首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, we reported that ethanolamine (EA)-functionalized poly(glycidyl methacrylate) (PGMA) vectors (PGEAs) can produce good transfection efficiency, while exhibiting very low toxicity. Further improvement in degradability and transfection efficiency of the PGEA vectors will facilitate their application in gene therapy. Comb-shaped cationic copolymers have been of interest and importance as nonviral gene carriers. Herein, the degradable high-molecular-weight comb-shaped PGEA vectors (c-PGEAs) composed of the low-molecular-weight PGEA backbone and side chains were prepared by a combination of atom transfer radical polymerization (ATRP) and ring-opening reactions. The PGEA side chains were linked with the PGEA backbones via hydrolyzable ester bonds. Such comb-shaped c-PGEA vectors possessed the degradability, good pDNA condensation ability, low cytotoxicity, and good buffering capacity. More importantly, the comb-shaped c-PGEA vectors could enhance the gene expression levels. Moreover, the PGEA side chains of c-PGEA could also be copolymerized with some poly(poly(ethylene glycol)ethyl ether methacrylate) species to further improve the gene delivery system.  相似文献   

2.
The stability, in vitro release, and in vitro cell transfection efficiency of plasmid DNA (pDNA) poly (D,L.-lactide-co-glycolide) (PLGA) microsphere formulations were investigated. PLGA microspheres containing free and polylysine (PLL)-complexed pDNA were prepared by a water-oil-water solvent extraction/evaporation technique. Encapsulation enhanced the retention of the supereoiled structure of pDNA as determined by gel electrophoresis. PLL complexation of pDNA prior to encapsulation increased both the stability of the supercoiled form and the encapsulation efficiency. Free pDNA was completely degraded after exposure to DNase while encapsulation protected the pDNA from enzymatic degradation. Rapid initial in vitro release of pDNA was obtained from microspheres containing free pDNA. while the release from microspheres containing PLL-complexed pDNA was sustained for more than 42 days. Bioactivity of encapsulated pDNA determined by in vitro cell transfection using Chinese hamster ovary cells (CHO) showed that the bioactivity of encapsulated pDNA was retained in both formulations but to a greater extent with PLL-complexed pDNA microspheres. These results demonstrated that PLGA microspheres could be used to formulate a controlledrelease delivery system for pDNA that can protect the pDNA from DNase degradation without loss of functional activity.  相似文献   

3.
In vitro gene transfection using dendritic poly(L-lysine)   总被引:3,自引:0,他引:3  
Monodispersed dendritic poly(L-lysine)s (DPKs) of several generations were synthesized, and their characteristics as a gene transfection reagent were then investigated. The agarose gel shift and ethidium bromide titration assay proved that the DPKs of the third generation and higher could form a complex with a plasmid DNA, and the degree of compaction of the DNA was increased by the increasing number of the generation. The DPKs of the fifth and sixth generation, which have 64 and 128 amine groups on the surface of the molecule, respectively, showed efficient gene transfection ability into several cultivated cell lines without significant cytotoxity. In addition, the transfection efficiency of the DPK of the sixth generation was not seriously reduced even if serum was added at 50% of the final concentration into the transfection medium. Because we can strictly synthesize various DPK derivatives, which have several types of branch units, terminal cationic groups, and so on, they are expected to be a good object of study regarding the basic information on the detailed mechanism of gene transfection into cells. We also expect to be able to easily construct DPK-based functional gene carriers, e.g., DPKs modified by ligands such as a sugar chain, which can enable advanced gene delivery in vivo.  相似文献   

4.
BACKGROUND: Polyethylenimine (PEI) is toxic although it is one of the most successful and widely used gene delivery polymers with the aid of the proton sponge effect. Therefore, development of new novel gene delivery carriers having high efficiency with less toxicity is necessary. METHODS: In this study, a degradable poly(ester amine) carrier based on poly(ethylene glycol) diacrylate (PEGDA) and low molecular weight linear PEI was prepared. Furthermore, we compared the gene expression of the polymer/DNA complexes using two delivery methods: intravenous administration as an invasive method and aerosol as a non-invasive method. RESULTS: The synthesized polymer had a relatively small molecular weight (MW = 7980) with 25 h half-life in vitro. The polymer/DNA complexes were formed at an N/P ratio of 9. The particle sizes and zeta-potentials of the complexes were dependent on N/P ratio. Compared to PEI 25K, the newly synthesized polymer exhibited high transfection efficiency with low toxicity. Poly(ester amine)-mediated gene expression in the lung and liver was higher than that of the conventional PEI carrier. Interestingly, non-invasive aerosol delivery induced higher gene expression in all organs compared to intravenous method in an in vivo mice study. Such an expressed gene via a single aerosol administration in the lung and liver remained unchanged for 7 days. CONCLUSIONS: Our study demonstrates that poly(ester amine) may be applied as an useful gene carrier.  相似文献   

5.
6.
Design and solid-phase synthesis of novel and chemically defined linear and branched -oligo( l-lysines) (denoted -K n, where n is the number of lysine residues) and their alpha-substituted homologues (epsilon-(R)K10, epsilon-(Y)K10, epsilon-(L)K10, epsilon-(YR)K10, and epsilon-(LYR)K10) for DNA compaction and delivery are reported. The ability to condense viral (T2 and T4) and plasmid DNA as well as the size of -peptide DNA complexes under different conditions was investigated with static and dynamic light scattering, isothermal titration calorimetry, and fluorescence microscopy. Nanoparticle diameters varied from 100 to 150 and 375 to 550 nm for plasmid and T4 DNA peptide complexes, respectively. Smaller sizes were observed for oligo(L-lysines) compared to alpha-poly( L-lysine). The linear -oligo-lysines are less toxic and epsilon-(LYR)K10 showed higher transfection efficiency in HeLa cells than corresponding controls. The results also demonstrate that with a branched design having pendent groups of short alpha-oligopeptides, improved transfection can be achieved. This study supports the hypothesis that available alpha-oligolysine derived systems would potentially have more favorable delivery properties if they are based instead on epsilon-oligo( L-lysines). The flexible design and unambiguous synthesis that enables variation of pendent groups holds promise for optimization of such -peptides to achieve improved DNA compaction and delivery.  相似文献   

7.
A chemical procedure was developed to functionalize poly(methyl methacrylate) (PMMA) substrates. PMMA is reacted with hexamethylene diamine to yield an aminated surface for immobilizing DNA in microarrays. The density of primary NH2 groups was 0.29 nmol/cm2. The availability of these primary amines was confirmed by the immobilization of DNA probes and hybridization with a complementary DNA strand. The hybridization signal and the hybridization efficiency of the chemically aminated PMMA slides were comparable to the hybridization signal and the hybridization efficiency obtained from differently chemically modified PMMA slides, silanized glass, commercial silylated glass and commercial plastic Euray™ slides. Immobilized and hybridized densities of 10 and 0.75 pmol/cm2, respectively, were observed for microarrays on chemically aminated PMMA. The immobilized probes were heat stable since the hybridization performance of microarrays subjected to 20 PCR heat cycles was only reduced by 4%. In conclusion, this new strategy to modify PMMA provides a robust procedure to immobilize DNA, which is a very useful substrate for fabricating single use diagnostics devices with integrated functions, like sample preparation, treatment and detection using microfabrication and microelectronic techniques.  相似文献   

8.
Kim S  Healy KE 《Biomacromolecules》2003,4(5):1214-1223
Hydrogels composed of N-isopropylacrylamide (NIPAAm) and acrylic acid (AAc) were prepared by redox polymerization with peptide cross-linkers to create an artificial extracellular matrix (ECM) amenable for testing hypotheses regarding cell proliferation and migration in three dimensions. Peptide degradable cross-linkers were synthesized by the acrylation of the amine groups of glutamine and lysine residues within peptide sequences potentially cleavable by matrix metalloproteinases synthesized by mammalian cells (e.g., osteoblasts). With the peptide cross-linker, loosely cross-linked poly(N-isopropylacrylamide-co-acrylic acid) [P(NIPAAm-co-AAc)] hydrogels were prepared, and their phase transition behavior, lower critical solution temperature (LCST), water content, and enzymatic degradation properties were investigated. The peptide-cross-linked P(NIPAAm-co-AAc) hydrogels were pliable and fluidlike at room temperature and could be injected through a small-diameter aperture. The LCST of peptide-cross-linked hydrogel was influenced by the monomer ratio of NIPAAm/AAc but not by cross-linking density within the polymer network. A peptide-cross-linked hydrogel with a 97/3 molar ratio of NIPAAm/AAc exhibited a LCST of approximately 34.5 degrees C. Swelling was influenced by NIPAAm/AAc monomer ratio, cross-linking density, and swelling media; however, all hydrogels maintained more than 90% water even at 37 degrees C. In enzymatic degradation studies, breakdown of the peptide-cross-linked P(NIPAAm-co-AAc) hydrogels was dependent on both the concentration of collagenase and the cross-linking density. These results suggest that peptide-cross-linked P(NIPAAm-co-AAc) hydrogels can be tailored to create environmentally-responsive artificial extracellular matrixes that are degraded by proteases.  相似文献   

9.
A series of charge-reversal lipids were synthesized that possess varying chain lengths and end functionalities. These lipids were designed to bind and then release DNA based on a change in electrostatic interaction with DNA. Specifically, a cleavable ester linkage is located at the ends of the hydrocarbon chains. The DNA release from the amphiphile was tuned by altering the length and position of the ester linkage in the hydrophobic chains of the lipids through the preparation of five new amphiphiles. The amphiphiles and corresponding lipoplexes were characterized by DSC, TEM, and X-ray, as well as evaluated for DNA binding and DNA transfection. For one specific charge-reversal lipid, stable lipoplexes of approximately 550 nm were formed, and with this amphiphile, effective in vitro DNA transfection activities was observed.  相似文献   

10.
11.
Poly(ADP-ribose) (pADPr) is a large, structurally complex polymer of repeating ADP-ribose units. It is biosynthesized from NAD(+) by poly(ADP-ribose) polymerases (PARPs) and degraded to ADP-ribose by poly(ADP-ribose) glycohydrolase. pADPr is involved in many cellular processes and exerts biological function through covalent modification and noncovalent binding to specific proteins. Very little is known about molecular recognition and structure-activity relationships for noncovalent interaction between pADPr and its binding proteins, in part because of lack of access to the polymer on a large scale and to units of defined lengths. We prepared polydisperse pADPr from PARP1 and tankyrase 1 at the hundreds of milligram scale by optimizing enzymatic synthesis and scaling up chromatographic purification methods. We developed and calibrated an anion exchange chromatography method to assign pADPr size and scaled it up to purify defined length polymers on the milligram scale. Furthermore, we present a pADPr profiling method to characterize the polydispersity of pADPr produced by PARPs under different reaction conditions and find that substrate proteins affect the pADPr size distribution. These methods will facilitate structural and biochemical studies of pADPr and its binding proteins.  相似文献   

12.
A new transfection reagent based on nucleoside phosphocholine amphiphile leading to high transfection efficacy and low cytotoxicity is described. TEM, ethidium bromide displacement assays, agarose gel electrophoresis and SAXS studies support the formation of lipoplexes for the transfection of CHO cells.  相似文献   

13.
Poly(ester urethane) (PEU) is a class of biodegradable polymer that has been applied as tissue-engineering scaffolds with minimum toxicity. Despite its unique biocompatibility, there have been no reports in modifying the PEU backbone to design a soluble, PEU-based DNA carrier. We have developed a method of incorporating tertiary amines and poly(ethylene glycol) (PEG) into PEU to synthesize a soluble poly(amino ester glycol urethane) (PaEGU) as a novel transfection reagent. Parallel to this, we have synthesized poly(amino ester) (PaE) and poly(amino ester urethane) (PaEU) as the control polymers. The test transfection reagent PaEGU and the control PaE were similar in their properties of being soluble and buffering pH in water and their capabilities of self-assembling with DNA and transfecting the target cells. Significantly, PaEGU exhibited faster hydrolysis kinetics than PaE, half-lives of 19 and 36 h for PaEGU and PaE, respectively, underlying PaEGU's unique property of low cytotoxicity. However, in comparison to PaEGU, the other control polymer, PaEU, was not readily dissolved in water, indicating the importance of PEG units in PaEGU in increasing polymer hydrophilicity. This study demonstrated a useful synthesis scheme for the PEU-based transfection reagent PaEGU. The combination of tertiary amine, ester, PEG, and urethane units in the polymer backbone constitutes a feasible approach for the future design of low-toxicity gene transfer vectors.  相似文献   

14.
To scrutinize materials for specific biomedical applications, we need sensitive and selective analytical methods that can give more insight into the process of their biodegradation. In the present study, the enzymatic degradation of multiblock poly(ester amide) based on natural amino acids, such as lysine and leucine, was performed with serine proteases (α-chymotrypsin (α-CT) and proteinase K (PK)) in phosphate-buffered saline solution at 37 °C for 4 weeks. Fully and partially degraded water-soluble products were analyzed by liquid chromatography hyphenated with time-of-flight mass spectrometry using an electrospray interface (LC-ESI-ToF-MS). Tracking the release of monomeric and oligomeric products into the enzyme media during the course of enzymatic degradation revealed the preferences of α-CT and PK toward ester and amide bonds: both α-CT and PK showed esterase and amidase activity. Although within the experimental time frame up to 30 and 15% weight loss was observed in case of α-CT and PK, respectively, analysis by size exclusion chromatography showed no change in the characteristic molecular-weight averages of the remaining polymer. This suggests that the enzymatic degradation occurs at the surface of this biomaterial. A sustained and linear degradation over a period of 4 weeks supports the potential of this class of poly(ester amide)s for drug delivery applications.  相似文献   

15.
The aim of this study is to prepare supermacroporous pseudospecific cryogel which can be used for the purification of plasmid DNA (pDNA) from bacterial lysate. N-methacryloyl-(l)-histidine methyl ester (MAH) was chosen as the pseudospecific ligand and/or comonomer. Poly(hydroxyethyl methacrylate-N-methacryloyl-(l)-histidine methyl ester) [PHEMAH] cryogel was produced by free radical polymerization initiated by N,N,N',N'-tetramethylene diamine (TEMED) and ammonium persulfate (APS) pair in an ice bath. Compared with the PHEMA cryogel (50 μg/g polymer), the pDNA adsorption capacity of the PHEMAH cryogel (13,350 μg/g polymer) was improved significantly due to the MAH incorporation into the polymeric matrix. The amount of pDNA bound onto the PHEMAH cryogel disks first increased and then reached a saturation value (i.e., 13,350μg/g) at around 300 μg/ml pDNA concentration. pDNA adsorption amount decreased from 1137 μg/g to 160 μg/g with the increasing NaCl concentration. The maximum pDNA adsorption was achieved at 25 °C. The overall recovery of pDNA was calculated as 90%. The PHEMAH cryogel could be used 3 times without decreasing the pDNA adsorption capacity significantly. The results indicate that the PHEMAH cryogel disks promise high selectivity for pDNA.  相似文献   

16.
A facile, one-step synthesis of cationic block copolymers of poly(2-N-(dimethylaminoethyl) methacrylate) (pDMAEMA) and copolymers of poly(propylene oxide) (PPO) and poly(ethylene oxide) (PEO) has been developed. The PEO-PPO-PEO-pDMAEMA (L92-pDMAEMA) and PEO-pDMAEMA copolymers were obtained via free radical polymerization of DMAEMA initiated by polyether radicals generated by cerium(IV). Over 95% of the copolymer fraction was of molecular mass ranging from 6.9 to 7.1 kDa in size, indicating the prevalence of the polyether-monoradical initiation mechanism. The L92-pDMAEMA copolymers possess parent surfactant-like surface activity. In contrast, the PEO-pDMAEMA copolymers lack significant surface activity. Both copolymers can complex with DNA. Hydrodynamic radii of the complexes of the L92-pDMAEMA and PEO-pDMAEMA with plasmid DNA ranged in size from 60 to 400 nm, depending on the copolymer/DNA ratio. Addition of Pluronic P123 to the L92-pDMAEMA complexes with DNA masked charges and decreased the tendency of the complex to aggregate, even at stoichiometric polycation/DNA ratios. The transfection efficiency of the L92-pDMAEMA copolymer was by far greater than that of the PEO-pDMAEMA copolymer. An extra added Pluronic P123 further increased the transfecton efficacy of L92-pDMAEMA, but did not affect that of PEO-pDMAEMA.  相似文献   

17.
Multifunctional poly(glycidyl methacrylate) (PGMA) microspheres containing magnetic, fluorescent, and cancer cell-specific moieties were prepared in four steps: (i) preparation of parent PGMA microspheres by dispersion polymerization and their reaction with ethylenediamine to obtain amino groups, (ii) precipitation of iron ions (Fe2+ and Fe3+) to form Fe3O4 nanoparticles within the microspheres, (iii) consecutive reactions of folic acid with the amino groups on PGMA, and (iv) incorporation of fluorescein isothiocyanate into the microspheres. The microspheres were superparamagnetic, highly monodispersive, intensively fluorescent, and capable of recognizing and binding cancer cells that overexpress folic acid receptors. It was demonstrated that with these microspheres, HeLa cells could be captured from their suspension and easily moved in the direction of the externally applied magnetic field.  相似文献   

18.
《New biotechnology》2014,31(5):482-491
Immunoprecipitation of protein p53 from cell lysate on magnetic PGMA microspheres.
  1. Download : Download full-size image
  相似文献   

19.
Polyisobutylene (PIB)-based block copolymers have attracted significant interest as biomaterials. Poly(styrene-b-isobutylene-b-styrene) (SIBS) has been shown to be vascularly compatible and, when loaded with paclitaxel (PTx) and coated on a coronary stent, has the ability to deliver the drug directly to arterial walls. Modulation of drug release from this polymer has been achieved by varying the drug/polymer ratio, by blending SIBS with other polymers, and by derivatizing the styrene end blocks to vary the hydrophilicity of the copolymer. In this paper, results are reported on the synthesis, physical properties, and drug elution profile of PIB-based block copolymers containing methacrylate end blocks. The preparation of PIB-poly(alkyl methacrylate) block copolymers has been accomplished by a new synthetic methodology using living cationic and anionic polymerization techniques. 1,1-Diphenylethylene end-functionalized PIB was prepared from the reaction of living PIB and 1,4-bis(1-phenylethenyl)benzene, followed by the methylation of the resulting diphenyl carbenium ion with dimethylzinc (Zn(CH(3))(2)). PIB-DPE was quantitatively metalated with n-butyllithium in tetrahydrofuran, and the resulting macroinitiator could initiate the polymerization of methacrylate monomers, yielding block copolymers with high blocking efficiency. Poly(methyl methacrylate-b-isobutylene-b-methyl methacrylate) (PMMA-b-PIB-b-PMMA) and poly(hydroxyethyl methacrylate-b-isobutylene-b-hydroxyethyl methacrylate) (PHEMA-b-PIB-b-PHEMA) triblock copolymers were synthesized and used as drug delivery matrixes for coatings on coronary stents. The PMMA-b-PIB-b-PMMA/PTx system displayed zero-order drug release, while stents coated with PHEMA-b-PIB-b-PHEMA/PTx formulations exhibited a significant initial burst release of PTx. Physical characterization using atomic force microscopy and differential scanning calorimetry of the formulated PMMA-b-PIB-b-PMMA coating matrix indicated the partial miscibility of PTx with the PMMA microphase of the matrix.  相似文献   

20.
Polyelectrolyte complexes of a synthetic polycation with either a genomic DNA or a synthetic poly(oxyethylene-block-sodium methacrylate), POE-b-PMANa, have been studied in aqueous solutions as a function of cation:anion ratio, the degree of polymerization of the polycation, the ionic strength, and temperature using dynamic light scattering and turbidity measurements. The polycation was a copolymer of methacryl oxyethyl trimethylammonium chloride and poly(oxyethylene) monomethyl ether monomethacrylate with 4-5 oxyethylene repeating units, PMOTAC-g-POE. The molar masses of the polycations in a homological series were 0.3, 0.9, and 2.1 x 10(6) g/ mol. The amount of comonomers with poly(oxyethylene) tails in the copolymers was 15 mol %. The molar mass of the POE-b-PMANa was 75000 g/mol and that of the POE-block was 5000 g/mol. The molar mass of the polycation was shown to have a dramatic effect on the stability and size of the complexes formed by either of the polyanions. An increase in the polycation molar mass shifts the cloud point toward the lower polycation content in the complexes, and a macro phase separation occurs in the solutions with the cation to anion molar ratios much below than 1:1. Increasing the ionic strength has a similar effect. Further addition of salt to turbid and phase-separated solutions results in dissociation of the complexes, and the polyions dissolve as individual macromolecules. The effect of POE on the stability of polyelectrolyte complexes is discussed as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号