首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Akt phosphorylation has previously been described to be involved in mediating DNA damage repair through the nonhomologous end-joining (NHEJ) repair pathway. Yet the mechanism how Akt stimulates DNA-protein kinase catalytic subunit (DNA-PKcs)-dependent DNA double-strand break (DNA-DSB) repair has not been described so far. In the present study, we investigated the mechanism by which Akt can interact with DNA-PKcs and promote its function during the NHEJ repair process. The results obtained indicate a prominent role of Akt, especially Akt1 in the regulation of NHEJ mechanism for DNA-DSB repair. As shown by pull-down assay of DNA-PKcs, Akt1 through its C-terminal domain interacts with DNA-PKcs. After exposure of cells to ionizing radiation (IR), Akt1 and DNA-PKcs form a functional complex in a first initiating step of DNA-DSB repair. Thereafter, Akt plays a pivotal role in the recruitment of AKT1/DNA-PKcs complex to DNA duplex ends marked by Ku dimers. Moreover, in the formed complex, Akt1 promotes DNA-PKcs kinase activity, which is the necessary step for progression of DNA-DSB repair. Akt1-dependent DNA-PKcs kinase activity stimulates autophosphorylation of DNA-PKcs at S2056 that is needed for efficient DNA-DSB repair and the release of DNA-PKcs from the damage site. Thus, targeting of Akt results in radiosensitization of DNA-PKcs and Ku80 expressing, but not of cells deficient for, either of these proteins. The data showed indicate for the first time that Akt through an immediate complex formation with DNA-PKcs can stimulate the accumulation of DNA-PKcs at DNA-DSBs and promote DNA-PKcs activity for efficient NHEJ DNA-DSB repair.  相似文献   

3.
The DNA-dependent protein kinase (DNA-PK) is composed of a large catalytic subunit (DNA-PKcs) and a DNA-binding protein, Ku. Cells lacking DNA-PK activity are radiosensitive and are defective in DNA double-strand break repair and V(D)J recombination. Although much information regarding the interactions of Ku with DNA ends is available, relatively little is known about the interaction of DNA-PKcs with DNA-bound Ku. Here we show, using electrophoretic mobility shift assays, that chemical crosslinkers enhance the formation of protein-DNA complexes containing DNA-PKcs, Ku and other proteins in extracts from cells of normal human cell lines. Extracts from cells of the radiosensitive human cell line M059J, which lacks DNA-PKcs, are not competent to form these protein-DNA complexes, while addition of purified DNA-PKcs protein restores complex formation. This assay may be useful for screening for DNA-PK function in cells of human cell lines and for identifying proteins that interact with the DNA-PK-DNA complex. We also show that Ku protein in rodent cells can interact with human DNA-PKcs; however, this assay may be less useful for studying Ku/DNA-PKcs interactions in cells of rodent cell lines due to the low abundance of DNA-PKcs in these cells.  相似文献   

4.
We find that nuclear protein extracts from mammalian cells contain an activity that allows DNA ends to associate with circular pUC18 plasmid DNA. This activity requires the catalytic subunit of DNA-PK (DNA-PKcs) and Ku since it was not observed in mutants lacking Ku or DNA-PKcs but was observed when purified Ku/DNA-PKcs was added to these mutant extracts. Purified Ku/DNA-PKcs alone did not produce association of DNA ends with plasmid DNA suggesting that additional factors in the nuclear extract are necessary for this activity. Competition experiments between pUC18 and pUC18 plasmids containing various nuclear matrix attachment region (MAR) sequences suggest that DNA ends preferentially associate with plasmids containing MAR DNA sequences. At a 1:5 mass ratio of MAR to pUC18, approximately equal amounts of DNA end binding to the two plasmids were observed, while at a 1:1 ratio no pUC18 end binding was observed. Calculation of relative binding activities indicates that DNA end-binding activities to MAR sequences was 7–21-fold higher than pUC18. Western analysis of proteins bound to pUC18 and MAR plasmids indicates that XRCC4, DNA ligase IV and scaffold attachment factor A preferentially associate with the MAR plasmid in the absence or presence of DNA ends. In contrast, Ku and DNA-PKcs were found on the MAR plasmid only in the presence of DNA ends suggesting that binding of these proteins to DNA ends is necessary for their association with MAR DNA. The ability of DNA-PKcs/Ku to direct DNA ends to MAR and pUC18 plasmid DNA is a new activity for DNA-PK and may be important for its function in double-strand break repair. A model for DNA repair based on these observations is presented.  相似文献   

5.
The major pathway in mammalian cells for repairing DNA double-strand breaks (DSB) is via nonhomologous end joining. Five components function in this pathway, of which three (Ku70, Ku80, and the DNA-dependent protein kinase catalytic subunit [DNA-PKcs]) constitute a complex termed DNA-dependent protein kinase (DNA-PK). Mammalian Ku proteins bind to DSB and recruit DNA-PKcs to the break. Interestingly, besides their role in DSB repair, Ku proteins bind to chromosome ends, or telomeres, protecting them from end-to-end fusions. Here we show that DNA-PKcs(-/-) cells display an increased frequency of spontaneous telomeric fusions and anaphase bridges. However, DNA-PKcs deficiency does not result in significant changes in telomere length or in deregulation of the G-strand overhang at the telomeres. Although less severe, this phenotype is reminiscent of the one recently described for Ku86-defective cells. Here we show that, besides DNA repair, a role for DNA-PKcs is to protect telomeres, which in turn are essential for chromosomal stability.  相似文献   

6.
The resection of DNA double strand breaks initiates homologous recombination (HR) and is critical for genomic stability. Using direct measurement of resection in human cells and reconstituted assays of resection with purified proteins in vitro, we show that DNA-dependent protein kinase catalytic subunit (DNA-PKcs), a classic nonhomologous end joining factor, antagonizes double strand break resection by blocking the recruitment of resection enzymes such as exonuclease 1 (Exo1). Autophosphorylation of DNA-PKcs promotes DNA-PKcs dissociation and consequently Exo1 binding. Ataxia telangiectasia-mutated kinase activity can compensate for DNA-PKcs autophosphorylation and promote resection under conditions where DNA-PKcs catalytic activity is inhibited. The Mre11-Rad50-Nbs1 (MRN) complex further stimulates resection in the presence of Ku and DNA-PKcs by recruiting Exo1 and enhancing DNA-PKcs autophosphorylation, and it also inhibits DNA ligase IV/XRCC4-mediated end rejoining. This work suggests that, in addition to its key role in nonhomologous end joining, DNA-PKcs also acts in concert with MRN and ataxia telangiectasia-mutated to regulate resection and thus DNA repair pathway choice.  相似文献   

7.
8.
DNA damage initiates signaling events through kinase cascades that result in cell cycle checkpoint control and DNA repair. However, it is not yet clear how the signaling pathways relay to DNA damage repair. Using the repeat region of checkpoint protein MDC1 (mediator of DNA damage checkpoint protein 1), we identified DNA-PKcs/Ku as MDC1-associated proteins. Here, we show that MDC1 directly interacts with the Ku/DNA-PKcs complex. Down-regulation of MDC1 resulted in defective phospho-DNA-PKcs foci formation and DNA-PKcs autophosphorylation, suggesting that MDC1 regulates autophosphorylation of DNA-PKcs following DNA damage. Furthermore, DNA-PK-dependent DNA damage repair is defective in cells depleted of MDC1. Taken together, these results suggest that the MDC1 repeat region is involved in protein-protein interaction with DNA-PKcs/Ku, and MDC1 regulates DNA damage repair by influencing DNA-PK autophosphorylation. Therefore, MDC1 acts not only as a mediator of DNA damage checkpoint but also as a mediator of DNA damage repair.  相似文献   

9.
Ku is a heterodimer of Ku70 and Ku86 that binds to double-stranded DNA breaks (DSBs), activates the catalytic subunit (DNA-PKcs) when DNA is bound, and is essential in DSB repair and V(D)J recombination. Given that abnormalities in Ig gene rearrangement and DNA damage repair are hallmarks of multiple myeloma (MM) cells, we have characterized Ku expression and function in human MM cells. Tumor cells (CD38(+)CD45RA(-)) from 12 of 14 (86%) patients preferentially express a 69-kDa variant of Ku86 (Ku86v). Immunoblotting of whole cell extracts (WCE) from MM patients shows reactivity with Abs targeting Ku86 N terminus (S10B1) but no reactivity with Abs targeting Ku86 C terminus (111), suggesting that Ku86v has a truncated C terminus. EMSA confirmed a truncated C terminus in Ku86v and further demonstrated that Ku86v in MM cells had decreased Ku-DNA end binding activity. Ku86 forms complexes with DNA-PKcs and activates kinase activity, but Ku86v neither binds DNA-PKcs nor activates kinase activity. Furthermore, MM cells with Ku86v have increased sensitivity to irradiation, mitomycin C, and bleomycin compared with patient MM cells or normal bone marrow donor cells with Ku86. Therefore, this study suggests that Ku86v in MM cells may account for decreased DNA repair and increased sensitivity to radiation and chemotherapeutic agents, whereas Ku86 in MM cells confers resistance to DNA damaging agents. Coupled with a recent report that Ku86 activity correlates with resistance to radiation and chemotherapy, these results have implications for the potential role of Ku86 as a novel therapeutic target.  相似文献   

10.
Tilghman RW  Hoover RL 《FEBS letters》2002,518(1-3):83-87
The homeobox gene Cdx1 is a regulator of intestinal epithelial cell proliferation and differentiation. Using a transfection approach, we showed here that the oncogenic activation of the beta-catenin pathway stimulates the endogenous expression of the Cdx1 mRNA as well as the activity of the Cdx1 promoter in cancer cells of the human colon. Reciprocally, the paralogue homeobox gene Cdx2 exerts an inhibitory effect on the basal and on the beta-catenin-stimulated activity of the Cdx1 promoter. The inhibitory effect of CDX2 requires the intact homeodomain. It is not dependent on canonical CDX binding sites in the Cdx1 promoter nor on the cis-elements specifically targeted by the beta-catenin/Tcf complex. We conclude that the oncogenically activated beta-catenin and CDX2 have opposite and independent effects on the Cdx1 homeobox gene.  相似文献   

11.
The leucine rich region of DNA-PKcs contributes to its innate DNA affinity   总被引:2,自引:0,他引:2  
Gupta S  Meek K 《Nucleic acids research》2005,33(22):6972-6981
DNA-PK is a protein complex that consists of a DNA-binding, regulatory subunit [Ku] and a larger ~465 kDa catalytic subunit [DNA-PKcs], a serine/threonine protein kinase. The kinase activity of DNA-PKcs resides between residues 3745 and 4013, a PI3 kinase domain. Another recognized domain within this large protein is a leucine zipper (LZ) motif or perhaps more appropriately designated a leucine rich region (LRR) that spans residues 1503–1602. Whereas, DNA-PK's kinase activity has been shown to be absolutely indispensable for its function in non-homologous end joining (NHEJ), little is known about the functional relevance of the LRR. Here we show that DNA-PKcs with point mutations in the LRR can only partially reverse the radiosensitive phenotype and V(D)J recombination deficits of DNA-PKcs deficient cells. Disruption of the LRR motif affects the ability to purify DNA-PKcs via its binding to DNA-cellulose, but does not affect its interaction with Ku or its catalytic activity. These data suggest that the LRR region of DNA-PKcs may contribute to its intrinsic DNA affinity, and moreover, that intrinsic DNA binding is important for optimal function of DNA-PKcs in repairing double strand breaks in living cells.  相似文献   

12.
Non-homologous end-joining (NHEJ)-mediated repair of DNA double-strand breaks (DSBs) requires the formation of a Ku70/Ku80/DNA-PKcs complex at the DSB sites. A previous study has revealed Ku80 cleavage by caspase-3 during apoptosis. However, it remains largely unknown whether and how Ku80 cleavage affects its function in mediating NHEJ-mediated DNA repair. Here we report that Ku80 can be cleaved by caspases-2 at D726 upon a transient etoposide treatment. Caspase-2-mediated Ku80 cleavage promotes Ku80/DNA-PKcs interaction as the D726A mutation diminished Ku80 interaction with DNA-PKcs, while a Ku80 truncate (Ku80 ΔC6) lacking all the 6 residues following D726 rescued the weakened Ku80/DNA-PKcs interaction caused by caspase-2 knockdown. As a result, depletion or inhibition of caspase-2 impairs NHEJ-mediated DNA repair, and such impairment can be reversed by Ku80 ΔC6 overexpression. Taken together, our current study provides a novel mechanism for regulating NHEJ-mediated DNA repair, and sheds light on the function of caspase-2 in genomic stability maintenance.  相似文献   

13.
DNA-dependent protein kinase (DNA-PK) is composed of a 460-kDa catalytic subunit and the regulatory subunits Ku70 and Ku80. The complex is activated on DNA damage and plays an essential role in double-strand-break repair and V(D)J recombination. In addition, DNA-PK is involved in S-phase checkpoint arrest following irradiation, although its role in damage-induced checkpoint arrest is not clear. In an effort to understand the role of DNA-PK in damage signaling, human and mouse cells containing the DNA-PK catalytic subunit (DNA-PKcs proficient) were compared with those lacking DNA-PKcs for c-Jun N-terminal kinase (JNK) activity that mediates physiologic responses to DNA damage. The DNA-PKcs-proficient cells showed much tighter regulation of JNK activity after DNA damage, while the level of JNK protein in both cell lines remained unchanged. The JNK proteins physically associated with DNA-PKcs and Ku70/Ku80 heterodimer, and the interaction was significantly stimulated after DNA damage. Various JNK isoforms not only contained a DNA-PK phosphorylation consensus site (serine followed by glutamine) but also were phosphorylated by DNA-PK in vitro. Together, our results suggest that DNA damage induces physical interaction between DNA-PK and JNK, which may in turn negatively affect JNK activity through JNK phosphorylation by DNA-PK.  相似文献   

14.
15.
Non-homologous end joining (NHEJ) is one of the primary pathways for the repair of ionizing radiation (IR)-induced DNA double-strand breaks (DSBs) in mammalian cells. Proteins required for NHEJ include the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs), Ku, XRCC4 and DNA ligase IV. Current models predict that DNA-PKcs, Ku, XRCC4 and DNA ligase IV assemble at DSBs and that the protein kinase activity of DNA-PKcs is essential for NHEJ-mediated repair of DSBs in vivo. We previously identified a cluster of autophosphorylation sites between amino acids 2609 and 2647 of DNA-PKcs. Cells expressing DNA-PKcs in which these autophosphorylation sites have been mutated to alanine are highly radiosensitive and defective in their ability to repair DSBs in the context of extrachromosomal assays. Here, we show that cells expressing DNA-PKcs with mutated autophosphorylation sites are also defective in the repair of IR-induced DSBs in the context of chromatin. Purified DNA-PKcs proteins containing serine/threonine to alanine or aspartate mutations at this cluster of autophosphorylation sites were indistinguishable from wild-type (wt) protein with respect to protein kinase activity. However, mutant DNA-PKcs proteins were defective relative to wt DNA-PKcs with respect to their ability to support T4 DNA ligase-mediated intermolecular ligation of DNA ends. We propose that autophosphorylation of DNA-PKcs at this cluster of sites is important for remodeling of DNA-PK complexes at DNA ends prior to DNA end joining.  相似文献   

16.
17.
Yoo S  Dynan WS 《Nucleic acids research》1999,27(24):4679-4686
Ku protein and the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) are essential components of the double-strand break repair machinery in higher eukaryotic cells. Ku protein binds to broken DNA ends and recruits DNA-PKcs to form an enzymatically active complex. To characterize the arrangement of proteins in this complex, we developed a set of photocross-linking probes, each with a single free end. We have previously used this approach to characterize the contacts in an initial Ku-DNA complex, and we have now applied the same technology to define the events that occur when Ku recruits DNA-PKcs. The new probes allow the binding of one molecule of Ku protein and one molecule of DNA-PKcs in a defined position and orientation. Photocross-linking reveals that DNA-PKcs makes direct contact with the DNA termini, occupying an approximately 10 bp region proximal to the free end. Characterization of the Ku protein cross-linking pattern in the presence and absence of DNA-PKcs suggests that Ku binds to form an initial complex at the DNA ends, and that recruitment of DNA-PKcs induces an inward translocation of this Ku molecule by about one helical turn. The presence of ATP had no effect on protein-DNA contacts, suggesting that neither DNA-PK-mediated phosphorylation nor a putative Ku helicase activity plays a role in modulating protein conformation under the conditions tested.  相似文献   

18.
Eukaryotic DNA is organized into nucleosomes and higher order chromatin structure, which plays an important role in the regulation of many nuclear processes including DNA repair. Non-homologous end-joining, the major pathway for repairing DNA double-strand breaks (DSBs) in mammalian cells, is mediated by a set of proteins including DNA-dependent protein kinase (DNA-PK). DNA-PK is comprised of a large catalytic subunit, DNA-PKcs, and its regulatory subunit, Ku. Current models predict that Ku binds to the ends of broken DNA and DNA-PKcs is recruited to form the active kinase complex. Here we show that DNA-PK can be activated by nucleosomes through the ability of Ku to bind to the ends of nucleosomal DNA, and that the activated DNA-PK is capable of phosphorylating H2AX within the nucleosomes. Histone acetylation has little effect on the steps of Ku binding to nucleosomes and subsequent activation of DNA-PKcs. However, acetylation largely enhances the phosphorylation of H2AX by DNA-PK, and this acetylation effect is observed when H2AX exists in the context of nucleosomes but not in a free form. These results suggest that the phosphorylation of H2AX, known to be important for DSB repair, can be regulated by acetylation and may provide a mechanistic basis on which to understand the recent observations that histone acetylation critically functions in repairing DNA DSBs.  相似文献   

19.
The DNA-dependent protein kinase (DNA-PK), consisting of Ku and the DNA-PK catalytic subunit (DNA-PKcs), and the DNA ligase IV-XRCC4 complex function together in the repair of DNA double-strand breaks by non-homologous end joining. These protein complexes are also required for the completion of V(D)J recombination events in immune cells. Here we demonstrate that the DNA ligase IV-XRCC4 complex binds specifically to the ends of duplex DNA molecules and can act as a bridging factor, linking together duplex DNA molecules with complementary but non-ligatable ends. Although the DNA end-binding protein Ku inhibited DNA joining by DNA ligase IV-XRCC4, it did not prevent this complex from binding to DNA. Instead, DNA ligase IV-XRCC4 and Ku bound simultaneously to the ends of duplex DNA molecules. DNA ligase IV-XRCC4 and DNA-PKcs also formed complexes at the ends of DNA molecules, but DNA-PKcs did not inhibit ligation. Interestingly, DNA-PKcs stimulated intermolecular ligation by DNA ligase IV-XRCC4. In the presence of DNA-PK, the majority of the joining events catalyzed by DNA ligase IV-XRCC4 were intermolecular because Ku inhibited intramolecular ligation, but DNA-PKcs still stimulated intramolecular ligation. We suggest that DNA-PKcs-containing complexes formed at DNA ends enhance the association of DNA ends via protein-protein interactions, thereby stimulating intermolecular ligation.  相似文献   

20.
Li B  Comai L 《Nucleic acids research》2002,30(17):3653-3661
The DNA-dependent protein kinase (DNA-PK) complex, which is composed of a DNA-dependent kinase subunit (DNA-PKcs) and the Ku70/80 heterodimer, is involved in DNA double-strand break repair by non-homologous end joining (NHEJ). Ku70/80 interacts with the Werner syndrome protein (WRN) and stimulates WRN exonuclease activity. To investigate a possible function of WRN in NHEJ, we have examined the relationship between DNA-PKcs, Ku and WRN. First, we showed that WRN forms a complex with DNA-PKcs and Ku in solution. Next, we determined whether this complex assembles on DNA ends. Interestingly, the addition of WRN to a Ku:DNA-PKcs:DNA complex results in the displacement of DNA-PKcs from the DNA, indicating that the triple complex WRN:Ku:DNA-PKcs cannot form on DNA ends. The displacement of DNA-PKcs from DNA requires the N- and C-terminal regions of WRN, both of which make direct contact with the Ku70/80 heterodimer. Moreover, exonuclease assays indicate that DNA-PKcs does not protect DNA from the nucleolytic action of WRN. These results suggest that WRN may influence the mechanism by which DNA ends are processed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号