首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
2.
3.
Oxidants such as monochloramine (NH(2)Cl) decrease epithelial barrier function by disrupting perijunctional actin and possibly affecting the distribution of tight junctional proteins. These effects can, in theory, disturb cell polarization and affect critical membrane proteins by compromising molecular fence function of the tight junctions. To examine these possibilities, we investigated the actions of NH(2)Cl on the distribution, function, and integrity of barrier-associated membrane, cytoskeletal, and adaptor proteins in human colonic Caco-2 epithelial monolayers. NH(2)Cl causes a time-dependent decrease in both detergent-insoluble and -soluble zonula occludens (ZO)-1 abundance, more rapidly in the former. Decreases in occludin levels in the detergent-insoluble fraction were observed soon after the fall of ZO-1 levels. The actin depolymerizer cytochalasin D resulted in a decreased transepithelial resistance (TER) more quickly than NH(2)Cl but caused a more modest and slower reduction in ZO-1 levels and in occludin redistribution. No changes in the cellular distribution of claudin-1, claudin-5, or ZO-2 were observed after NH(2)Cl. However, in subsequent studies, the immunofluorescent cellular staining pattern of all these proteins was altered by NH(2)Cl. The actin-stabilizing agent phalloidin did not prevent NH(2)Cl-induced decreases in TER or increases of apical to basolateral flux of the paracellular permeability marker mannitol. However, it partially blocked changes in ZO-1 and occludin distribution. Tight junctional fence function was also compromised by NH(2)Cl, observed as a redistribution of the alpha-subunit of basolateral Na(+)-K(+)-ATPase to the apical membrane, an effect not found with the apical membrane protein Na(+)/H(+) exchanger isoform 3. In conclusion, oxidants not only disrupt perijunctional actin but also cause redistribution of tight junctional proteins, resulting in compromised intestinal epithelial barrier and fence function. These effects are likely to contribute to the development of malabsorption and dysfunction associated with mucosal inflammation of the digestive tract.  相似文献   

4.
There are many morphologically distinct membrane structures with different functions at the surface of epithelial cells. Among these, adherens junctions (AJ) and tight junctions (TJ) are responsible for the mechanical linkage of epithelial cells and epithelial barrier function, respectively. In the process of new cell–cell adhesion formation between two epithelial cells, such as after wounding, AJ form first and then TJ form on the apical side of AJ. This process is very complicated because AJ formation triggers drastic changes in the organization of actin cytoskeleton, the activity of Rho family of small GTPases, and the lipid composition of the plasma membrane, all of which are required for subsequent TJ formation. In this review, the authors focus on the relationship between AJ and TJ as a representative example of specialization of plasma membrane regions and introduce recent findings on how AJ formation promotes the subsequent formation of TJ.  相似文献   

5.
ZO-1 binds numerous transmembrane and cytoplasmic proteins and is required for assembly of both adherens and tight junctions, but its role in defining barrier properties of an established tight junction is unknown. We depleted ZO-1 in MDCK cells using siRNA methods and observed specific defects in the barrier for large solutes, even though flux through the small claudin pores was unaffected. This permeability increase was accompanied by morphological alterations and reorganization of apical actin and myosin. The permeability defect, and to a lesser extent morphological changes, could be rescued by reexpression of either full-length ZO-1 or an N-terminal construct containing the PDZ, SH3, and GUK domains. ZO-2 knockdown did not replicate either the permeability or morphological phenotypes seen in the ZO-1 knockdown, suggesting that ZO-1 and -2 are not functionally redundant for these functions. Wild-type and knockdown MDCK cells had differing physiological and morphological responses to pharmacologic interventions targeting myosin activity. Use of the ROCK inhibitor Y27632 or myosin inhibitor blebbistatin increased TER in wild-type cells, whereas ZO-1 knockdown monolayers were either unaffected or changed in the opposite direction; paracellular flux and myosin localization were also differentially affected. These studies are the first direct evidence that ZO-1 limits solute permeability in established tight junctions, perhaps by forming a stabilizing link between the barrier and perijunctional actomyosin.  相似文献   

6.
To investigate the formation mechanism of tight junctions (TJs), we constructed three claudin-1 mutants which varied in their COOH-termini and expressed them in MDCK cells under the control of doxycycline. The differences between these constructs are that a putative ZO-1 binding sequence (KDYV) at the COOH-terminus of claudin-1 was deleted (DeltaCmyc) or present (1CLmyc and DeltaCmycYV), or that a myc-epitope was added at the COOH-terminus (1CLmyc and DeltaCmyc) or inserted just before the KDYV sequence (DeltaCmycYV). All three constructs caused the formation of aberrant TJ strands along the lateral plasma membranes. However, when their expression levels were reduced by adding 0.2 ng/ml doxycycline, they were located at apical TJs and colocalized with ZO-1, even in the KDYV-deleted construct. These results suggest that, although the addition of the myc-epitope at or near the COOH-terminus of claudin-1 interfered with the binding to ZO-1 and induced aberrant TJ strand formation, endogenous claudins which could bind to ZO-1 might recruit these deformed claudin-1s expressed at a low level to apical TJs. A calcium switch assay revealed that claudin-1 was transported to cadherin-based cell-cell contacts where ZO-1 had already accumulated, and was then concentrated at apical TJs together with ZO-1. Crosslinking between claudin-1 and the perijunctional actin ring through ZO-1 may be necessary for TJ strands to be localized or retained at apical TJs.  相似文献   

7.
Association with the actin cytoskeleton is critical for normal architecture and dynamics of epithelial tight junctions (TJs) and adherens junctions (AJs). Epithelial cells express β-cytoplasmic (β-CYA) and γ-cytoplasmic (γ-CYA) actins, which have different cellular localization and functions. This study elucidates the roles of cytoplasmic actins in regulating structure and remodeling of AJs and TJs in model intestinal epithelia. Immunofluorescence labeling and latrunculin B treatment reveal affiliation of dynamic β-CYA filaments with newly assembled and mature AJs, whereas an apical γ-CYA pool is composed of stable perijunctional bundles and rapidly turning-over nonjunctional filaments. The functional effects of cytoplasmic actins on epithelial junctions are examined by using isoform-specific small interfering RNAs and cell-permeable inhibitory peptides. These experiments demonstrate unique roles of β-CYA and γ-CYA in regulating the steady-state integrity of AJs and TJs, respectively. Furthermore, β-CYA is selectively involved in establishment of apicobasal cell polarity. Both actin isoforms are essential for normal barrier function of epithelial monolayers, rapid AJ/TJ reassembly, and formation of three-dimensional cysts. Cytoplasmic actin isoforms play unique roles in regulating structure and permeability of epithelial junctions.  相似文献   

8.
Cerebral microvessel endothelial cells that form the blood-brain barrier (BBB) have tight junctions (TJ) that are critical for maintaining brain homeostasis and low permeability. Both integral (claudin-1 and occludin) and membrane-associated zonula occluden-1 and -2 (ZO-1 and ZO-2) proteins combine to form these TJ complexes that are anchored to the cytoskeletal architecture (actin). Disruptions of the BBB have been attributed to hypoxic conditions that occur with ischemic stroke, pathologies of decreased perfusion, and high-altitude exposure. The effects of hypoxia and posthypoxic reoxygenation in cerebral microvasculature and corresponding cellular mechanisms involved in disrupting the BBB remain unclear. This study examined hypoxia and posthypoxic reoxygenation effects on paracellular permeability and changes in actin and TJ proteins using primary bovine brain microvessel endothelial cells (BBMEC). Hypoxia induced a 2.6-fold increase in [(14)C]sucrose, a marker of paracellular permeability. This effect was significantly reduced (~58%) with posthypoxic reoxygenation. After hypoxia and posthypoxic reoxygenation, actin expression was increased (1.4- and 2.3-fold, respectively). Whereas little change was observed in TJ protein expression immediately after hypoxia, a twofold increase in expression was seen with posthypoxic reoxygenation. Furthermore, immunofluorescence studies showed alterations in occludin, ZO-1, and ZO-2 protein localization during hypoxia and posthypoxic reoxygenation that correlate with the observed changes in BBMEC permeability. The results of this study show hypoxia-induced changes in paracellular permeability may be due to perturbation of TJ complexes and that posthypoxic reoxygenation reverses these effects.  相似文献   

9.
Intestinal epithelial tight junction (TJ) barrier dysfunction may lead to inflammation and mucosal injury. Glutamine (GLN) plays a role in maintenance of intestinal barrier function in various animal models and critically ill humans. Recent evidence from intestinal cell monolayers indicates that GLN maintains transepithelial resistance and decreases permeability. The mechanisms of these effects remain undefined. We hypothesized that GLN affects proteins involved in the intercellular junctional complex. GLN availability was controlled in Caco-2 monolayers by addition to the medium and treatment with methionine sulfoximine (MSO) to inhibit glutamine synthetase (GS). Expression of TJ proteins, claudin-1, occludin, and zonula occluden (ZO)-1 was measured by immunoblotting. Localization of TJ proteins was evaluated by immunofluorescence light microscopy. Structure of TJ was determined by transmission electron microscopy (TEM). Deprivation of GLN decreased claudin-1, occludin, and ZO-1 protein expression and caused a disappearance of perijunctional claudin-1 and a reduction of occludin but had no effect on ZO-1. TEM revealed that MSO-treated cells in the absence of GLN formed irregular junctional complexes between the apical lateral margins of adjoining cells. These findings indicate that TJ protein expression and cellular localization in Caco-2 cell monolayers rely on GLN. This mechanism may similarly relate to GLN-mediated modulation of intestinal barrier function in stressed animals and humans.  相似文献   

10.
11.
Epithelial adherens junctions (AJs) and tight junctions (TJs) are dynamic structures that readily undergo disintegration and reassembly. Remodeling of the AJs and TJs depends on the orchestrated dynamics of the plasma membrane with its underlying F-actin cytoskeleton, and the membrane–cytoskeleton interface may play a key role in junctional regulation. Spectrin–adducin–ankyrin complexes link membranes to the actin cytoskeleton where adducins mediate specrtrin–actin interactions. This study elucidates roles of adducins in the remodeling of epithelial junctions in human SK-CO15 colonic and HPAF-II pancreatic epithelial cell monolayers. These cells expressed the α and γ isoforms of adducin that positively regulated each others protein level and colocalized with E-cadherin and β-catenin at mature, internalized and newly assembled AJs. Small interfering RNA-mediated down-regulation of α- or γ-adducin expression significantly attenuated calcium-dependent AJ and TJ assembly and accelerated junctional disassembly triggered by activation of protein kinase C. Two mechanisms were found to mediate the impaired AJ and TJ assembly in adducin-depleted cells. One mechanism involved diminished expression and junctional recruitment of βII-spectrin, and the other mechanism involved the decrease in the amount of cellular F-actin and impaired assembly of perijunctional actin bundles. These findings suggest novel roles for adducins in stabilization of epithelial junctions and regulation of junctional remodeling.  相似文献   

12.
Adherens and tight junctions play key roles in assembling epithelia and maintaining barriers. In cell culture zonula occludens (ZO)-family proteins are important for assembly/maturation of both tight and adherens junctions (AJs). Genetic studies suggest that ZO proteins are important during normal development, but interpretation of mouse and fly studies is limited by genetic redundancy and/or a lack of null alleles. We generated null alleles of the single Drosophila ZO protein Polychaetoid (Pyd). Most embryos lacking Pyd die with striking defects in morphogenesis of embryonic epithelia including the epidermis, segmental grooves, and tracheal system. Pyd loss does not dramatically affect AJ protein localization or initial localization of actin and myosin during dorsal closure. However, Pyd loss does affect several cell behaviors that drive dorsal closure. The defects, which include segmental grooves that fail to retract, a disrupted leading edge actin cable, and reduced zippering as leading edges meet, closely resemble defects in canoe zygotic null mutants and in embryos lacking the actin regulator Enabled (Ena), suggesting that these proteins act together. Canoe (Cno) and Pyd are required for proper Ena localization during dorsal closure, and strong genetic interactions suggest that Cno, Pyd, and Ena act together in regulating or anchoring the actin cytoskeleton during dorsal closure.  相似文献   

13.
Previous studies showed that cyclopenthenone-containing products resulting from oxidation of a natural phospholipid, 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (OxPAPC) exhibit potent barrier-protective effects in the in vitro and in vivo models of lung endothelial cell (EC) barrier dysfunction, and these effects are associated with enhancement of peripheral actin cytoskeleton, cell-cell and cell-substrate contacts driven by activation of Rac and Cdc42 GTPases. Rap1 GTPase is another member of small GTPase family involved in control of cell-cell interactions; however, its involvement in EC barrier-protective effects by OxPAPC remains unknown. This study examined a role of Rap1 in regulation of OxPAPC-induced interactions in adherens junctions (AJ) and tight junctions (TJ) as a novel mechanism of EC barrier preservation in vitro and in vivo. Immunofluorescence analysis, subcellular fractionation, and co-immunoprecipitation assays indicate that OxPAPC promoted accumulation of AJ proteins: VE-cadherin, p120-catenin, and β-catenin; and TJ proteins: ZO-1, occludin, and JAM-A in the cell membrane, and induced novel cross-interactions between AJ and TJ protein complexes, that were dependent on OxPAPC-induced Rap1 activation. Inhibition of Rap1 function suppressed OxPAPC-mediated pulmonary EC barrier enhancement and AJ and TJ interactions in vitro, as well as inhibited protective effects of OxPAPC against ventilator-induced lung injury in vivo. These results show for the first time a role of Rap1-mediated association between adherens junctions and tight junction complexes in the OxPAPC-induced pulmonary vascular EC barrier protection.  相似文献   

14.
Integrating individual cell movements to create tissue-level shape change is essential to building an animal. We explored mechanisms of adherens junction (AJ):cytoskeleton linkage and roles of the linkage regulator Canoe/afadin during Drosophila germband extension (GBE), a convergent-extension process elongating the body axis. We found surprising parallels between GBE and a quite different morphogenetic movement, mesoderm apical constriction. Germband cells have an apical actomyosin network undergoing cyclical contractions. These coincide with a novel cell shape change--cell extension along the anterior-posterior (AP) axis. In Canoe's absence, GBE is disrupted. The apical actomyosin network detaches from AJs at AP cell borders, reducing coordination of actomyosin contractility and cell shape change. Normal GBE requires planar polarization of AJs and the cytoskeleton. Canoe loss subtly enhances AJ planar polarity and dramatically increases planar polarity of the apical polarity proteins Bazooka/Par3 and atypical protein kinase C. Changes in Bazooka localization parallel retraction of the actomyosin network. Globally reducing AJ function does not mimic Canoe loss, but many effects are replicated by global actin disruption. Strong dose-sensitive genetic interactions between canoe and bazooka are consistent with them affecting a common process. We propose a model in which an actomyosin network linked at AP AJs by Canoe and coupled to apical polarity proteins regulates convergent extension.  相似文献   

15.
Disassembly of the epithelial apical junctional complex (AJC), composed of the tight junction (TJ) and adherens junction (AJ), is important for normal tissue remodeling and pathogen-induced disruption of epithelial barriers. Using a calcium depletion model in T84 epithelial cells, we previously found that disassembly of the AJC results in endocytosis of AJ/TJ proteins. In the present study, we investigated the role of the actin cytoskeleton in disassembly and internalization of the AJC. Calcium depletion induced reorganization of apical F-actin into contractile rings. Internalized AJ/TJ proteins colocalized with these rings. Both depolymerization and stabilization of F-actin inhibited ring formation and disassembly of the AJC, suggesting a role for actin filament turnover. Actin reorganization was accompanied by activation (dephosphorylation) of cofilin-1 and its translocation to the F-actin rings. In addition, Arp3 and cortactin colocalized with these rings. F-actin reorganization and disassembly of the AJC were blocked by blebbistatin, an inhibitor of nonmuscle myosin II. Myosin IIA was expressed in T84 cells and colocalized with F-actin rings. We conclude that disassembly of the AJC in calcium-depleted cells is driven by reorganization of apical F-actin. Mechanisms of such reorganization involve cofilin-1-dependent depolymerization and Arp2/3-assisted repolymerization of actin filaments as well as myosin IIA-mediated contraction.  相似文献   

16.
We characterized the sequence and protein interactions of cingulin, an M(r) 140-160-kD phosphoprotein localized on the cytoplasmic surface of epithelial tight junctions (TJ). The derived amino acid sequence of a full-length Xenopus laevis cingulin cDNA shows globular head (residues 1-439) and tail (1,326-1,368) domains and a central alpha-helical rod domain (440-1,325). Sequence analysis, electron microscopy, and pull-down assays indicate that the cingulin rod is responsible for the formation of coiled-coil parallel dimers, which can further aggregate through intermolecular interactions. Pull-down assays from epithelial, insect cell, and reticulocyte lysates show that an NH(2)-terminal fragment of cingulin (1-378) interacts in vitro with ZO-1 (K(d) approximately 5 nM), ZO-2, ZO-3, myosin, and AF-6, but not with symplekin, and a COOH-terminal fragment (377-1,368) interacts with myosin and ZO-3. ZO-1 and ZO-2 immunoprecipitates contain cingulin, suggesting in vivo interactions. Full-length cingulin, but not NH(2)-terminal and COOH-terminal fragments, colocalizes with endogenous cingulin in transfected MDCK cells, indicating that sequences within both head and rod domains are required for TJ localization. We propose that cingulin is a functionally important component of TJ, linking the submembrane plaque domain of TJ to the actomyosin cytoskeleton.  相似文献   

17.
The DLC1 (for deleted in liver cancer 1) tumor suppressor gene encodes a RhoGAP protein that inactivates Rho GTPases, which are implicated in regulation of the cytoskeleton and adherens junctions (AJs), a cell-cell adhesion protein complex associated with the actin cytoskeleton. Malignant transformation and tumor progression to metastasis are often associated with changes in cytoskeletal organization and cell-cell adhesion. Here we have established in human cells that the AJ-associated protein α-catenin is a new binding partner of DLC1. Their binding was mediated by the N-terminal amino acids 340 to 435 of DLC1 and the N-terminal amino acids 117 to 161 of α-catenin. These proteins colocalized in the cytosol and in the plasma membrane, where together they associated with E-cadherin and β-catenin, constitutive AJ proteins. Binding of DLC1 to α-catenin led to their accumulation at the plasma membrane and required DLC1 GAP activity. Knocking down α-catenin in DLC1-positive cells diminished DLC1 localization at the membrane. The DLC1-α-catenin complex reduced the Rho GTP level at the plasma membrane, increased E-cadherin's mobility, affected actin organization, and stabilized AJs. This process eventually contributed to a robust oncosuppressive effect of DLC1 in metastatic prostate carcinoma cells. Together, these results unravel a new mechanism through which DLC1 exerts its strong oncosuppressive function by positively influencing AJ stability.  相似文献   

18.
Epithelial intercellular junctions regulate cell-cell contact and mucosal barrier function. Both tight junctions (TJs) and adherens junctions (AJs) are regulated in part by their affiliation with the F-actin cytoskeleton. The cytoskeleton in turn is influenced by Rho family small GTPases such as RhoA, Rac1, and Cdc42, all of which constitute eukaryotic targets for several pathogenic organisms. With a tetracycline-repressible system to achieve regulated expression in Madin-Darby canine kidney (MDCK) epithelial cells, we used dominant-negative (DN) and constitutively active (CA) forms of RhoA, Rac1, and Cdc42 as tools to evaluate the precise contribution of each GTPase to epithelial structure and barrier function. All mutant GTPases induced time-dependent disruptions in epithelial gate function and distinct morphological alterations in apical and basal F-actin pools. TJ proteins occludin, ZO-1, claudin-1, claudin-2, and junctional adhesion molecule (JAM)-1 were dramatically redistributed in the presence of CA RhoA or CA Cdc42, whereas only claudins-1 and -2 were redistributed in response to CA Rac1. DN Rac1 expression also induced selective redistribution of claudins-1 and -2 in addition to JAM-1, whereas DN Cdc42 influenced only claudin-2 and DN RhoA had no effect. AJ protein localization was unaffected by any mutant GTPase, but DN Rac1 induced a reduction in E-cadherin detergent solubility. All CA GTPases increased the detergent solubility of claudins-1 and -2, but CA RhoA alone reduced claudin-2 and ZO-1 partitioning to detergent-insoluble membrane rafts. We conclude that Rho family GTPases regulate epithelial intercellular junctions via distinct morphological and biochemical mechanisms and that perturbations in barrier function reflect any imbalance in active/resting GTPase levels rather than simply loss or gain of GTPase activity. epithelium; tight junctions; paracellular permeability; Madin-Darby canine kidney cells  相似文献   

19.
At the initial stage of cell-cell contact of epithelial cells, primordial spot-like junctions are formed at the tips of thin cellular protrusions radiating from adjacent cells, where E-cadherin and ZO-1 are precisely coconcentrated (Yonemura et al., 1995, J. Cell Sci. 108:127-142). In fully polarized epithelial cells, E-cadherin and ZO-1 are completely sorted into belt-like adherens junctions (AJ) and tight junctions (TJ), respectively. Here we examined the behavior of occludin, an integral membrane protein consisting of TJ, during the establishment of epithelial cell polarity. Using confocal immunofluorescence microscopy, we quantitatively compared the spatial relationship of occludin/ZO-1 with that of E-cadherin/ZO-1 during epithelial cellular polarization by replating or wounding cultured mouse epithelial cells (MTD1-A). At the initial stage of cell-cell contact, E-cadherin and ZO-1 appeared to be simultaneously recruited to the primordial form of spot-like junctions at the tips of cellular processes which showed no concentration of occludin. Then, as cellular polarization proceeded, occludin was gradually accumulated at the ZO-1-positive spot-like junctions to form belt-like TJ, and in a complementary manner E-cadherin was sorted out from the ZO-1-positive spot-like junctions to form belt-like AJ. The molecular mechanism of TJ/AJ formation during epithelial cellular polarization is discussed with special reference to the roles of ZO-1.  相似文献   

20.
Tight junctions (TJ) govern ion and solute diffusion through the paracellular space (gate function), and restrict mixing of membrane proteins and lipids between membrane domains (fence function) of polarized epithelial cells. We examined roles of the RhoA and Rac1 GTPases in regulating TJ structure and function in MDCK cells using the tetracycline repressible transactivator to regulate RhoAV14, RhoAN19, Rac1V12, and Rac1N17 expression. Both constitutively active and dominant negative RhoA or Rac1 perturbed TJ gate function (transepithelial electrical resistance, tracer diffusion) in a dose-dependent and reversible manner. Freeze-fracture EM and immunofluoresence microscopy revealed abnormal TJ strand morphology and protein (occludin, ZO-1) localization in RhoAV14 and Rac1V12 cells. However, TJ strand morphology and protein localization appeared normal in RhoAN19 and Rac1N17 cells. All mutant GTPases disrupted the fence function of the TJ (interdomain diffusion of a fluorescent lipid), but targeting and organization of a membrane protein in the apical membrane were unaffected. Expression levels and protein complexes of occludin and ZO-1 appeared normal in all mutant cells, although ZO-1 was more readily solubilized from RhoAV14-expressing cells with Triton X-100. These results show that RhoA and Rac1 regulate gate and fence functions of the TJ, and play a role in the spatial organization of TJ proteins at the apex of the lateral membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号