首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Akagi T  Tsujimoto T  Ikegami A  Yonemori K 《Planta》2011,233(5):883-894
Persimmon fruits accumulate a large amount of proanthocyanidin (PA). Fruits of the mutant non-astringent (NA) type lose their ability to accumulate PA at an early stage of fruit development, whereas fruits of the normal astringent (A) type sustain PA accumulation until ripening. This allelotype is determined by the genotype of a single ASTRINGENCY (AST) locus. It is possible that the reduction in PA accumulation in NA-type fruits is due to phenological down-regulation of DkMyb4 (a PA regulator) and the resultant down-regulation of structural genes in the PA pathway. In this study, attempts were made to identify the regulatory mechanisms of phenological PA accumulation in A- and NA-type fruits, focusing particularly on the effects of ambient temperature. Continuous cool temperature conditions caused sustained expression of DkMyb4 in NA-type fruits, as well as in A-type fruits, resulting in increased expression of PA pathway genes and PA accumulation. However, the expression of some A/NA phenotypic marker genes was not significantly affected by the cool temperature conditions. In addition, PA composition in NA-type fruits exposed to cool temperatures differed from that in A-type fruits. These results indicate that a cool ambient temperature may have induced DkMyb4 expression and resultant PA accumulation, but did not directly affect the expression of the AST gene.  相似文献   

4.
5.
6.
7.
8.
Persimmon fruits accumulate a large amount of proanthocyanidin (PA) during development. Fruits of pollination-constant and non-astringent (PCNA) type mutants lose their ability to produce PA at an early stage of fruit development, while fruits of the normal (non-PCNA) type remain rich in PA until fully ripened. To understand the molecular mechanism for this difference, we isolated the genes involved in PA accumulation that are differentially expressed between PCNA and non-PCNA, and confirmed their correlation with PA content and composition. The expression of structural genes of the shikimate and flavonoid biosynthetic pathways and genes encoding transferases homologous to those involved in the accumulation of phenolic compounds were downregulated coincidentally only in the PCNA type. Analysis of PA composition using the phloroglucinol method suggested that the amounts of epigallocatechin and its 3-O-gallate form were remarkably low in the PCNA type. In the PCNA type, the genes encoding flavonoid 3′5′ hydroxylase (F3′5′H) and anthocyanidin reductase (ANR) for epigallocatechin biosynthesis showed remarkable downregulation, despite the continuous expression level of their competitive genes, flavonoid 3′ hydroxylation (F3′H) and leucoanthocyanidin reductase (LAR). We also confirmed that the relative expression levels of F3′5H to F3H, and ANR to LAR, were considerably higher, and the PA composition corresponded to the seasonal expression balances in both types. These results suggest that expressions of F35H and ANR are important for PA accumulation in persimmon fruit. Lastly, we tested enzymatic activity of recombinant DkANR in vitro, which is thought to be an important enzyme for PA accumulation in persimmon fruits.  相似文献   

9.
10.
11.
12.
13.
There is now biochemical and genetic evidence that oxidative cleavage of cis-epoxycarotenoids by 9-cis-epoxycarotenoid dioxygenase (NCED) is the critical step in the regulation of abscisic acid (ABA) synthesis in higher plants. The peel of Citrus fruit accumulates large amounts of ABA during maturation. To understand the regulation of ABA biosynthesis in Citrus, two full-length cDNAs (CsNCED1 and CsNCED2) encoding NCEDs were isolated and characterized from the epicarp of orange fruits (Citrus sinensis L. Osbeck). Expression of the CsNCED1 gene increased in the epicarp during natural and ethylene-induced fruit maturation, and in water-stressed leaves, in a pattern consistent with the accumulation of ABA. The second gene, CsNCED2, was not detected in dehydrated leaves and, in fruits, exhibited a differential expression to that of CsNCED1. Taken together, these results suggests that CsNCED1 is likely to play a primary role in the biosynthesis of ABA in both leaves and fruits, while CsNCED2 appears to play a subsidiary role restricted to chromoplast-containing tissue. Furthermore, analysis of 9-cis-violaxanthin and 9'-cis-neoxanthin, as the two possible substrates for NCEDs, revealed that the former was the main carotenoid in the outer coloured part of the fruit peel as the fruit ripened or after ethylene treatment, whereas 9'-cis-neoxanthin was not detected or was in trace amounts. By contrast, turgid and dehydrated leaves contained 9'-cis-neoxanthin but 9-cis-violaxanthin was absent. Based on these results, it is suggested that 9-cis-violaxanthin may be the predominant substrate for NCED in the peel of Citrus fruits, whereas 9'-cis-neoxanthin would be the precursor of ABA in photosynthetic tissues.  相似文献   

14.
Proanthocyanidins (PAs, condensed tannins) are important health-promoting phytochemicals that are abundant in many plants. Oriental persimmon (Diospyros kaki Thunb.) is an excellent source of PAs because of its unique ability to accumulate large quantities of these compounds in its young fruit. There are two different spontaneous mutant phenotypes of oriental persimmons which lose their astringent taste naturally on the tree; while plants without these mutations remain rich in soluble PAs until the fruit fully ripened. The mutations are referred to as pollination-constant non-astringent genotypes named J-PCNA and C-PCNA, and are from Japan and China respectively. In this work we speculated that the loss of astringency in C-PCNA fruit is due to the soluble PAs transferred into insoluble upon polymerization, which was quite different from that of the J-PCNA. A DkLAC1 gene was isolated by the homology-based clone method. The predicted protein product of this gene showed that the DkLAC1 is a plant laccase which is phylogenetically related to the known enzyme AtLAC15 involved in the polymerization of PAs. Expression patterns of PAs biosynthetic genes associated with soluble PAs contents in three types of Oriental persimmons. Expression levels of DkLAC1 in C-PCNA type plants were linked with the reduction of soluble PAs in the flesh of the fruit. In addition the cis-elements in the DkLAC1 promoter regions indicated that the gene might also be regulated by the DkMYB4 as is seen with other well-known structural genes in Oriental persimmon. We conclude that DkLAC1 is potentially involved in PA polymerization in C-PCNA during normal ripening in C-PCNA persimmon.  相似文献   

15.
β‐Glucosidases (BG) are present in many plant tissues. Among these, abscisic acid (ABA) β‐glucosidases are thought to take part in the adjustment of cellular ABA levels, however the role of ABA‐BG in fruits is still unclear. In this study, through RNA‐seq analysis of persimmon fruit, 10 full‐length DkBG genes were isolated and were all found to be expressed. In particular, DkBG1 was highly expressed in persimmon fruits with a maximum expression 95 days after full bloom (DAFD). We verified that, in vitro, DkBG1 protein can hydrolyze ABA‐glucose ester (ABA‐GE) to release free ABA. Compared with wild‐type, tomato plants that overexpressed DkBG1 significantly upregulated the expression of ABA receptor PYL3/7 genes and showed typical symptoms of ABA hypersensitivity in fruits. DkBG1 overexpression (DkBG1‐OE) accelerated fruit ripening onset by 3–4 days by increasing ABA levels at the pre‐breaker stage and induced early ethylene release compared with wild‐type fruits. DkBG1‐OE altered the expression of ripening regulator NON‐RIPENING (NOR) and its target genes; this in turn altered fruit quality traits such as coloration. Our results demonstrated that DkBG1 plays an important role in fruit ripening and quality by adjusting ABA levels via hydrolysis of ABA‐GE.  相似文献   

16.
In order to understand more details about the role of abscisic acid (ABA) in fruit ripening and senescence, six 740 bp cDNAs (LeNCED1, LeNCED2, PpNCED1, VVNCED1, DKNCED1 and CMNCED1) which encode 9-cis-epoxycarotenoid dioxygenase (NCED) as a key enzyme in ABA biosynthesis, were cloned from fruits of tomato, peach, grape, persimmon and melon using an RT-PCR approach. A Blast homology search revealed a similarity of amino acid 85.76% between the NCEDs. A relationship between ABA and ethylene during ripening was also investigated. At the mature green stage, exogenous ABA treatment increased ABA content in flesh, and promoting ethylene synthesis and fruit ripening, while treatment with nordihydroguaiaretic acid (NDGA), inhibited them, delayed fruit ripening and softening. However, ABA inhibited the ethylene synthesis obviously while NDGA promoted them when treated the immature fruit with these chemicals. At the breaker, NDGA treatment cannot block ABA accumulation and ethylene synthesis. Based on the results obtained in this study, it was concluded that ABA plays different role in ethylene synthesis system in different stages of tomato fruit ripening.Key words: tomato, NCED gene, ABA, ethylene, fruit ripening, peach, grape, persimmon, melon  相似文献   

17.
Proanthocyanidins (PAs), also called condensed tannins, can protect plants against herbivores and are important quality components of many fruits. Two enzymes, leucoanthocyanidin reductase (LAR) and anthocyanidin reductase (ANR), can produce the flavan-3-ol monomers required for formation of PA polymers. We isolated and functionally characterized genes encoding both enzymes from grapevine (Vitis vinifera L. cv Shiraz). ANR was encoded by a single gene, but we found two highly related genes encoding LAR. We measured PA content and expression of genes encoding ANR, LAR, and leucoanthocyanidin dioxygenase in grape berries during development and in grapevine leaves, which accumulated PA throughout leaf expansion. Grape flowers had high levels of PA, and accumulation continued in skin and seeds from fruit set until the onset of ripening. VvANR was expressed throughout early flower and berry development, with expression increasing after fertilization. It was expressed in berry skin and seeds until the onset of ripening, and in expanding leaves. The genes encoding LAR were expressed in developing fruit, particularly in seeds, but had low expression in leaves. The two LAR genes had different patterns of expression in skin and seeds. During grape ripening, PA levels decreased in both skin and seeds, and expression of genes encoding ANR and LAR were no longer detected. The results indicate that PA accumulation occurs early in grape development and is completed when ripening starts. Both ANR and LAR contribute to PA synthesis in fruit, and the tissue and temporal-specific regulation of the genes encoding ANR and LAR determines PA accumulation and composition during grape berry development.  相似文献   

18.
Clementine ( Citrus reticulata [Hort.] Ex. Tanaka cv. Oroval) is a self-incompatible mandarin with a slow rate of fruit growth and high percentage of fruit abscission. Seedless Satsuma ( Citrus unshiu [Mak] Marc. cv. Clausellina) shows natural parthenocarpy and higher fruit set. Application of 25 μg fruit−1 of paclobutrazol (PP333), an inhibitor of gibberellin biosynthesis, reduced the rate of growth and accelerated fruit abscission in both varieties. In contrast, gibberellin A3 (GA3) stimulated fruit growth only in the self-incompatible mandarin. Clementine fruits, in the absence of pollination, showed an approximately 2-fold transient increase in the free abscisic acid (ABA) content shortly after petal fall. In Satsuma, a very small accumulation of ABA was detected. Paclobutrazol treatment induced a 3-fold increase in ABA in Satsuma fruits but did not substantially affect the pattern of ABA accumulation in Clementine. In this variety, GA3 suppressed the ABA increase observed in untreated fruits. These effects were observed 24 h after treatment. However, in Satsuma fruits, the effect of GA3 on the ABA content was negligible. In addition, a comparative analysis of growing and non-growing fruits of Clementine showed that ABA, on a per unit weight basis, was always higher in the non-growing fruits. Treatment with 85 μM fluridone, an inhibitor of carotenoid biosynthesis and thus indirectly of ABA, delayed fruit abscission in Clementine, but also decreased fruit growth. Collectively, these observations indicate a relationship between high ABA content and a reduced rate of fruit growth and an acceleration of fruit abscission.  相似文献   

19.
Proanthocyanidins(PAs) are specialized metabolites that infuence persimmon fruit quality.Normal astringent(A)-type and non-astringent(NA)-type mutants show significant variation in PA accumulation, but the infuencing mechanism remains unclear. In this study, among the six identified DTXs/MATEs proteins associated with PA accumulation, we observed that allelic variation and preferential transport by Dk DTX5/MATE5 induced variation in PA accumulation for A-type and NA-type fruit. The expression pa...  相似文献   

20.
Proanthocyanidins (PAs) are the main products of the flavonoid biosynthetic pathway in seeds, but their biological function during seed germination is still unclear. We observed that seed germination is delayed with the increase of exogenous PA concentration in Arabidopsis. A similar inhibitory effect occurred in peeled Brassica napus seeds, which was observed by measuring radicle elongation. Using abscisic acid (ABA), a biosynthetic and metabolic inhibitor, and gene expression analysis by real-time polymerase chain reaction, we found that the inhibitory effect of PAs on seed germination is due to their promotion of ABA via de novo biogenesis, rather than by any inhibition of its degradation. Consistent with the relationship between PA content and ABA accumulation in seeds, PA-deficient mutants maintain a lower level of ABA compared with wild-types during germination. Our data suggest that PA distribution in the seed coat can act as a doorkeeper to seed germination. PA regulation of seed germination is mediated by the ABA signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号