首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have examined the distribution of ryanodine receptors, L-type Ca(2+) channels, calsequestrin, Na(+)/Ca(2+) exchangers, and voltage-gated Na(+) channels in adult rat ventricular myocytes. Enzymatically dissociated cells were fixed and dual-labeled with specific antibodies using standard immunocytochemistry protocols. Images were deconvolved to reverse the optical distortion produced by wide-field microscopes equipped with high numerical aperture objectives. Every image showed a well-ordered array of fluorescent spots, indicating that all of the proteins examined were distributed in discrete clusters throughout the cell. Mathematical analysis of the images revealed that dyads contained only ryanodine receptors, L-type Ca(2+) channels, and calsequestrin, and excluded Na(+)/Ca(2+) exchangers and voltage-gated Na(+) channels. The Na(+)/Ca(2+) exchanger and voltage-gated Na(+) channels were distributed largely within the t-tubules, on both transverse and axial elements, but were not co-localized. The t-tubule can therefore be subdivided into at least three structural domains; one of coupling (dyads), one containing the Na(+)/Ca(2+) exchanger, and one containing voltage-gated Na(+) channels. We conclude that if either the slip mode conductance of the Na(+) channel or the reverse mode of the Na(+)/Ca(2+) exchanger are to contribute to the contractile force, the fuzzy space must extend outside of the dyad.  相似文献   

2.
Palty R  Sekler I 《Cell calcium》2012,52(1):9-15
Powered by the steep mitochondrial membrane potential Ca(2+) permeates into the mitochondria via the Ca(2+) uniporter and is then extruded by a mitochondrial Na(+)/Ca(2+) exchanger. This mitochondrial Ca(2+) shuttling regulates the rate of ATP production and participates in cellular Ca(2+) signaling. Despite the fact that the exchanger was functionally identified 40 years ago its molecular identity remained a mystery. Early studies on isolated mitochondria and intact cells characterized the functional properties of a mitochondrial Na(+)/Ca(2+) exchanger, and showed that it possess unique functional fingerprints such as Li(+)/Ca(2+) exchange and that it is displaying selective sensitivity to inhibitors. Purification of mitochondria proteins combined with functional reconstitution led to the isolation of a polypeptide candidate of the exchanger but failed to molecularly identify it. A turning point in the search for the exchanger molecule came with the recent cloning of the last member of the Na(+)/Ca(2+) exchanger superfamily termed NCLX (Na(+)/Ca(2+)/Li(+) exchanger). NCLX is localized in the inner mitochondria membrane and its expression is linked to mitochondria Na(+)/Ca(2+) exchange matching the functional fingerprints of the putative mitochondrial Na(+)/Ca(2+) exchanger. Thus NCLX emerges as the long sought mitochondria Na(+)/Ca(2+) exchanger and provide a critical molecular handle to study mitochondrial Ca(2+) signaling and transport. Here we summarize some of the main topics related to the molecular properties of the Na(+)/Ca(2+) exchanger, beginning with the early days of its functional identification, its kinetic properties and regulation, and culminating in its molecular identification.  相似文献   

3.
4.
NaCl hyperosmolarity increases intestinal blood flow during food absorption due in large part to increased NO production. We hypothesized that in vivo, sodium ions enter endothelial cells during NaCl hyperosmolarity as the first step to stimulate an increase in intestinal endothelial NO production. Perivascular NO concentration ([NO]) and blood flow were determined in the in vivo rat intestinal microvasculature at rest and under hyperosmotic conditions, 330 and 380 mosM, respectively, before and after application of bumetanide (Na(+)-K(+)-2Cl(-) cotransporter inhibitor) or amiloride (Na(+)/H(+) exchange channel inhibitor). Suppressing amiloride-sensitive Na(+)/H(+) exchange channels diminished hypertonicity-linked increases in vascular [NO], whereas blockade of Na(+)-K(+)-2Cl(-) channels greatly suppressed increases in vascular [NO] and intestinal blood flow. In additional experiments we examined the effect of sodium ion entry into endothelial cells. We proposed that the Na(+)/Ca(2+) exchanger extrudes Na(+) in exchange for Ca(2+), thereby leading to the calcium-dependent activation of endothelial nitric oxide synthase (eNOS). We blocked the activity of the Na(+)/Ca(2+) exchanger during 360 mosM NaCl hyperosmolarity with KB-R7943; complete blockade of increased vascular [NO] and intestinal blood flow to hyperosmolarity occurred. These results indicate that during NaCl hyperosmolarity, sodium ions enter endothelial cells predominantly through Na(+)-K(+)-2Cl(-) channels. The Na(+)/Ca(2+) exchanger then extrudes Na(+) and increases endothelial Ca(2+). The increase in endothelial Ca(2+) causes an increase in eNOS activity, and the resultant increase in NO increases intestinal arteriolar diameter and blood flow during NaCl hyperosmolarity. This appears to be the major mechanism by which intestinal nutrient absorption is coupled to increased blood flow.  相似文献   

5.
Hypoxia is a common denominator of many vascular disorders, especially those associated with ischemia. To study the effect of oxygen depletion on endothelium, we developed an in vitro model of hypoxia on human umbilical vein endothelial cells (HUVEC). Hypoxia strongly activates HUVEC, which then synthesize large amounts of prostaglandins and platelet-activating factor. The first step of this activation is a decrease in ATP content of the cells, followed by an increase in the cytosolic calcium concentration ([Ca(2+)](i)) which then activates the phospholipase A(2) (PLA(2)). The link between the decrease in ATP and the increase in [Ca(2+)](i) was not known and is investigated in this work. We first showed that the presence of extracellular Na(+) was necessary to observe the hypoxia-induced increase in [Ca(2+)](i) and the activation of PLA(2). This increase was not due to the release of Ca(2+) from intracellular stores, since thapsigargin did not inhibit this process. The Na(+)/Ca(2+) exchanger was involved since dichlorobenzamil inhibited the [Ca(2+)](i) and the PLA(2) activation. The glycolysis was activated, but the intracellular pH (pH(i)) in hypoxic cells did not differ from control cells. Finally, the hypoxia-induced increase in [Ca(2+)](i) and PLA(2) activation were inhibited by phlorizin, an inhibitor of the Na(+)-glucose cotransport. The proposed biochemical mechanism occurring under hypoxia is the following: glycolysis is first activated due to a requirement for ATP, leading to an influx of Na(+) through the activated Na(+)-glucose cotransport followed by the activation of the Na(+)/Ca(2+) exchanger, resulting in a net influx of Ca(2+).  相似文献   

6.
7.
Design, synthesis and structure-activity relationships for 3,4-dihydro-2(1H)-quinazolinone derivatives with the inhibitory activities of the Na(+)/Ca(2+) exchanger are discussed. These studies based on lead compound 1a lead to the discovery of a structurally novel and highly potent inhibitor against the Na(+)/Ca(2+) exchanger 4f (SM-15811), which directly inhibited the Na(+)-dependent Ca(2+) influx via the Na(+)/Ca(2+) exchanger in cardiomyocytes with a high potency.  相似文献   

8.
We have previously shown that there is high Na(+)/Ca(2+) exchange (NCX) activity in bovine adrenal chromaffin cells. In this study, by monitoring the [Ca(2+)](i) change in single cells and in a population of chromaffin cells, when the reverse mode of exchanger activity has been initiated, we have shown that the NCX activity is enhanced by K(+). The K(+)-enhanced activity accounted for a significant proportion of the Na(+)-dependent Ca(2+) uptake activity in the chromaffin cells. The results support the hypothesis that both NCX and Na(+)/Ca(2+)-K(+) exchanger (NCKX) are co-present in chromaffin cells. The expression of NCKX in chromaffin cells was further confirmed using PCR and northern blotting. In addition to the plasma membrane, the exchanger activity, measured by Na(+)-dependent (45)Ca(2+) uptake, was also present in membrane isolated from the chromaffin granules enriched fraction and the mitochondria enriched fraction. The results support that both NCX and NCKX are present in bovine chromaffin cells and that the regulation of [Ca(2+)](i) is probably more efficient with the participation of NCKX.  相似文献   

9.
Endothelial nitric oxide (NO) synthase (eNOS) is controlled by Ca(2+)/calmodulin and caveolin-1 in caveolae. It has been recently suggested that Na(+)/Ca(2+) exchanger (NCX), also expressed in endothelial caveolae, is involved in eNOS activation. To investigate the role played by NCX in NO synthesis, we assessed the effects of Na(+) loading (induced by monensin) on rat aortic rings and cultured porcine aortic endothelial cells. Effect of monensin was evaluated by endothelium-dependent relaxation of rat aortic rings in response to acetylcholine and by real-time measurement of NO release from cultured endothelial cells stimulated by A-23187 and bradykinin. Na(+) loading shifted the acetylcholine concentration-response curve to the left. These effects were prevented by pretreatment with the NCX inhibitors benzamil and KB-R7943. Monensin potentiated Ca(2+)-dependent NO release in cultured cells, whereas benzamil and KB-R7943 totally blocked Na(+) loading-induced NO release. These findings confirm the key role of NCX in reverse mode on Ca(2+)-dependent NO production and endothelium-dependent relaxation.  相似文献   

10.
Na(+)/Ca(2+) exchange activity in Chinese hamster ovary cells expressing the bovine cardiac Na(+)/Ca(2+) exchanger was inhibited by the short chain ceramide analogs N-acetylsphingosine and N-hexanoylsphingosine (5-15 micrometer). The sphingolipids reduced exchange-mediated Ba(2+) influx by 50-70% and also inhibited the Ca(2+) efflux mode of exchange activity. The biologically inactive ceramide analog N-acetylsphinganine had only modest effects on exchange activity. Cells expressing the Delta(241-680) and Delta(680-685) deletion mutants of the Na(+)/Ca(2+) exchanger were not inhibited by ceramide; these mutants show defects in both Na(+)-dependent and Ca(2+)-dependent regulatory behavior. Another mutant, which was defective only in Na(+)-dependent regulation, was as sensitive to ceramide inhibition as the wild-type exchanger. Inhibition of exchange activity by ceramide was time-dependent and was accelerated by depletion of internal Ca(2+) stores. Sphingosine (2.5 micrometer) also inhibited the Ca(2+) influx and efflux modes of exchange activity in cells expressing the wild-type exchanger; sphingosine did not affect Ba(2+) influx in the Delta(241-680) mutant. The effects of the exogenous sphingolipids were reproduced by blocking cellular ceramide utilization pathways, suggesting that exchange activity is inhibited by increased levels of endogenous ceramide and/or sphingosine. We propose that sphingolipids impair Ca(2+)-dependent activation of the exchanger and that in cardiac myocytes, this process serves as a feedback mechanism that links exchange activity to the diastolic concentration of cytosolic Ca(2+).  相似文献   

11.
The activities of both sarcolemmal (SL) Na(+)-K(+)-ATPase and Na(+)/Ca(2+) exchanger, which maintain the intracellular cation homeostasis, have been shown to be depressed in heart failure due to myocardial infarction (MI). Because the renin-angiotensin system (RAS) is activated in heart failure, this study tested the hypothesis that attenuation of cardiac SL changes in congestive heart failure (CHF) by angiotensin-converting enzyme (ACE) inhibitors is associated with prevention of alterations in gene expression for SL Na(+)-K(+)-ATPase and Na(+)/Ca(2+) exchanger. CHF in rats due to MI was induced by occluding the coronary artery, and 3 wk later the animals were treated with an ACE inhibitor, imidapril (1 mg.kg(-1).day(-1)), for 4 wk. Heart dysfunction and cardiac hypertrophy in the infarcted animals were associated with depressed SL Na(+)-K(+)-ATPase and Na(+)/Ca(2+) exchange activities. Protein content and mRNA levels for Na(+)/Ca(2+) exchanger as well as Na(+)-K(+)-ATPase alpha(1)-, alpha(2)- and beta(1)-isoforms were depressed, whereas those for alpha(3)-isoform were increased in the failing heart. These changes in SL activities, protein content, and gene expression were attenuated by treating the infarcted animals with imidapril. The beneficial effects of imidapril treatment on heart function and cardiac hypertrophy as well as SL Na(+)-K(+)-ATPase and Na(+)/Ca(2+) exchange activities in the infarcted animals were simulated by enalapril, an ACE inhibitor, and losartan, an angiotensin receptor antagonist. These results suggest that blockade of RAS in CHF improves SL Na(+)-K(+)-ATPase and Na(+)/Ca(2+) exchange activities in the failing heart by preventing changes in gene expression for SL proteins.  相似文献   

12.
Mechanisms underlying the negative inotropic response to alpha-adrenoceptor stimulation in adult mouse ventricular myocardium were studied. In isolated ventricular tissue, phenylephrine (PE), in the presence of propranolol, decreased contractile force by approximately 40% of basal value. The negative inotropic response was similarly observed under low extracellular Ca(2+) concentration ([Ca(2+)](o)) conditions but was significantly smaller under high-[Ca(2+)](o) conditions and was not observed under low-[Na(+)](o) conditions. The negative inotropic response was not affected by nicardipine, ryanodine, ouabain, or dimethylamiloride (DMA), inhibitors of L-type Ca(2+) channel, Ca(2+) release channel, Na(+)-K(+) pump, or Na(+)/H(+) exchanger, respectively. KB-R7943, an inhibitor of Na(+)/Ca(2+) exchanger, suppressed the negative inotropic response mediated by PE. PE reduced the magnitude of postrest contractions. PE caused a decrease in duration of the late plateau phase of action potential and a slight increase in resting membrane potential; time courses of these effects were similar to that of the negative inotropic effect. In whole cell voltage-clamped myocytes, PE increased the L-type Ca(2+) and Na(+)/Ca(2+) exchanger currents but had no effect on the inwardly rectifying K(+), transient outward K(+), or Na(+)-K(+)-pump currents. These results suggest that the sustained negative inotropic response to alpha-adrenoceptor stimulation of adult mouse ventricular myocardium is mediated by enhancement of Ca(2+) efflux through the Na(+)/Ca(2+) exchanger.  相似文献   

13.
Chinese hamster ovary cells expressing the bovine cardiac Na(+)/Ca(2+) exchanger were subjected to two periods of 5 and 3 min, respectively, during which the extracellular Na(+) concentration ([Na(+)](o)) was reduced to 20 mm; these intervals were separated by a 5-min recovery period at 140 mm Na(+)(o). The cytosolic Ca(2+) concentration ([Ca(2+)](i)) increased during both intervals due to Na(+)-dependent Ca(2+) influx by the exchanger. However, the peak rise in [Ca(2+)](i) during the second interval was only 26% of the first. The reduced rise in [Ca(2+)](i) was due to an inhibition of Na(+)/Ca(2+) exchange activity rather than increased Ca(2+) sequestration since the influx of Ba(2+), which is not sequestered by internal organelles, was also inhibited by a prior interval of Ca(2+) influx. Mitochondria accumulated Ca(2+) during the first interval of reduced [Na(+)](o), as determined by an increase in fluorescence of the Ca(2+)-indicating dye rhod-2, which preferentially labels mitochondria. Agents that blocked mitochondrial Ca(2+) accumulation (uncouplers, nocodazole) eliminated the observed inhibition of exchange activity during the second period of low [Na(+)](o). Conversely, diltiazem, an inhibitor of the mitochondrial Na(+)/Ca(2+) exchanger, increased mitochondrial Ca(2+) accumulation and also increased the inhibition of exchange activity. We conclude that Na(+)/Ca(2+) exchange activity is regulated by a feedback inhibition process linked to mitochondrial Ca(2+) accumulation.  相似文献   

14.
Na(+) cotransporters have a substantial role in neuronal damage during brain hypoxia. We proposed these cotransporters have beneficial roles in oxygen-sensing mechanisms that increase periarteriolar nitric oxide (NO) concentration ([NO]) during mild to moderate oxygen deprivation. Our prior studies have shown that cerebral neuronal NO synthase (nNOS) is essential for [NO] responses to decreased oxygen tension and that endothelial NO synthase (eNOS) is of little consequence. In this study, we explored the mechanisms of three specific cotransporters known to play a role in the hypoxic state: KB-R7943 for blockade of the Na(+)/Ca(2+) exchanger, bumetanide for the Na(+)-K(+)-2Cl(-) cotransporter, and amiloride for Na(+)/H(+) cotransporters. In vivo measurements of arteriolar diameter and [NO] at normal and locally reduced oxygen tension in the rat parietal cortex provided the functional analysis. As previously found for intestinal arterioles, bumetanide-sensitive cotransporters are primarily responsible for sensing reduced oxygen because the increased [NO] and dilation were suppressed. The Na(+)/Ca(2+) exchanger facilitated increased NO formation because blockade also suppressed [NO] and dilatory responses to decreased oxygen. Amiloride-sensitive Na(+)/H(+) cotransporters did not significantly contribute to the microvascular regulation. To confirm that nNOS rather than eNOS was primarily responsible for NO generation, eNOS was suppressed with the fusion protein cavtratin for the caveolae domain of eNOS. Although the resting [NO] decreased and arterioles constricted as eNOS was suppressed, most of the increased NO and dilatory response to oxygen were preserved because nNOS was functional. Therefore, nNOS activation secondary to Na(+)-K(+)-2Cl(-) cotransporter and Na(+)/Ca(2+) exchanger functions are key to cerebral vascular oxygen responses.  相似文献   

15.
The cellular mechanisms underlying hypoxic pulmonary vasoconstriction are not fully understood. We examined the effect of hypoxia on Ca(2+) efflux from the cytosol in single Fura-2-loaded pulmonary artery myocytes. During mild hypoxia (pO(2)=50-60 Torr), peak [Ca(2+)](i) was increased and the rate of Ca(2+) removal from the cytosol was markedly slowed after stimuli that elevated [Ca(2+)](i). Removal of extracellular Na(+) potentiated the peak [Ca(2+)](i) rise and slowed the Ca(2+) decay rate in cells recorded under normoxic conditions; it did not further slow the Ca(2+) decay rate or potentiate the [Ca(2+)](i) increase in hypoxic cells. An Na(+)/Ca(2+) exchange current was recorded in isolated pulmonary artery myocytes. Switching from Li(+) to Na(+) (130 mM) revealed an inward current with reversal potential consistent with the Na(+)/Ca(2+) exchange current in cells in which [Ca(2+)](i) was clamped at 1 microM similar currents, although smaller, were observed with normal resting [Ca(2+)](i) using the perforated patch clamp technique. The Na(+)/Ca(2+) exchange current was markedly inhibited in myocytes exposed to mild hypoxia. RT-PCR revealed the expression of specific alternatively spliced RNAs of NCX1 in rat pulmonary arteries. These findings provide an enhanced understanding of the molecular mechanisms underlying hypoxic sensing in pulmonary arteries.  相似文献   

16.
Olfactory receptor neurons (ORNs) from the squid, Lolliguncula brevis, respond to the odors l-glutamate or dopamine with increases in internal Ca(2+) concentrations ([Ca(2+)](i)). To directly asses the effects of increasing [Ca(2+)](i) in perforated-patched squid ORNs, we applied 10 mM caffeine to release Ca(2+) from internal stores. We observed an inward current response to caffeine. Monovalent cation replacement of Na(+) from the external bath solution completely and selectively inhibited the caffeine-induced response, and ruled out the possibility of a Ca(2+)-dependent nonselective cation current. The strict dependence on internal Ca(2+) and external Na(+) indicated that the inward current was due to an electrogenic Na(+)/Ca(2+) exchanger. Block of the caffeine-induced current by an inhibitor of Na(+)/Ca(2+) exchange (50-100 microM 2',4'-dichlorobenzamil) and reversibility of the exchanger current, further confirmed its presence. We tested whether Na(+)/Ca(2+) exchange contributed to odor responses by applying the aquatic odor l-glutamate in the presence and absence of 2', 4'-dichlorobenzamil. We found that electrogenic Na(+)/Ca(2+) exchange was responsible for approximately 26% of the total current associated with glutamate-induced odor responses. Although Na(+)/Ca(2+) exchangers are known to be present in ORNs from numerous species, this is the first work to demonstrate amplifying contributions of the exchanger current to odor transduction.  相似文献   

17.
The aims of the current study were to 1) examine the effects of hypoxia and acidosis on cultured cortical neurons and 2) explore the role of transporters and ion channels in hypoxic injury. Cell injury was measured in cultured neurons or hippocampal slices following hypoxia (1% O(2)) or acidosis (medium pH 6.8) treatment. Inhibitors of transporters and ion channels were employed to investigate their roles in hypoxic injury. Our results showed that 1) neuronal damage was apparent at 5-7 days of hypoxia exposure, i.e., 36-41% of total lactate dehydrogenase was released to medium and 2) acidosis alone did not lead to significant injury compared with nonacidic, normoxic controls. Pharmacological studies revealed 1) no significant difference in neuronal injury between controls (no inhibitor) and inhibition of Na(+)-K(+)-ATP pump, voltage-gated Na(+) channel, ATP-sensitive K(+) channel, or reverse mode of Na(+)/Ca(2+) exchanger under hypoxia; however, 2) inhibition of NBCs with 500 microM DIDS did not cause hypoxic death in either cultured cortical neurons or hippocampal slices; 3) in contrast, inhibition of Na(+)/H(+) exchanger isoform 1 (NHE1) with either 10 microM HOE-642 or 2 microM T-162559 resulted in dramatic hypoxic injury (+95% for HOE-642 and +100% for T-162559 relative to normoxic control, P < 0.001) on treatment day 3, when no death occurred for hypoxic controls (no inhibitor). No further damage was observed by NHE1 inhibition on treatment day 5. We conclude that inhibition of NHE1 accelerates hypoxia-induced neuronal damage. In contrast, DIDS rescues neuronal death under hypoxia. Hence, DIDS-sensitive mechanism may be a potential therapeutic target.  相似文献   

18.
Ca(2+), which enters cardiac myocytes through voltage-dependent Ca(2+) channels during excitation, is extruded from myocytes primarily by the Na(+)/Ca(2+) exchanger (NCX1) during relaxation. The increase in intracellular Ca(2+) concentration in myocytes by digitalis treatment and after ischemia/reperfusion is also thought to result from the reverse mode of the Na(+)/Ca(2+) exchange mechanism. However, the precise roles of the NCX1 are still unclear because of the lack of its specific inhibitors. We generated Ncx1-deficient mice by gene targeting to determine the in vivo function of the exchanger. Homozygous Ncx1-deficient mice died between embryonic days 9 and 10. Their hearts did not beat, and cardiac myocytes showed apoptosis. No forward mode or reverse mode of the Na(+)/Ca(2+) exchange activity was detected in null mutant hearts. The Na(+)-dependent Ca(2+) exchange activity as well as protein content of NCX1 were decreased by approximately 50% in the heart, kidney, aorta, and smooth muscle cells of the heterozygous mice, and tension development of the aortic ring in Na(+)-free solution was markedly impaired in heterozygous mice. These findings suggest that NCX1 is required for heartbeats and survival of cardiac myocytes in embryos and plays critical roles in Na(+)-dependent Ca(2+) handling in the heart and aorta.  相似文献   

19.
Although inhibition of the sarcolemmal (SL) Na(+)-K(+)-ATPase is known to cause an increase in the intracellular concentration of Ca(2+) ([Ca(2+)](i)) by stimulating the SL Na(+)/Ca(2+) exchanger (NCX), the involvement of other SL sites in inducing this increase in [Ca(2+)](i) is not fully understood. Isolated rat cardiomyocytes were treated with or without different agents that modify Ca(2+) movements by affecting various SL sites and were then exposed to ouabain. Ouabain was observed to increase the basal levels of both [Ca(2+)](i) and intracellular Na(+) concentration ([Na(+)](i)) as well as to augment the KCl-induced increases in both [Ca(2+)](i) and [Na(+)](i) in a concentration-dependent manner. The ouabain-induced changes in [Na(+)](i) and [Ca(2+)](i) were attenuated by treatment with inhibitors of SL Na(+)/H(+) exchanger and SL Na(+) channels. Both the ouabain-induced increase in basal [Ca(2+)](i) and augmentation of the KCl response were markedly decreased when cardiomyocytes were exposed to 0-10 mM Na(+). Inhibitors of SL NCX depressed but decreasing extracellular Na(+) from 105-35 mM augmented the ouabain-induced increase in basal [Ca(2+)](i) and the KCl response. Not only was the increase in [Ca(2+)](i) by ouabain dependent on the extracellular Ca(2+) concentration, but it was also attenuated by inhibitors of SL L-type Ca(2+) channels and store-operated Ca(2+) channels (SOC). Unlike the SL L-type Ca(2+)-channel blocker, the blockers of SL Na(+) channel and SL SOC, when used in combination with SL NCX inhibitor, showed additive effects in reducing the ouabain-induced increase in basal [Ca(2+)](i). These results support the view that in addition to SL NCX, SL L-type Ca(2+) channels and SL SOC may be involved in raising [Ca(2+)](i) on inhibition of the SL Na(+)-K(+)-ATPase by ouabain. Furthermore, both SL Na(+)/H(+) exchanger and Na(+) channels play a critical role in the ouabain-induced Ca(2+) increase in cardiomyocytes.  相似文献   

20.
Phospholemman (PLM) regulates cardiac Na(+)/Ca(2+) exchanger (NCX1) and Na(+)-K(+)-ATPase in cardiac myocytes. PLM, when phosphorylated at Ser(68), disinhibits Na(+)-K(+)-ATPase but inhibits NCX1. PLM regulates cardiac contractility by modulating Na(+)-K(+)-ATPase and/or NCX1. In this study, we first demonstrated that adult mouse cardiac myocytes cultured for 48 h had normal surface membrane areas, t-tubules, and NCX1 and sarco(endo)plasmic reticulum Ca(2+)-ATPase levels, and retained near normal contractility, but alpha(1)-subunit of Na(+)-K(+)-ATPase was slightly decreased. Differences in contractility between myocytes isolated from wild-type (WT) and PLM knockout (KO) hearts were preserved after 48 h of culture. Infection with adenovirus expressing green fluorescent protein (GFP) did not affect contractility at 48 h. When WT PLM was overexpressed in PLM KO myocytes, contractility and cytosolic Ca(2+) concentration ([Ca(2+)](i)) transients reverted back to those observed in cultured WT myocytes. Both Na(+)-K(+)-ATPase current (I(pump)) and Na(+)/Ca(2+) exchange current (I(NaCa)) in PLM KO myocytes rescued with WT PLM were depressed compared with PLM KO myocytes. Overexpressing the PLMS68E mutant (phosphomimetic) in PLM KO myocytes resulted in the suppression of I(NaCa) but had no effect on I(pump). Contractility, [Ca(2+)](i) transient amplitudes, and sarcoplasmic reticulum Ca(2+) contents in PLM KO myocytes overexpressing the PLMS68E mutant were depressed compared with PLM KO myocytes overexpressing GFP. Overexpressing the PLMS68A mutant (mimicking unphosphorylated PLM) in PLM KO myocytes had no effect on I(NaCa) but decreased I(pump). Contractility, [Ca(2+)](i) transient amplitudes, and sarcoplasmic reticulum Ca(2+) contents in PLM KO myocytes overexpressing the S68A mutant were similar to PLM KO myocytes overexpressing GFP. We conclude that at the single-myocyte level, PLM affects cardiac contractility and [Ca(2+)](i) homeostasis primarily by its direct inhibitory effects on Na(+)/Ca(2+) exchange.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号