We documented the spacing and distribution of perikymata on the buccal enamel surface of fossil hominin anterior teeth with reference to a sample of modern human and modern great ape teeth. A sample of 27 anterior teeth attributed to Australopithecus (5 to A. afarensis, 22 to A. africanus) and of 33 attributed to Paranthropus (6 to P. boisei, and 27 to P. robustus) were replicated and sputter-coated with gold to enable reflected light microscopy of their surface topography. Anterior teeth were then divided into 10 equal divisions of buccal crown height. The total perikymata count in each division of crown height was recorded using a binocular microscope fitted with a vernier micrometer eyepiece. Then the mean number of perikymata per millimeter was calculated for each division. Similar comparative data for a modern sample of 115 unworn human anterior teeth and 30 African great ape anterior teeth were collected from ground sections. Perikymata counts in each taxon (together with either known or presumed periodicities of perikymata) were then used to estimate enamel formation times in each division of crown height, for all anterior tooth types combined. The distributions of these estimates of time taken to form each division of crown height follow the same trends as the actual perikymata counts and differ between taxa in the same basic way. The distinction between modern African great apes and fossil hominins is particularly clear. Finally, we calculated crown formation times for each anterior tooth type by summing cuspal and lateral enamel formation times. Estimates of average crown formation times in australopiths are shorter than those calculated for both modern human and African great ape anterior teeth. The data presented here provide a better basis for exploring differences in perikymata spacing and distribution among fossil hominins, and provide the first opportunity to describe four specimens attributed to Homo in this context. Preliminary data indicate that differences may exist among the species attributed to early Homo, especially between Homo ergaster and Homo rudolfensis on the one hand, and Homo habilis sensu strico on the other.  相似文献   

17.
In this paper a theory is developed that provides the sampling distribution of alleles at a diallelic marker locus closely linked to a low-frequency allele that arose as a single mutant. The sampling distribution provides a basis for maximum-likelihood estimation of either the recombination rate, the mutation rate, or the age of the allele, provided that the two other parameters are known. This theory is applied to (1) the data of Hästbacka et al., to estimate the recombination rate between a locus associated with diastrophic dysplasia and a linked RFLP marker; (2) the data of Risch et al., to estimate the age of a presumptive allele causing idiopathic distortion dystonia in Ashkenazi jews; and (3) the data of Tishkoff et al., to estimate the date at which, at the CD4 locus, non-African lineages diverged from African lineages. We conclude that the extent of linkage disequilibrium can lead to relatively accurate estimates of recombination and mutation rates and that those estimates are not very sensitive to parameters, such as the population age, whose values are not known with certainty. In contrast, we also conclude that, in many cases, linkage disequilibrium may not lead to useful estimates of allele age, because of the relatively large degree of uncertainly in those estimates.  相似文献   

18.
The timing of tooth mineralization in bonobos (Pan paniscus) is virtually uncharacterized. Analysis of these developmental features in bonobos and the possible differences with its sister species, the chimpanzee (P. troglodytes), is important to properly quantify the normal ranges of dental growth variation in closely related primate species. Understanding this variation among bonobo, chimpanzee and modern human dental development is necessary to better contextualize the life histories of extinct hominins. This study tests whether bonobos and chimpanzees are distinguished from each other by covariance among the relative timing and sequences of tooth crown initiation, mineralization, root extension, and completion. Using multivariate statistical analyses, we compared the relative timing of permanent tooth crypt formation, crown mineralization, and root extension between 34 P. paniscus and 80 P. troglodytes mandibles radiographed in lateral and occlusal views. Covariance among our 12 assigned dental scores failed to statistically distinguish between bonobos and chimpanzees. Rather than clustering by species, individuals clustered by age group (infant, younger or older juvenile, and adult). Dental scores covaried similarly between the incisors, as well as between both premolars. Conversely, covariance among dental scores distinguished the canine and each of the three molars not only from each other, but also from the rest of the anterior teeth. Our study showed no significant differences in the relative timing of permanent tooth crown and root formation between bonobos and chimpanzees. Am J Phys Anthropol, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
The dental casts made from Aboriginal children during the course of a longitudinal growth study in Central Australia provided material for analyzing tooth wear under known environmental conditions. The wear facets produced on the occlusal surfaces were clearly preserved on the dental stone casts and recorded the progress of enamel attrition from ages 6 to 18. These casts were photographed and traced by electronic planimetric methods that automatically recorded the location and size of wear facets on the first and second permanent molars. These areas of worn tooth surface were compared to the total tooth surface. The worn surface was regressed on age to calculate wear rates of each tooth. Discriminant analyses were also performed to determine the significance of dental attrition differences between the sexes at each age group. The total wear on each tooth was highly correlated with age as expected but females wore their teeth at a significantly higher rate than males. The mandibular molars wore more rapidly than maxillary teeth in both sexes. The discriminant analysis successfully grouped 91% of the cases according to age and sex. Pattern of wear, the location, and size of wear facets also differed between age groups and sex. The questions of why there is a difference between male and female wear or why there is greater wear on one arch or arch region have no ready answers. The differing rates and pattern of dental wear do suggest that arch shape and growth rates may be the answer though it has yet to be tested. However, the occlusal surface wear is useful for age estimation in a population and provides a record of shifting masticatory forces during growth.  相似文献   

20.
Developmental studies consistently suggest that teeth are more buffered from the environment than other skeletal elements. The surprising finding of late tooth eruption in wild chimpanzees (Zihlman et al., 2004) warrants reassessment in a broader study of crown and root formation. Here we re-examine the skeletal collection of Taï Forest juvenile chimpanzees using radiography and physical examination. Several new individuals are included, along with genetic and histological assessments of questionable identities. Only half of the Taï juveniles employed by Zihlman et al. (2004) have age of death known with accuracy sufficient for precise comparisons with captive chimpanzees. One key individual in the former study, misidentified during field recovery as Xindra (age 8.3), is re-identified as Goshu (age 6.4). For crown formation we find that onset and duration greatly overlap captive chimpanzees, whereas root development may be more susceptible to acceleration in captive individuals. Kuykendall's (1996) equation relating captive tooth formation stage to age gives reasonable estimates of young wild subjects' true ages. Direct comparisons of tooth eruption ages are limited. A key 3.76 year-old individual likely possessed an emerging mandibular M1 at death (previously estimated from the maxillary molar as occurring at 4.1 years). Wild individuals appear to fall near the middle or latter half of captive eruption ranges. While minor developmental differences are apparent in some comparisons, our reanalysis does not show an “unambiguous pattern” of slower tooth formation in this wild environment. These data do not undermine recent developmental studies of the comparative life histories of fossil hominins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号