首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Parallel evolutionary radiations in adjacent locations have been documented in many systems, but typically at limited geographical scales. Here, we compare patterns of evolutionary radiation at the global scale in iguanian lizards, the dominant clade of lizards. We generated a new time‐calibrated phylogeny including 153 iguanian species (based on mitochondrial and nuclear data) and obtained data on morphology and microhabitats. We then compared patterns of species diversification, morphological disparity, and ecomorphological relationships in the predominantly Old World and New World clades (Acrodonta and Pleurodonta, respectively), focusing on the early portions of these radiations. Acrodonts show relatively constant rates of species diversification and disparity over time. In contrast, pleurodonts show an early burst of species diversification and less‐than‐expected morphological disparity early in their history, and slowing diversification and increasing disparity more recently. Analyses including all species (with MEDUSA) suggest accelerated diversification rates in certain clades within both Acrodonta and Pleurodonta, which strongly influences present‐day diversity patterns. We also find substantial differences in ecomorphological relationships between these clades. Our results demonstrate that sister clades in different global regions can undergo very different patterns of evolutionary radiation over similar time frames. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ●● , ●●–●●.  相似文献   

2.
Estimating rates of speciation and extinction, and understanding how and why they vary over evolutionary time, geographical space and species groups, is a key to understanding how ecological and evolutionary processes generate biological diversity. Such inferences will increasingly benefit from phylogenetic approaches given the ever‐accelerating rates of genetic sequencing. In the last few years, models designed to understand diversification from phylogenetic data have advanced significantly. Here, I review these approaches and what they have revealed about diversification in the natural world. I focus on key distinctions between different models, and I clarify the conclusions that can be drawn from each model. I identify promising areas for future research. A major challenge ahead is to develop models that more explicitly take into account ecology, in particular the interaction of species with each other and with their environment. This will not only improve our understanding of diversification; it will also present a new perspective to the use of phylogenies in community ecology, the science of interaction networks and conservation biology, and might shift the current focus in ecology on equilibrium biodiversity theories to non‐equilibrium theories recognising the crucial role of history.  相似文献   

3.
Competition can drive macroevolutionary change, for example during adaptive radiations. However, we still lack a clear understanding of how it shapes diversification processes and patterns. To better understand the macroevolutionary consequences of competition, as well as the signal left on phylogenetic data, we developed a model linking trait evolution and species diversification in an ecological context. We find four main results: first, competition spurs trait diversity but not necessarily species richness; second, competition produces slowdowns in species diversification even in the absence of explicit ecological limits, but not in phenotypic diversification even in the presence of such limits; third, early burst patterns do not provide a reliable way of testing for adaptive radiations; and fourth, looking for phylogenetic signal in trait data and support for phenotypic models incorporating competition is a better alternative. Our results clarify the macroevolutionary consequences of competition and could help design more powerful tests of adaptive radiations in nature.  相似文献   

4.
5.
Wolbachia strains are endosymbiotic bacteria typically found in the reproductive tracts of arthropods. These bacteria manipulate host reproduction to ensure maternal transmission. They are usually transmitted vertically, so it has been predicted that they have evolved a mechanism to target the host's germ cells during development. Through cytological analysis we found that Wolbachia strains display various affinities for the germ line of Drosophila. Different Wolbachia strains show posterior, anterior, or cortical localization in Drosophila embryos, and this localization is congruent with the classification of the organisms based on the wsp (Wolbachia surface protein) gene sequence. This embryonic distribution pattern is established during early oogenesis and does not change until late stages of embryogenesis. The posterior and anterior localization of Wolbachia resembles that of oskar and bicoid mRNAs, respectively, which define the anterior-posterior axis in the Drosophila oocyte. By comparing the properties of a single Wolbachia strain in different host backgrounds and the properties of different Wolbachia strains in the same host background, we concluded that bacterial factors determine distribution, while bacterial density seems to be limited by the host. Possible implications concerning cytoplasmic incompatibility and evolution of strains are discussed.  相似文献   

6.
Mass extinctions have altered the trajectory of evolution a number of times over the Phanerozoic. During these periods of biotic upheaval a different selective regime appears to operate, although it is still unclear whether consistent survivorship rules apply across different extinction events. We compare variations in diversity and disparity across the evolutionary history of a major Paleozoic arthropod group, the Eurypterida. Using these data, we explore the group's transition from a successful, dynamic clade to a stagnant persistent lineage, pinpointing the Devonian as the period during which this evolutionary regime shift occurred. The late Devonian biotic crisis is potentially unique among the “Big Five” mass extinctions in exhibiting a drop in speciation rates rather than an increase in extinction. Our study reveals eurypterids show depressed speciation rates throughout the Devonian but no abnormal peaks in extinction. Loss of morphospace occupation is random across all Paleozoic extinction events; however, differential origination during the Devonian results in a migration and subsequent stagnation of occupied morphospace. This shift appears linked to an ecological transition from euryhaline taxa to freshwater species with low morphological diversity alongside a decrease in endemism. These results demonstrate the importance of the Devonian biotic crisis in reshaping Paleozoic ecosystems.  相似文献   

7.
Studies of character evolution often assume that a phylogeny's shape is determined independently of the characters, which then evolve as mere passengers along the tree's branches. However, if the characters help shape the tree, but this is not considered, biased inferences can result. Simulations of asymmetrical speciation (i.e., one character state conferring a higher rate of speciation than another) result in data that are interpreted to show a higher rate of change toward the diversification-enhancing state, even though the rates to and from this state were in fact equal. Conversely, simulations of asymmetrical character change yield data that could be misinterpreted as showing asymmetrical rates of speciation. Studies of biased diversification and biased character change need to be unified by joint models and estimation methods, although how successfully the two processes can be teased apart remains to be seen.  相似文献   

8.
The question of multiple sequence alignment quality has received much attention from developers of alignment methods. Less forthcoming, however, are practical measures for addressing alignment quality issues in real life settings. Here, we present a simple methodology to help identify and quantify the uncertainties in multiple sequence alignments and their effects on subsequent analyses. The proposed methodology is based upon the a priori expectation that sequence alignment results should be independent of the orientation of the input sequences. Thus, for totally unambiguous cases, reversing residue order prior to alignment should yield an exact reversed alignment of that obtained by using the unreversed sequences. Such "ideal" alignments, however, are the exception in real life settings, and the two alignments, which we term the heads and tails alignments, are usually different to a greater or lesser degree. The degree of agreement or discrepancy between these two alignments may be used to assess the reliability of the sequence alignment. Furthermore, any alignment dependent sequence analysis protocol can be carried out separately for each of the two alignments, and the two sets of results may be compared with each other, providing us with valuable information regarding the robustness of the whole analytical process. The heads-or-tails (HoT) methodology can be easily implemented for any choice of alignment method and for any subsequent analytical protocol. We demonstrate the utility of HoT for phylogenetic reconstruction for the case of 130 sequences belonging to the chemoreceptor superfamily in Drosophila melanogaster, and by analysis of the BaliBASE alignment database. Surprisingly, Neighbor-Joining methods of phylogenetic reconstruction turned out to be less affected by alignment errors than maximum likelihood and Bayesian methods.  相似文献   

9.
10.
In C. elegans, the first embryonic axis is established shortly after fertilization and requires both the microtubule and microfilament cytoskeleton. Cues from sperm-donated centrosomes result in a cascade of events that polarize the distribution of widely conserved PAR proteins at the cell cortex. The PAR proteins in turn polarize the cytoplasm and position mitotic spindles. Lessons learned from C. elegans should improve our understanding of how cells become polarized and divide asymmetrically during development.  相似文献   

11.
Jason R. Ali  Shai Meiri 《Ecography》2019,42(5):989-999
Models for biodiversity growth on the remote oceanic islands assume that in situ cladogenesis is a major contributor. To test this, we compiled occurrence data for 194 terrestrial reptile species on 53 volcanically‐constructed middle‐ to low‐latitude landmasses worldwide. Despite 273 native island‐species records, there are only 8–12 cases of the phenomenon, including just two radiations. Diversification frequencies are largely uncorrelated with island area, age, maximum altitude, and isolation. Furthermore, there is no indication that the presence of non‐sister congeners on an island stymies the process. Diversity on individual oceanic islands therefore results primarily from immigration and anageneis, but this is not a simple matter. Clusters that are difficult to reach (far or challenging to get to) or thrive upon (e.g. Canaries, Galápagos) have relatively few clades (3–8), some of which have many species (6–14), and all host at least one endemic genus. In these settings, diversity grows mainly by intra‐archipelago transfer followed by within‐island anagenetic speciation. In contrast, those island groups that are easier to disperse to (characterized by short distances and conducive transit conditions) and harbour more benign habitats (e.g. Comoros, Lesser Antilles) have been settled by many ancestor‐colonizers (≥ 14), but each clade has few derived species (≤ 4). These archipelagoes lack especially distinctive lineages. Models explaining the assembly and growth of terrestrial biotic suites on the volcanic ocean islands thus need to accommodate these new insights.  相似文献   

12.
Important part of the multivariate selection shaping social and interspecific interactions among and within animal species emerges from communication. Therefore, understanding the diversification of signals for animal communication is a central endeavor in evolutionary biology. Over the last decade, the rapid development of phylogenetic approaches has promoted a stream of studies investigating evolution of communication signals. However, comparative research has primarily focused on visual and acoustic signals, while the evolution of chemical signals remains largely unstudied. An increasing interest in understanding the evolution of chemical communication has been inspired by the realization that chemical signals underlie some of the major interaction channels in a wide range of organisms. In lizards, in particular, chemosignals play paramount roles in female choice and male–male competition, and during community assembly and speciation. Here, using phylogenetic macro‐evolutionary modeling, we show for the very first time that multiple compounds of scents for communication in lizards have diversified following highly different evolutionary speeds and trajectories. Our results suggest that cholesterol, α‐tocopherol, and cholesta‐5,7‐dien‐3‐ol have been subject to stabilizing selection (Ornstein–Uhlenbeck model), whereas the remaining compounds are better described by Brownian motion modes of evolution. Additionally, the diversification of the individual compounds has accumulated substantial relative disparity over time. Thus, our study reveals that the chemical components of lizard chemosignals have proliferated across different species following compound‐specific directions.  相似文献   

13.
Adaptive radiations are known for rapid morphological and species diversification in response to ecological opportunity, but it remains unclear if distinct mechanisms drive this pattern. Here, we show that rapid rates of morphological diversification are linked to the evolution of novel ecological niches in two independent Cyprinodon radiations nested within a wide-ranging group repeatedly isolated in extreme environments. We constructed a molecular phylogeny for the Cyprinodontidae, measured 16 functional traits across this group, and compared the likelihoods of single or multiple rates of morphological diversification. We found that rates of morphological diversification within two sympatric Cyprinodon clades containing unique trophic specialists are not part of an adaptive continuum with other clades, but are instead extreme outliers with rates up to 131 times faster than other Cyprinodontidae. High rates were not explained by clade age, but were instead linked to unique trophic niches within Cyprinodon, including scale-eating, zooplanktivory, and piscivory. Furthermore, although both radiations occur in similar environments and have similar sister species, they each evolved unique trophic specialists and high rates of morphological diversification in different sets of traits. We propose that the invasion of novel ecological niches may be a key mechanism driving many classic examples of adaptive radiation.  相似文献   

14.
Actinopterygians (ray‐finned fishes) successfully passed through four of the big five mass extinction events of the Phanerozoic, but the effects of these crises on the group are poorly understood. Many researchers have assumed that the Permo‐Triassic mass extinction (PTME) and end‐Triassic extinction (ETE) had little impact on actinopterygians, despite devastating many other groups. Here, two morphometric techniques, geometric (body shape) and functional (jaw morphology), are used to assess the effects of these two extinction events on the group. The PTME elicits no significant shifts in functional disparity while body shape disparity increases. An expansion of body shape and functional disparity coincides with the neopterygian radiation and evolution of novel feeding adaptations in the Middle‐Late Triassic. Through the ETE, small decreases are seen in shape and functional disparity, but are unlikely to represent major changes brought about by the extinction event. In the Early Jurassic, further expansions into novel areas of ecospace indicative of durophagy occur, potentially linked to losses in the ETE. As no evidence is found for major perturbations in actinopterygian evolution through either extinction event, the group appears to have been immune to two major environmental crises that were disastrous to most other organisms.  相似文献   

15.
This paper, which addresses the issue of the extinction of mite species at the global scale for the first time, highlights mite diversity, assesses the evidence for an extinction process, discusses contributing factors and estimates losses. The ~1 250 000 mite species occupy an enormous variety of terrestrial and freshwater ecosystems from the equator to the polar regions and to high altitudes. Some groups provide essential ecosystem services, including the incorporation of organic matter into the soil. The maintenance of mite diversity is inextricably linked to the continuance of floristic diversity, habitat complexity and insect diversity. The majority of mite species are assumed to be in the tropical rainforests, of which >50% has been destroyed or severely degraded. Most biodiversity hotspots are in tropical forests; endemic phytoseiid mite species are at least 17 times more concentrated in the hotspots than outside. Habitat destruction and degradation continue on an enormous scale, with increasing human population growth and resource consumption the overarching drivers of extinction. Moreover, climate change is likely to be worsening the effects of the other drivers at an increasing rate. The small body of direct evidence and a considerable body of indirect evidence strongly suggest the continuing, widespread extinction of mite species. Based on estimates of overall biodiversity loss, ~15% of mite species were likely to have become extinct by 2000, with losses currently expected to increase by between 0.6% and 6.0% by 2060. More detailed information on both spatial differences in mite assemblages and anthropogenic threats worldwide is crucial because they underpin the total number of species and their vulnerability to extinction, respectively. The rapid expansion of the protected area estate to capture the maximum possible area of ecosystem heterogeneity, especially in the biodiversity hotspots, is essential, as is best practice management of these areas.  相似文献   

16.
Global climate change is a threat to ecosystems that are rich in biodiversity and endemism, such as the World Heritage‐listed subtropical rainforests of central eastern Australia. Possible effects of climate change on the biota of tropical rainforests have been studied, but subtropical rainforests have received less attention. We analysed published data for an assemblage of 38 subtropical rainforest vertebrate species in four taxonomic groups to evaluate their relative vulnerability to climate change. Focusing on endemic and/or threatened species, we considered two aspects of vulnerability: (i) resistance, defined by indicators of rarity (geographical range, habitat specificity and local abundance); and (ii) resilience, defined by indicators of a species potential to recover (reproductive output, dispersal potential and climatic niche). Our analysis indicated that frogs are most vulnerable to climate change, followed by reptiles, birds, then mammals. Many species in our assemblage are regionally endemic montane rainforest specialists with high vulnerability. Monitoring of taxa in regenerating rainforest showed that many species with high resilience traits also persisted in disturbed habitat, suggesting that they have capacity to recolonize habitats after disturbance, that is climate change‐induced events. These results will allow us to prioritize adaptation strategies for species most at risk. We conclude that to safeguard the most vulnerable amphibian, reptile and bird species against climate change, climatically stable habitats (cool refugia) that are currently without protection status need to be identified, restored and incorporated in the current reserve system. Our study provides evidence that montane subtropical rainforest deserves highest protection status as habitat for vulnerable taxa.  相似文献   

17.
Biodiversity patterns are largely determined by variation of diversification rates across clades and geographic regions. Although there are multiple reasons for this variation, it has been hypothesized that metabolic rate is the crucial driver of diversification of evolutionary lineages. According to the metabolic theory of ecology (MTE), metabolic rate – and consequently speciation – is driven mainly by body size and environmental temperature. As environmental temperature affects metabolic rate in ecto‐ and endotherms differently, its impact on diversification rate should also differ between the two types of organisms. Employing two independent approaches, we analysed correlates of speciation rates and, ultimately, net diversification rates for two contrasting taxa: plethodontid salamanders and carnivoran mammals. Whereas in the ectothermic plethodontids speciation rates positively correlated with environmental temperature, in the endothermic carnivorans a reverse, negative correlation was detected. These findings comply with predictions of the MTE and suggest that similar geographic patterns of biodiversity across taxa (e.g. ecto‐ and endotherms) might have been generated by different ecological and evolutionary processes.  相似文献   

18.
The relationships between morphology, performance, behavior and ecology provide evidence for multiple and complex phenotypic adaptations. The anuran body plan, for example, is evolutionarily conserved and shows clear specializations to jumping performance back at least to the early Jurassic. However, there are instances of more recent adaptation to habit diversity in the post‐cranial skeleton, including relative limb length. The present study tested adaptive models of morphological evolution in anurans associated with the diversity of microhabitat use (semi‐aquatic arboreal, fossorial, torrent, and terrestrial) in species of anuran amphibians from Brazil and Australia. We use phylogenetic comparative methods to determine which evolutionary models, including Brownian motion (BM) and Ornstein‐Uhlenbeck (OU) are consistent with morphological variation observed across anuran species. Furthermore, this study investigated the relationship of maximum distance jumped as a function of components of morphological variables and microhabitat use. We found there are multiple optima of limb lengths associated to different microhabitats with a trend of increasing hindlimbs in torrent, arboreal, semi‐aquatic whereas fossorial and terrestrial species evolve toward optima with shorter hindlimbs. Moreover, arboreal, semi‐aquatic and torrent anurans have higher jumping performance and longer hindlimbs, when compared to terrestrial and fossorial species. We corroborate the hypothesis that evolutionary modifications of overall limb morphology have been important in the diversification of locomotor performance along the anuran phylogeny. Such evolutionary changes converged in different phylogenetic groups adapted to similar microhabitat use in two different zoogeographical regions.  相似文献   

19.
The acquisition of key innovations and the invasion of new areas constitute two major processes that facilitate ecological opportunity and subsequent evolutionary diversification. Using a major lizard radiation as a model, the Australasian diplodactyloid geckos, we explored the effects of two key innovations (adhesive toepads and a snake‐like phenotype) and the invasion of new environments (island colonization) in promoting the evolution of phenotypic and species diversity. We found no evidence that toepads had significantly increased evolutionary diversification, which challenges the common assumption that the evolution of toepads has been responsible for the extensive radiation of geckos. In contrast, a snakelike phenotype was associated with increased rates of body size evolution and, to a lesser extent, species diversification. However, the clearest impact on evolutionary diversification has been the colonization of New Zealand and New Caledonia, which were associated with increased rates of both body size evolution and species diversification. This highlights that colonizing new environments can drive adaptive diversification in conjunction or independently of the evolution of a key innovation. Studies wishing to confirm the putative link between a key innovation and subsequent evolutionary diversification must therefore show that it has been the acquisition of an innovation specifically, not the colonization of new areas more generally, that has prompted diversification.  相似文献   

20.
The fossil record is our only direct means for evaluating shifts in biodiversity through Earth''s history. However, analyses of fossil marine invertebrates have demonstrated that geological megabiases profoundly influence fossil preservation and discovery, obscuring true diversity signals. Comparable studies of vertebrate palaeodiversity patterns remain in their infancy. A new species-level dataset of Mesozoic marine tetrapod occurrences was compared with a proxy for temporal variation in the volume and facies diversity of fossiliferous rock (number of marine fossiliferous formations: FMF). A strong correlation between taxic diversity and FMF is present during the Cretaceous. Weak or no correlation of Jurassic data suggests a qualitatively different sampling regime resulting from five apparent peaks in Triassic–Jurassic diversity. These correspond to a small number of European formations that have been the subject of intensive collecting, and represent ‘Lagerstätten effects’. Consideration of sampling biases allows re-evaluation of proposed mass extinction events. Marine tetrapod diversity declined during the Carnian or Norian. However, the proposed end-Triassic extinction event cannot be recognized with confidence. Some evidence supports an extinction event near the Jurassic/Cretaceous boundary, but the proposed end-Cenomanian extinction is probably an artefact of poor sampling. Marine tetrapod diversity underwent a long-term decline prior to the Cretaceous–Palaeogene extinction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号