首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During phagosome maturation, the late endosomal marker Rab7 and the lysosomal marker LAMP1 localize to the phagosomes. We investigated the mobility of Rab7 and LAMP1 on the phagosomes in macrophages by fluorescence recovery after photobleaching (FRAP) analysis. Rab7 was mobile between the phagosomal membrane and the cytosol in macrophages that ingested latex beads during phagosome maturation. The addition of interferon-γ (IFN-γ) restricted this mobility, suggesting that Rab7 is forced to bind to the phagosomal membrane by IFN-γ-mediated activation. Immobilization of LAMP1 on the phagosomes was observed irrespective of IFN-γ-activation. We further examined the mobility of Rab7 on the phagosomes containing Mycobacterium bovis BCG by FRAP analysis. The rate of fluorescence recovery for Rab7 on mycobacterial phagosomes was lower than that on the phagosomes containing latex beads, suggesting that mycobacteria impaired the mobility of Rab7 and arrested phagosome maturation.  相似文献   

2.
We investigated the intracellular route of Salmonella in macrophages to determine a plausible mechanism for their survival in phagocytes. Western blot analysis of isolated phagosomes using specific antibodies revealed that by 5 min after internalization dead Salmonella-containing phagosomes acquire transferrin receptors (a marker for early endosomes), whereas by 30 min the dead bacteria are found in vesicles carrying the late endosomal markers cation-dependent mannose 6-phosphate receptors, Rab7 and Rab9. In contrast, live Salmonella-containing phagosomes (LSP) retain a significant amount of Rab5 and transferrin receptor until 30 min, selectively deplete Rab7 and Rab9, and never acquire mannose 6-phosphate receptors even 90 min after internalization. Retention of Rab5 and Rab18 and selective depletion of Rab7 and Rab9 presumably enable the LSP to avoid transport to lysosomes through late endosomes. The presence of immature cathepsin D (48 kDa) and selective depletion of the vacuolar ATPase in LSP presumably contributes to the less acidic pH of LSP. In contrast, proteolytically processed cathepsin D (M(r) 17,000) was detected by 30 min on the dead Salmonella-containing phagosomes. Morphological analysis also revealed that after uptake by macrophages, the dead Salmonella are transported to lysosomes, whereas the live bacteria persist in compartments that avoid fusion with lysosomes, indicating that live Salmonella bypass the normal endocytic route targeted to lysosomes and mature in a specialized compartment.  相似文献   

3.
Mycobacterium tuberculosis (M. tb) is an intracellular pathogen that can replicate within infected macrophages. The ability of M. tb to arrest phagosome maturation is believed to facilitate its intracellular multiplication. Rab GTPases regulate membrane trafficking, but details of how Rab GTPases regulate phagosome maturation and how M. tb modulates their localization during inhibiting phagolysosome biogenesis remain elusive. We compared the localization of 42 distinct Rab GTPases to phagosomes containing either Staphylococcus aureus or M. tb. The phagosomes containing S. aureus were associated with 22 Rab GTPases, but only 5 of these showed similar localization kinetics as the phagosomes containing M. tb. The Rab GTPases responsible for phagosome maturation, phagosomal acidification and recruitment of cathepsin D were examined in macrophages expressing the dominant-negative form of each Rab GTPase. LysoTracker staining and immunofluorescence microscopy revealed that Rab7, Rab20 and Rab39 regulated phagosomal acidification and Rab7, Rab20, Rab22b, Rab32, Rab34, Rab38 and Rab43 controlled the recruitment of cathepsin D to the phagosome. These results suggest that phagosome maturation is achieved by a series of interactions between Rab GTPases and phagosomes and that differential recruitment of these Rab GTPases, except for Rab22b and Rab43, to M. tb-containing phagosomes is involved in arresting phagosome maturation and inhibiting phagolysosome biogenesis.  相似文献   

4.
Invasion plasmid antigen C (IpaC) is secreted via the type III secretion system (TTSS) of Shigella flexneri and serves as an essential effector molecule for epithelial cell invasion. The only homologue of IpaC identified thus far is Salmonella invasion protein C (SipC/SspC), which is essential for enterocyte invasion by Salmonella typhimurium. To explore the biochemical and functional relatedness of IpaC and SipC, recombinant derivatives of both proteins were purified so that their in vitro biochemical properties could be compared. Both proteins were found to: (i) enhance the entry of wild-type S. flexneri and S. typhimurium into cultured cells; (ii) interact with phospholipid membranes; and (iii) oligomerize in solution; however, IpaC appeared to be more efficient in carrying out several of the biochemical properties examined. Overall, the data indicate that purified IpaC and SipC are biochemically similar, although not identical with respect to their in vitro activities. To extend these observations, complementation analyses were conducted using S. flexneri SF621 and S. typhimurium SB220, neither of which is capable of invading epithelial cells because of non-polar null mutations in ipaC and sipC respectively. Interestingly, both ipaC and sipC restored invasiveness to SB220 whereas only ipaC restored invasiveness to SF621, suggesting that SipC lacks an activity possessed by IpaC. This functional difference is not at the level of secretion because IpaC and SipC are both secreted by SF621 and it does not appear to be because of SipC dependency on this native chaperone as coexpression of sipC and sicA in SF621 still failed to restore detectable invasiveness. Taken together, the data suggest that IpaC and SipC differ in either their ability to be translocated into host cells or in their function as effectors of host cell invasion. Because IpaB shares significant sequence homology with the YopB translocator of Yersinia species, the ability for IpaC and SipC to associate with this protein was explored as a potential indicator of translocation function. Both proteins were found to bind to purified IpaB with an apparent dissociation constant in the nanomolar range, suggesting that they may differ with respect to effector function. Interestingly, whereas SB220 expressing sipC behaved like wild-type Salmonella, in that it remained within its membrane-bound vacuole following entry into host cells, SB220 expressing ipaC was found in the cytoplasm of host cells. This observation indicates that IpaC and SipC are responsible for a major difference in the invasion strategies of Shigella and Salmonella, that is, they escape into the host cell cytoplasm. The implications of the role of each protein's biochemistry relative to its in vivo function is discussed.  相似文献   

5.
Mature, microbicidal phagosomes are rich in the lysosome-associated membrane proteins, LAMP-1 and LAMP-2, two highly glycosylated proteins presumed to form a protective barrier lining the phagosomal membrane. Pathogenic Neisseria secrete a protease that selectively cleaves LAMP-1, suggesting a critical role for LAMP proteins in the microbicidal competence of phagosomes. To determine the requirement for LAMP proteins in bacterial phagocytosis, we employed embryonic fibroblasts isolated from knockout mice lacking lamp-1, lamp-2 or both genes, as well as small interfering RNA (siRNA)-mediated knockdown of LAMP expression in a human epithelial cell line. Like wild-type cells, those lacking either LAMP-1 or LAMP-2 alone formed phagosomes that gradually acquired microbicidal activity and curtailed bacterial growth. In contrast, LAMP-1 and LAMP-2 double-deficient fibroblasts failed to kill engulfed Neisseria gonorrhoeae. In these cells, maturation was arrested prior to the acquisition of Rab7. As a result, the Rab7-interacting lysosomal protein (RILP, a Rab7 effector) was not recruited to the phagosomes, which were consequently unable to undergo dynein/dynactin-mediated centripetal displacement along microtubules and remained in a predominantly peripheral location. The inability of such phagosomes to migrate towards lysosomes likely contributed to their incomplete maturation and inability to eliminate bacteria. These findings suggest that neisserial degradation of LAMP-1 is not sufficient to affect its survival within the phagosome, and establish LAMP proteins as critical components in the process whereby phagosomes acquire microbicidal capabilities.  相似文献   

6.
The intracellular pathogen Legionella pneumophila avoids fusion with lysosomes and subverts membrane transport from the endoplasmic reticulum to create an organelle that supports bacterial replication. Transport of endoplasmic reticulum-derived vesicles to the Legionella-containing vacuole (LCV) requires bacterial proteins that are translocated into host cells by a type IV secretion apparatus called Dot/Icm. Recent observations have revealed recruitment of the host GTPase Rab1 to the LCV by a process requiring the Dot/Icm system. Here, a visual screen was used to identify L. pneumophila mutants with defects in Rab1 recruitment. One of the factors identified in this screen was DrrA, a new Dot/Icm substrate protein translocated into host cells. We show that DrrA is a potent and highly specific Rab1 guanine nucleotide-exchange factor (GEF). DrrA can disrupt Rab1-mediated secretory transport to the Golgi apparatus by competing with endogenous exchange factors to recruit and activate Rab1 on plasma membrane-derived organelles. These data establish that intracellular pathogens have the capacity to directly modulate the activation state of a specific member of the Rab family of GTPases and thus further our understanding of the mechanisms used by bacterial pathogens to manipulate host vesicular transport.  相似文献   

7.
The endo-lysosomal pathway is essential for intracellular transport and the degradation of extracellular cargo. The relationship between three populations of endo-lysosomal vesicles--Rab7-positive, LAMP1-positive, and both Rab7- and LAMP1-postive--was probed with fluorescence microscopy and single particle tracking. Of specific interest was determining if these vesicles were intermediate or terminal vesicles in the transport of extracellular cargo. We find that the major organelle in the endo-lysosomal pathway, both in terms of population and cargo transport, is positive for Rab7 and LAMP1. Dextran, a fluid phase cargo, shifts from localization within all three populations of vesicles at 30 minutes and 1 hour to primarily LAMP1- and Rab7/LAMP1-vesicles at longer times. This demonstrates that LAMP1- and Rab7/LAMP1-vesicles are terminal vesicles in the endo-lysosomal pathway. We tested two possible mechanisms for this distribution of cargo, delivery to mannose 6-phosphate receptor (M6PR)-negative vesicles and the fusion dynamics of individual vesicles. We find no correlation with M6PR but do find that Rab7-vesicles undergo significantly fewer fusion events than LAMP1- or Rab7/LAMP1-vesicles suggesting that the distribution of fluid phase cargo is driven by vesicle dynamics.  相似文献   

8.
Flotillin-1-enriched lipid raft domains accumulate on maturing phagosomes   总被引:1,自引:0,他引:1  
Flotillin-1 was recently shown to be enriched on detergent-resistant domains of the plasma membrane called lipid rafts. These rafts, enriched in sphingolipids and cholesterol, sequester certain proteins while excluding others. Lipid rafts have been implicated in numerous cellular processes including signal transduction, membrane trafficking, and molecular sorting. In this study, we demonstrate both morphologically and biochemically that lipid rafts are present on phagosomes. These structures are enriched in flotillin-1 and devoid of the main phagosomes membrane protein lysosomal-associated membrane protein (LAMP1). The flotillin-1 present on phagosomes does not originate from the plasma membrane during phagocytosis but accumulates gradually on maturing phagosomes. Treatment with bafilomycin A1, a compound that inhibits the proton pump ATPase and prevents the fusion of phagosomes with late endocytic organelles, prevents the acquisition of flotillin-1 by phagosomes, indicating that this protein might be recruited on phagosomes from endosomal organelles. A proteomic characterization of the lipid rafts of phagosomes indicates that actin, the alpha- and beta-subunits of heterotrimeric G proteins, as well as subunits of the proton pump V-ATPase are among the constituents of these domains. Remarkably, the intracellular parasite Leishmania donovani can actively inhibit the acquisition of flotillin-1-enriched lipid rafts by phagosomes and the maturation of these organelles. These results indicate that specialized functions required for phagolysosome biogenesis may occur at focal points on the phagosome membrane, and therefore represent a potential target of intracellular pathogens.  相似文献   

9.
Yersinia pestis is a facultative intracellular pathogen that causes the disease known as plague. During infection of macrophages Y. pestis actively evades the normal phagosomal maturation pathway to establish a replicative niche within the cell. However, the mechanisms used by Y. pestis to subvert killing by the macrophage are unknown. Host Rab GTPases are central mediators of vesicular trafficking and are commonly targeted by bacterial pathogens to alter phagosome maturation and killing by macrophages. Here we demonstrate for the first time that host Rab1b is required for Y. pestis to effectively evade killing by macrophages. We also show that Rab1b is specifically recruited to the Yersinia containing vacuole (YCV) and that Y. pestis is unable to subvert YCV acidification when Rab1b expression is knocked down in macrophages. Furthermore, Rab1b knockdown also altered the frequency of association between the YCV with the lysosomal marker Lamp1, suggesting that Rab1b recruitment to the YCV directly inhibits phagosome maturation. Finally, we show that Rab1b knockdown also impacts the pH of the Legionella pneumophila containing vacuole, another pathogen that recruits Rab1b to its vacuole. Together these data identify a novel role for Rab1b in the subversion of phagosome maturation by intracellular pathogens and suggest that recruitment of Rab1b to the pathogen containing vacuole may be a conserved mechanism to control vacuole pH.  相似文献   

10.
Mycobacterium tuberculosis is an intracellular bacterium that can survive within macrophages. Such survival is potentially associated with Coronin-1a (Coro1a). We investigated the mechanism by which Coro1a promotes the survival of M. tuberculosis in macrophages and found that autophagy was involved in the inhibition of mycobacterial survival in Coro1a knock-down (KD) macrophages. Fluorescence microscopy and immunoblot analyses revealed that LC3, a representative autophagic protein, was recruited to M. tuberculosis-containing phagosomes in Coro1a KD macrophages. Thin-section electron microscopy demonstrated that bacilli were surrounded by the multiple membrane structures in Coro1a KD macrophages. The proportion of LC3-positive mycobacterial phagosomes colocalized with p62/SQSTM1, ubiquitin or LAMP1 increased in Coro1a KD macrophages during infection. These results demonstrate the formation of autophagosomes around M. tuberculosis in Coro1a KD macrophages. Phosphorylation of p38 mitogen-activated protein kinase (MAPK) was induced in response to M. tuberculosis infection in Coro1a KD macrophages, suggesting that Coro1a blocks the activation of the p38 MAPK pathway involved in autophagosome formation. LC3 recruitment to M. tuberculosis-containing phagosomes was also observed in Coro1a KD alveolar or bone marrow-derived macrophages. These results suggest that Coro1a inhibits autophagosome formation in alveolar macrophages, thereby facilitating M. tuberculosis survival within the lung.  相似文献   

11.
Salmonella survive and replicate within mammalian cells by becoming secluded within specialized membrane-bound vacuoles inaccessible to the host defense mechanisms. Delayed acidification of the vacuole and its incomplete fusion with lysosomes have been implicated in intracellular Salmonella survival. Nramp1 confers to macrophages resistance to a variety of intracellular pathogens, including Salmonella, but its precise mode of action is not understood. We investigated whether Nramp1 affects the maturation and acidification of Salmonella-containing vacuoles (SCV). A mouse-derived macrophage line (RAW/Nramp1(-)) devoid of Nramp1 and therefore susceptible to infection was compared with isogenic clones stably transfected with Nramp1 (RAW/Nramp1(+)). Intravacuolar pH, measured in situ, was similar in Nramp1-expressing and -deficient cells. SCV acquired LAMP1 and fused with preloaded fluid-phase markers in both cell types. In contrast, although few vacuoles in RAW/Nramp1(-) acquired mannose 6-phosphate receptor, many more contained M6PR in RAW/Nramp1(+) cells. Shortly after closure, SCV in RAW/Nramp1(-) became inaccessible to extracellular markers, suggesting inability to fuse with newly formed endosomes. Expression of Nramp1 markedly increased the access to extracellularly added markers. We propose that Nramp1 counteracts the ability of Salmonella to become secluded in a compartment that limits access of bactericidal agents, allowing the normal degradative pathway of the macrophage to proceed.  相似文献   

12.
LAMP proteins are required for fusion of lysosomes with phagosomes   总被引:3,自引:0,他引:3       下载免费PDF全文
Lysosome-associated membrane proteins 1 and 2 (LAMP-1 and LAMP-2) are delivered to phagosomes during the maturation process. We used cells from LAMP-deficient mice to analyze the role of these proteins in phagosome maturation. Macrophages from LAMP-1- or LAMP-2-deficient mice displayed normal fusion of lysosomes with phagosomes. Because ablation of both the lamp-1 and lamp-2 genes yields an embryonic-lethal phenotype, we were unable to study macrophages from double knockouts. Instead, we reconstituted phagocytosis in murine embryonic fibroblasts (MEFs) by transfection of FcgammaIIA receptors. Phagosomes formed by FcgammaIIA-transfected MEFs obtained from LAMP-1- or LAMP-2- deficient mice acquired lysosomal markers. Remarkably, although FcgammaIIA-transfected MEFs from double-deficient mice ingested particles normally, phagosomal maturation was arrested. LAMP-1 and LAMP-2 double-deficient phagosomes acquired Rab5 and accumulated phosphatidylinositol 3-phosphate, but failed to recruit Rab7 and did not fuse with lysosomes. We attribute the deficiency to impaired organellar motility along microtubules. Time-lapse cinematography revealed that late endosomes/lysosomes as well as phagosomes lacking LAMP-1 and LAMP-2 had reduced ability to move toward the microtubule-organizing center, likely precluding their interaction with each other.  相似文献   

13.
Mycobacterium tuberculosis and Salmonella enterica cause very different diseases and are only distantly related. However, growth within macrophages is crucial for virulence in both of these intracellular pathogens. Here, we demonstrate that in spite of the phylogenetic distance, M. tuberculosis and Salmonella employ a parallel survival strategy for growth within macrophage phagosomes. Previous studies established that the Salmonella mgtC gene is required for growth within macrophages and for virulence in vivo. M. tuberculosis contains an open reading frame exhibiting 38% amino acid identity with the Salmonella MgtC protein. Upon inactivation of mgtC, the resulting M. tuberculosis mutant was attenuated for virulence in cultured human macrophages and impaired for growth in the lungs and spleens of mice. Replication of the mgtC mutant was inhibited in vitro by a combination of low magnesium and mildly acidic pH suggesting that the M. tuberculosis-containing phagosome has these characteristics. The similar phenotypes displayed by the mgtC mutants of M. tuberculosis and Salmonella suggest that the ability to acquire magnesium is essential for virulence in intracellular pathogens that proliferate within macrophage phagosomes.  相似文献   

14.
Many intracellular compartments, including MHC class II-containing lysosomes, melanosomes, and phagosomes, move along microtubules in a bidirectional manner and in a stop-and-go fashion due to the alternating activities of a plus-end directed kinesin motor and a minus-end directed dynein-dynactin motor. It is largely unclear how motor proteins are targeted specifically to different compartments. Rab GTPases recruit and/or activate several proteins involved in membrane fusion and vesicular transport. They associate with specific compartments after activation, which makes Rab GTPases ideal candidates for controlling motor protein binding to specific membranes. We and others [7] have identified a protein, called RILP (for Rab7-interacting lysosomal protein), that interacts with active Rab7 on late endosomes and lysosomes. Here we show that RILP prevents further cycling of Rab7. RILP expression induces the recruitment of functional dynein-dynactin motor complexes to Rab7-containing late endosomes and lysosomes. Consequently, these compartments are transported by these motors toward the minus end of microtubules, effectively inhibiting their transport toward the cell periphery. This signaling cascade may be responsible for timed and selective dynein motor recruitment onto late endosomes and lysosomes.  相似文献   

15.
Zhao  Shuqi  Xi  Dalin  Cai  Junwei  Chen  Wenting  Xiang  Jing  Peng  Na  Wang  Juan  Jiang  Yong  Mei  Zhuzhong  Liu  Jinghua 《中国科学:生命科学英文版》2020,63(3):401-409
Bacterial cell wall component-induced tolerance represents an important protective mechanism during microbial infection.Tolerance induced by the TLR2 agonist bacterial lipoprotein (BLP) has been shown to attenuate the inflammatory response,and simultaneously to augment antimicrobial function,thereby conferring its protection against microbial sepsis.However,the underlying mechanism by which BLP tolerance augments bactericidal activity has not been fully elucidated.Here,we reported that the induction of BLP tolerance in murine macrophages upregulated the expression of Rab20,a membrane trafficking regulator,at both the mRNA and protein levels upon bacterial infection.The knockdown of Rab20 with Rab20 specific siRNA(siRab20) did not affect the phagocytosis of Escherichia coli (E.coli),but substantially impaired the intracellular killing of the ingested E.coli in BLP-tolerized macrophages.Furthermore,Rab20 was associated with GFP-E.coli containing phagosomes,and BLP tolerization resulted in the enhanced maturation of GFP-E.coli-containing phagosomes associated with Rab20 and strong lysosomal acidification.The knockdown of Rab20 substantially diminished lysosome acidification and disturbed the fusion of GFP-E.coli containing phagosomes with lysosomes in BLP-tolerized macrophages.These results demonstrate that Rab20 plays a critical role in BLP tolerization-induced augmentation of bactericidal activity via promoting phagosome maturation and the fusion of bacteria containing phagosomes with lysosomes.  相似文献   

16.

Background

Microorganisms capable of surviving within macrophages are rare, but represent very successful pathogens. One of them is Mycobacterium tuberculosis (Mtb) whose resistance to early mechanisms of macrophage killing and failure of its phagosomes to fuse with lysosomes causes tuberculosis (TB) disease in humans. Thus, defining the mechanisms of phagosome maturation arrest and identifying mycobacterial factors responsible for it are key to rational design of novel drugs for the treatment of TB. Previous studies have shown that Mtb and the related vaccine strain, M. bovis bacille Calmette-Guérin (BCG), disrupt the normal function of host Rab5 and Rab7, two small GTPases that are instrumental in the control of phagosome fusion with early endosomes and late endosomes/lysosomes respectively.

Methodology/Principal Findings

Here we show that recombinant Mtb nucleoside diphosphate kinase (Ndk) exhibits GTPase activating protein (GAP) activity towards Rab5 and Rab7. Then, using a model of latex bead phagosomes, we demonstrated that Ndk inhibits phagosome maturation and fusion with lysosomes in murine RAW 264.7 macrophages. Maturation arrest of phagosomes containing Ndk-beads was associated with the inactivation of both Rab5 and Rab7 as evidenced by the lack of recruitment of their respective effectors EEA1 (early endosome antigen 1) and RILP (Rab7-interacting lysosomal protein). Consistent with these findings, macrophage infection with an Ndk knocked-down BCG strain resulted in increased fusion of its phagosome with lysosomes along with decreased survival of the mutant.

Conclusion

Our findings provide evidence in support of the hypothesis that mycobacterial Ndk is a putative virulence factor that inhibits phagosome maturation and promotes survival of mycobacteria within the macrophage.  相似文献   

17.
Phagosomal biogenesis is a fundamental biological process of particular significance for the function of phagocytic and antigen-presenting cells. The precise mechanisms governing maturation of phagosomes into phagolysosomes are not completely understood. Here, we applied the property of pathogenic mycobacteria to cause phagosome maturation arrest in infected macrophages as a tool to dissect critical steps in phagosomal biogenesis. We report the requirement for 3-phosphoinositides and acquisition of Rab5 effector early endosome autoantigen (EEA1) as essential molecular events necessary for phagosomal maturation. Unlike the model phagosomes containing latex beads, which transiently recruited EEA1, mycobacterial phagosomes excluded this regulator of vesicular trafficking that controls membrane tethering and fusion processes within the endosomal pathway and is recruited to endosomal membranes via binding to phosphatidylinositol 3-phosphate (PtdIns[3]P). Inhibitors of phosphatidylinositol 3'(OH)-kinase (PI-3K) activity diminished EEA1 recruitment to newly formed latex bead phagosomes and blocked phagosomal acquisition of late endocytic properties, indicating that generation of PtdIns(3)P plays a role in phagosomal maturation. Microinjection into macrophages of antibodies against EEA1 and the PI-3K hVPS34 reduced acquisition of late endocytic markers by latex bead phagosomes, demonstrating an essential role of these Rab5 effectors in phagosomal biogenesis. The mechanism of EEA1 exclusion from mycobacterial phagosomes was investigated using mycobacterial products. Coating of latex beads with the major mycobacterial cell envelope glycosylated phosphatidylinositol lipoarabinomannan isolated from the virulent Mycobacterium tuberculosis H37Rv, inhibited recruitment of EEA1 to latex bead phagosomes, and diminished their maturation. These findings define the generation of phosphatidylinositol 3-phosphate and EEA1 recruitment as: (a) important regulatory events in phagosomal maturation and (b) critical molecular targets affected by M. tuberculosis. This study also identifies mycobacterial phosphoinositides as products with specialized toxic properties, interfering with discrete trafficking stages in phagosomal maturation.  相似文献   

18.
Acid sphingomyelinase is required for efficient phago-lysosomal fusion   总被引:1,自引:0,他引:1  
The acid sphingomyelinase (ASMase) localizes to the lumen of endosomes, phagosomes and lysosomes as well as to the outer leaflet of the plasma membrane and hydrolyses sphingomyelin to ceramide and phosphorylcholine. Using the facultative intracellular bacterium Listeria monocytogenes , we show that maturation of phagosomes into phagolysosomes is severely impaired in macrophages genetically deficient for ASMase. Unlike in wild-type macrophages, phagosomes containing L. monocytogenes in ASMase−/− macrophages remained positive for the late phagosomal markers mannose-6-phosphate receptor (M6PR) and Rab7 for at least 2 h and, correspondingly, showed delayed acquisition of lysosomal markers like lysosome associated membrane protein 1 (Lamp1). The transfer of lysosomal fluid phase markers into phagosomes containing L. monocytogenes was severely impaired in ASMase−/− macrophages and decreased with increasing size of the cargo. Moreover, phagosomes containing L. monocytogenes from ASMase−/− cells acquired significantly less listeriocidal proteases cathepsin D, B and L. The results of this study suggest that ASMase is required for the proper fusion of late phagosomes with lysosomes, which is crucial for efficient transfer of lysosomal antibacterial hydrolases into phagosomes.  相似文献   

19.
Chlamydia spp. are obligate intracellular bacteria that replicate inside the host cell in a bacterial modified unique compartment called the inclusion. As other intracellular pathogens, chlamydiae exploit host membrane trafficking pathways to prevent lysosomal fusion and to acquire energy and nutrients essential for their survival and replication. The Conserved Oligomeric Golgi (COG) complex is a ubiquitously expressed membrane-associated protein complex that functions in a retrograde intra-Golgi trafficking through associations with coiled-coil tethers, SNAREs, Rabs and COPI proteins. Several COG complex-interacting proteins, including Rab1, Rab6, Rab14 and Syntaxin 6 are implicated in chlamydial development. In this study, we analysed the recruitment of the COG complex and GS15-positive COG complex-dependent vesicles to Chlamydia trachomatis inclusion and their participation in chlamydial growth. Immunofluorescent analysis revealed that both GFP-tagged and endogenous COG complex subunits associated with inclusions in a serovar-independent manner by 8 h post infection and were maintained throughout the entire developmental cycle. Golgi v-SNARE GS15 was associated with inclusions 24 h post infection, but was absent on the mid-cycle (8 h) inclusions, indicating that this Golgi SNARE is directed to inclusions after COG complex recruitment. Silencing of COG8 and GS15 by siRNA significantly decreased infectious yield of chlamydiae. Further, membranous structures likely derived from lysed bacteria were observed inside inclusions by electron microscopy in cells depleted of COG8 or GS15. Our results showed that C. trachomatis hijacks the COG complex to redirect the population of Golgi-derived retrograde vesicles to inclusions. These vesicles likely deliver nutrients that are required for bacterial development and replication.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号