首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structural properties of four gelatin fractions in mixture with sucrose and glucose syrup have been investigated extensively using small deformation dynamic oscillation. The total level of solids was 80%, the number average molecular weight of the protein ranged from 29.2 to 68 kD, and the temperatures were between 60 and -60 degrees C. Remarkably, the nature of the time and temperature dependence on the viscoelastic functions of all samples could be reduced to master curves using horizontal shift factors. The construction of master curves indicates a common mechanism of structure formation, which, in accordance with the synthetic polymer literature, comprises the rubbery zone, glass transition region, and glassy state. Application of Ferry's free-volume formalism and Rouse theory suggests that there is no change in the thermodynamic state of materials during vitrification, with changes in molecular weight simply introducing shifts in the time scale and temperature range of contributions to viscoelasticity. The thermorheological simplicity allowed development of the concept of "rheological" Tg. This was defined as the point between free-volume phenomena of the polymeric backbone occurring in the glass transition region and an energetic barrier to rotation required for local chain rearrangements in the glassy state. Mechanical relaxation and retardation distribution functions were calculated, thus obtaining values for the effective friction coefficient per monomer unit of the protein. It appears that the local friction coefficient is governed by a linear relationship between fractional free volume and the decreasing molecular weight of the protein, which introduces additional voids due to molecular ends.  相似文献   

2.
The glass transition of human hair and its dependence on water content were determined by means of differential scanning calorimetry (DSC). The relationship between the data is suitably described by the Fox equation, yielding for human hair a glass transition temperature of T(g) = 144 degrees C, which is substantially lower than that for wool (174 degrees C). This effect is attributed to a higher fraction of hydrophobic proteins in the matrix of human hair, which acts as an internal plasticizer. The applicability of the Fox equation for hair as well as for wool implies that water is homogeneously distributed in alpha-keratins, despite their complex morphological, semicrystalline structure. To investigate this aspect, hair was rendered amorphous by thermal denaturation. For the amorphous hair neither the water content nor T(g) were changed compared to the native state. These results provide strong support for the theory of a quasi-homogeneous distribution of water within alpha-keratins.  相似文献   

3.
We performed Raman and Brillouin scattering measurements to estimate glass transition temperature, Tg, of hydrated protein. The measurements reveal very broad glass transition in hydrated lysozyme with approximate Tg ∼ 180 ± 15 K. This result agrees with a broad range of Tg ∼ 160–200 K reported in literature for hydrated globular proteins and stresses the difference between behavior of hydrated biomolecules and simple glass-forming systems. Moreover, the main structural relaxation of the hydrated protein system that freezes at Tg ∼ 180 K remains unknown. We emphasize the difference between the “dynamic transition”, known as a sharp rise in mean-squared atomic displacement <r2> at temperatures around TD ∼ 200–230 K, and the glass transition. They have different physical origin and should not be confused.  相似文献   

4.
The sol-gel transition of gelatin, measured by thermal analysis and viscosity measurement, was analyzed in terms of the change in hydration state of polymer molecules. A new thermodynamic model was proposed in which the effect of water potential is explicitly taken into account for the evaluation of the free energy change in the sol-gel transition process. Because of the large number of water molecules involved and the small free energy change in the transition process, the contribution of water activity, a(W), was proved to be not negligible in the sol-gel transition process in solutions containing such low-molecular cosolutes as sugars, glycerol, urea, and formamide. The gel-stabilization effect of sugars and glycerol was linear with a(W), which seemed consistent with the contribution of water potential in the proposed model. The different stabilization effect among sugars and glycerol was explained by the difference in solvent ordering, which affects hydrophobic interaction among protein molecules. The gel-destabilization effect of urea and formamide could be explained only by the direct binding of them to protein molecules through hydrogen bonding. On the contrary, the polymer-polymer interaction, measured by the viscosity analysis, in polyethyleneglycol and dextran solutions was not sensitive to the change in a(W), suggesting that no substantial change in hydration state with a(W) occurred in these polymer solutions.  相似文献   

5.
Kasapis S 《Biomacromolecules》2006,7(5):1671-1678
The onset of softening in the glass transition dispersion of the gelatin/cosolute system at 78% solids was examined using the stress relaxation modulus and dynamic oscillatory data on shear. Measurements were made between 5 and -70 degrees C, and isothermal runs were reduced to a master curve covering 21 orders of magnitude in the time domain. The sharpness with which the mechanical properties of our system changed with temperature was reflected in the shift factor a(T) used to pinpoint the glass transition temperature (T(g)). The prevalent analytical framework traditionally employed to follow the transition from the rubbery to glasslike consistency in biomaterials is that of the free volume theory in conjunction with the WLF equation. Increasingly, the combined WLF/free volume approach is challenged by the coupling model, which is able to provide additional insights into the physics of intermolecular interactions in synthetic materials at the vicinity of T(g). The model in the form of the Kohlrausch-Williams-Watts function described well the spectral shape of the local segmental motions of gelatin/cosolute at T(g). The analysis provided the intermolecular interaction constant and apparent relaxation time, parameters which depend on chemical structure. Results appear to be encouraging for further explorations of the dynamics of densely packed biomaterials at the glass transition region.  相似文献   

6.
Electrospinning of natural polymer nanofibers useful for biomedical applications often requires the use of cytotoxic organic solvents. In this study, gelatin nanofibers are electrospun from phosphate buffer saline/ethanol binary mixtures as a benign solvent at ambient temperature. The influences of ionic strength, ethanol concentration, and gelatin concentration on the electrospinnability of gelatin solutions and the fiber microarchitectures are analyzed. The electrospun scaffolds retain their morphologies during vapor‐phase crosslinking with glutaraldehyde in ethanol and the subsequent removal of salts contained in the nanofibers via water rinsing. When fully hydrated, the mechanically preconditioned scaffolds display a Young's modulus of 25.5 ± 5.3 kPa, tensile strength of 55.5 ± 13.9 kPa, deformability of 160 ± 15%, and resilience of 89.9 ± 1.8%. When cultured on the gelatin scaffolds, 3T3 fibroblasts displayed spindle‐like morphology, similar to the cell's normal morphology in a 3D extracellular matrix. © 2012 Wiley Periodicals, Inc. Biopolymers 97:1026–1036, 2012.  相似文献   

7.
Vitrification has been used to successfully cryopreserve cells and tissues for over 60 years. Glass transition temperature (T g) of the vitrification is a critical parameter, which has been investigated experimentally. In this study, an isothermal–isobaric molecular simulation (NPT-MD) is proposed to investigate the glass transition and T g of such vitrification solution. The cohesive energy density, solubility parameter (δ) and bulk modulus of the solution during the process of the glass transition are investigated as well. The results indicate that these properties as functions of temperature can give a definite inflexion; thus, these properties can be used to predict T g more accurately than the heat capacity (C p ), density (ρ), volume (V) and radial distribution function (rdf). At the same time, the predicted values of T g agree well with the experimental results. Therefore, molecular dynamics simulation is a potential method for investigating the glass transition and T g of the vitrification solutions.  相似文献   

8.
High-solid materials of gelatin in the presence of co-solute were prepared and subjected to a series of hydrostatic pressures up to 700 MPa. Following this, a study was made of the relaxation properties of the mixture around the glass transition region and the melting behaviour of the gelatin network. Structural properties were monitored using differential scanning calorimetry and small-deformation dynamic oscillation on shear. Thermograms were obtained and master curves of viscoelasticity were constructed for each experimental pressure. The dependence of the empirical shift distances obtained from mechanical measurements and supplementing evidence from thermal analysis argue that the application of pressure did not alter the vitrification or melting characteristics of the gelatin/co-solute system within the experimentally accessible pressure range. Unlike the principle of the time–temperature–pressure superposition applicable to synthetic macromolecules, it may not be possible to incorporate a pressure component into the framework of thermorheological simplicity governing the glass transition of the high-sugar gelatin network.  相似文献   

9.
为探究明胶(G)、海藻酸钠(SA),沙蒿胶(ASKG)对复合水凝胶的力学性能、溶胀和保湿性能的影响,采用共混-离子交联法制备海藻酸钠/明胶/沙蒿胶复合水凝胶,并对制得的水凝胶进行结构表征和溶血率测试。结果表明:当G质量分数为2.5%,SA为1.5%,ASKG为0.7%时,复合水凝胶压缩强度达到427.2 kPa,拉伸强度达到563.449 kPa,断裂伸长率为117%,溶胀率为744%,且具有较好的保湿性能。红外光谱表明,由于沙蒿胶中存在大量羟基,因此加入沙蒿胶后在3 300 cm-1~3 600 cm-1羟基峰形变宽。G/SA/ASKG复合水凝胶溶血率低于5%,具有较好的网络孔结构和血液相容性,为复合水凝胶在医用敷料方面的应用提供一定的参考价值。  相似文献   

10.
Li DX  Liu BL  Liu YS  Chen CL 《Cryobiology》2008,56(2):114-119
Vitrification is proposed to be the best way for the cryopreservation of organs. The glass transition temperature (Tg) of vitrification solutions is a critical parameter of fundamental importance for cryopreservation by vitrification. The instruments that can detect the thermodynamic, mechanical and dielectric changes of a substance may be used to determine the glass transition temperature. Tg is usually measured by using differential scanning calorimetry (DSC). In this study, the Tg of the glycerol-aqueous solution (60%, wt/%) was determined by isothermal-isobaric molecular dynamic simulation (NPT-MD). The software package Discover in Material Studio with the Polymer Consortium Force Field (PCFF) was used for the simulation. The state parameters of heat capacity at constant pressure (Cp), density (ρ), amorphous cell volume (Vcell) and specific volume (Vspecific) and radial distribution function (rdf) were obtained by NPT-MD in the temperature range of 90–270 K. These parameters showed a discontinuity at a specific temperature in the plot of state parameter versus temperature. The temperature at the discontinuity is taken as the simulated Tg value for glycerol–water binary solution. The Tg values determined by simulation method were compared with the values in the literatures. The simulation values of Tg (160.06–167.51 K) agree well with the DSC results (163.60–167.10 K) and the DMA results (159.00 K). We drew the conclusion that molecular dynamic simulation (MDS) is a potential method for investigating the glass transition temperature (Tg) of glycerol–water binary cryoprotectants and may be used for other vitrification solutions.  相似文献   

11.
12.
The nature of the dynamical coupling between a protein and its surrounding solvent is an important, yet open issue. Here we used temperature-dependent protein crystallography to study structural alterations that arise in the enzyme acetylcholinesterase upon X-ray irradiation at two temperatures: below and above the glass transition of the crystal solvent. A buried disulfide bond, a buried cysteine, and solvent exposed methionine residues show drastically increased radiation damage at 155 K, in comparison to 100 K. Additionally, the irradiation-induced unit cell volume increase is linear at 100 K, but not at 155 K, which is attributed to the increased solvent mobility at 155 K. Most importantly, we observed conformational changes in the catalytic triad at the active site at 155 K but not at 100 K. These changes lead to an inactive catalytic triad conformation and represent, therefore, the observation of radiation-inactivation of an enzyme at the atomic level. Our results show that at 155 K, the protein has acquired--at least locally--sufficient conformational flexibility to adapt to irradiation-induced alterations in the conformational energy landscape. The increased protein flexibility may be a direct consequence of the solvent glass transition, which expresses as dynamical changes in the enzyme's environment. Our results reveal the importance of protein and solvent dynamics in specific radiation damage to biological macromolecules, which in turn can serve as a tool to study protein flexibility and its relation to changes in a protein's environment.  相似文献   

13.
Molecular dynamics simulations at the atomistic level were performed to investigate the glass transition of a highly crosslinked thermoset epoxy resin system composed of diglycidyl ether bisphenol A and isophorone diamine. The crosslinked model was first constructed using a cyclic dynamic method, and extended by investigating the effect of conversion degree on the static properties of local structure, internal energy and volume shrinkage. Based on this model, a systematic investigation on volume, energy and dynamic properties against temperature was made, which determined the glass transition temperature (Tg). The Tgs obtained from various volumetric and energy properties agree well with the differential scanning calorimetry experimental data available, yet a dynamic Tg obtained from the diffusion coefficient is relatively higher. Moreover, the investigation on epoxy segmental dynamics confirmed that the glass transition of the highly crosslinked epoxy resin has a strong dependence on the backbone bond torsional kinetics.  相似文献   

14.
The small and large deformation properties of agarose in the presence of high levels of sugar were investigated. Mixtures can be described as lightly cross‐linked rubbers, which undergo vitrification upon cooling. The combined Williams–Landel–Ferry (WLF)/free volume framework was used to derive the glass transition temperature, the fractional free volume, and the thermal expansion coefficient of the glass. Sucrose‐rich cosolute crystallizes, but addition of the polymer encourages intermolecular interactions, which transform the mixture into a high viscosity glass. The mechanical properties of glucose syrup, a noncrystalline sugar, follow WLF behavior in the glass transition region and revert to an Arrhenius‐type prediction in the glassy state. Measurements on sugar samples and agarose–sugar mixtures were resolved into a basic function of temperature alone and a basic function of frequency (time) alone. The former traces the energetic cost of vitrification, which increases sharply with decreasing temperature. The latter, at long time scales, is governed by the infinite molecular weight of the agarose network. In the region of short times, the effect of free volume is active regardless of the sample composition. © 1999 John Wiley & Sons, Inc. Biopoly 49: 267–275, 1999  相似文献   

15.
Sol–gel transition of gelatin was analyzed as a multisite stoichiometric reaction of a gelatin molecule with water and solute molecules. The equilibrium sol–gel transition temperature, Tt, was estimated from the average of gelation and melting temperature measured by differential scanning calorimetry. From Tt and the melting enthalpy, ΔHsol, the equilibrium sol‐to‐gel ratio was estimated by the van't Hoff equation. The reciprocal form of the Wyman–Tanford equation, which describes the sol‐to‐gel ratio as a function of water activity, was successfully applied to obtain a good linear relationship. From this analysis, the role of water activity on the sol–gel transition of gelatin was clearly explained and the contributions of hydration and solute binding to gelatin molecules were separately discussed in sol–gel transition. The general solution for the free energy for gel‐stabilization in various solutions was obtained as a simple function of solute concentration. © 2015 Wiley Periodicals, Inc. Biopolymers 103: 685–691, 2015.  相似文献   

16.
Influence of thermal history on the stability of gelatin gels   总被引:3,自引:0,他引:3  
Gelatin gel properties have been studied using three techniques. Optical rotation measurements have shown that the lower the ageing temperature, the faster the helix content increases but the lower the helix stability. Rheological measurements show that a small increase in temperature leads to a melting of some junction zones followed by a build up of new ones. By ageing the gel at two successive temperatures one can show the existence of two populations of junction zones with different thermal stabilities. The same result is shown on melting thermograms obtained by differential scanning calorimetry. All these results are consistent with the hypothesis of the presence of junction zones of various lengths, the thermostability of which being proportional to their lengths.  相似文献   

17.
The paper constitutes an attempt to overcome the empiricism prevalent in the estimation of the glass transition temperature (Tg) of gelatin networks using rheological techniques. In doing so, it presents a study of the viscoelastic properties of a well-characterised gelatin sample covering the structural properties from the rubbery region to the glassy state. The pattern of oscillatory behaviour on shear is given by a master curve produced by shifting data obtained at different temperatures along the logarithmic time scale. Data reduction does not hold for all temperatures thus giving rise to thermorheological complexity. Within the temperature range at which molecular processes are represented by a simple distribution of relaxation times, a fundamental argument is developed to pinpoint the mechanical Tg. This should improve confidence in measured glassy properties over the empirical indicators found in the literature. As a demonstration, the glass transition temperature of gelatin at "zero moisture" obtained using the proposed framework of analysis is contrasted with earlier attempts to identify the mechanical Tg of gelatin solids.  相似文献   

18.
飞蝗型变分子机理研究前沿   总被引:1,自引:1,他引:0  
徐卫华 《昆虫知识》2011,48(2):227-230
飞蝗的型变是重要的科学问题,也是防治害虫的理论基础。近年来,我国昆虫学家围绕飞蝗型变的分子机制方面取得一系列开创性的工作进展,鉴定了多个飞蝗型变的关键基因及其生物学功能,提出了飞蝗型变的分子机制。这些研究成果在PNAS,PLoS Genetics,Genome Biology,Bioinformatics,Insect Molecular Biology,Journal of Insect Physiology,PLoS One等国际著名刊物发表,极大地提高了我国在该领域的研究水平,为今后彻底解决飞蝗型变这一科学难题奠定了基础。  相似文献   

19.
The dielectric relaxation behaviour of several amorphous low molecular weight carbohydrates and their 10% w/w water mixtures has been studied in the supercooled liquid and glassy regions in the frequency range 100 Hz to 100 kHz. The dry carbohydrates show a primary alpha-relaxation (activation energy 250-405 kJ mol(-1)) at temperatures above the calorimetric glass transition temperature, Tg, and, in most cases, a secondary beta-relaxation (activation energy 42-55 kJ mol(-1)) at sub-Tg temperatures. Whilst D-mannose showed a beta-relaxation similar in strength to D-glucose, its deoxy sugar, L-rhamnose showed a relatively weak beta-relaxation. This indicates that the hydroxymethyl group influences relaxation in carbohydrate glasses. Addition of water shifted the alpha-relaxations to lower temperatures and increased the strength of the beta-relaxations. In glucitol this resulted in a merging of the alpha- and beta-relaxations. The beta-relaxation increased in strength and decreased in temperature for the series of water mixtures: D-glucose, maltose, and maltotriose.  相似文献   

20.
Small deformation dynamic oscillation was used to develop an index of physical significance for the rationalisation of the mechanical properties of high co-solute/biopolymer systems during vitrification. The index is based on the combined framework of Williams–Landel–Ferry equation with the free volume theory and is called the ‘rheological glass transition temperature, Tg’ thus differentiating it from the empirical calorimetric Tg used in thermal analysis. The rheological Tg is located at the conjunction of two distinct molecular processes, namely: free-volume effects in the glass transition region and the predictions of the reaction-rate theory in the glassy state. The method of reduced variables was used to shift the mechanical spectra of shear moduli to composite curves. The temperature dependence of shift factors for all materials was identical provided that they were normalised at suitably different reference temperatures, which reflect iso-free-volume states. The treatment makes free volume the overriding parameter governing the mechanical relaxation times during vitrification of high co-solute/biopolymer systems regardless of physicochemical characteristics. We believe that potential applications resulting from this fundamental work are numerous for the food and pharmaceutical industries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号