首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Sindbis, Venezuelan equine encephalitis and related alphaviruses, the polymerase is translated as a fusion with other non-structural proteins via readthrough of a UGA stop codon. Surprisingly, earlier work reported that the signal for efficient readthrough comprises a single cytidine residue 3'-adjacent to the UGA. However, analysis of variability at synonymous sites revealed strikingly enhanced conservation within the ~ 150 nt 3'-adjacent to the UGA, and RNA folding algorithms revealed the potential for a phylogenetically conserved stem-loop structure in the same region. Mutational analysis of the predicted structure demonstrated that the stem-loop increases readthrough by up to 10-fold. The same computational analysis indicated that similar RNA structures are likely to be relevant to readthrough in certain plant virus genera, notably Furovirus, Pomovirus, Tobravirus, Pecluvirus and Benyvirus, as well as the Drosophilia gene kelch. These results suggest that 3' RNA stimulatory structures feature in a much larger proportion of readthrough cases than previously anticipated, and provide a new criterion for assessing the large number of cellular readthrough candidates that are currently being revealed by comparative sequence analysis.  相似文献   

2.
In mammals, most of the selenium contained in the body is present as an unusual amino acid, selenocysteine (Sec), whose codon is UGA. Because the UGA codon is typically recognized as a translation stop signal, it is intriguing how a cell recognizes and distinguishes a UGA Sec codon from a UGA stop codon. For eukaryotic selenoprotein mRNAs, it has been proposed that a conserved stem-loop structure designated the Sec insertion sequence (SECIS) in the 3'-untranslated (3'-UTR) region is required for recognition of UGA as a Sec codon. Some proteins which bind to SECIS (SBP) have been reported. However, it is not clear how the SECIS element in the 3'-UTR can mediate Sec insertion far at the in-frame UGA Sec codons. The idea that there must be a signal near the UGA Sec codon is still considered. Therefore, we searched for a protein which binds to an RNA sequence surrounding the UGA Sec codon on human glutathione peroxidase (GPx) mRNA. We found a protein which strongly bound to the RNA fragment upstream of the UGA Sec codon. However, this protein did not bind to the RNA sequence downstream of the UGA codon. This protein also bound to the SECIS sequence in the 3'-UTR of human GPx, and this binding to SECIS was competed with the RNA fragment upstream of the UGA Sec codon. Comparison of the RNA fragment with the SECIS fragment identified the conserved regions, which appeared in the region upstream of the in-frame UGA Sec codon of Se-protein mRNAs. Thus, this study proposes a novel model to understand the mechanisms of Sec incorporation at the UGA Sec codon, especially the regions upstream of the UGA codon of mRNAs of mammalian selenoproteins. This model explains that the stem-loop structure covering the UGA codon is recognized by SBP and how the UGA Sec codon escapes from attack by eRF of the peptide releasing factor.  相似文献   

3.
Translation of mRNA into a polypeptide is terminated when the release factor eRF1 recognizes a UAA, UAG, or UGA stop codon in the ribosomal A site and stimulates nascent peptide release. However, stop codon readthrough can occur when a near-cognate tRNA outcompetes eRF1 in decoding the stop codon, resulting in the continuation of the elongation phase of protein synthesis. At the end of a conventional mRNA coding region, readthrough allows translation into the mRNA 3’-UTR. Previous studies with reporter systems have shown that the efficiency of termination or readthrough is modulated by cis-acting elements other than stop codon identity, including two nucleotides 5’ of the stop codon, six nucleotides 3’ of the stop codon in the ribosomal mRNA channel, and stem-loop structures in the mRNA 3’-UTR. It is unknown whether these elements are important at a genome-wide level and whether other mRNA features proximal to the stop codon significantly affect termination and readthrough efficiencies in vivo. Accordingly, we carried out ribosome profiling analyses of yeast cells expressing wild-type or temperature-sensitive eRF1 and developed bioinformatics strategies to calculate readthrough efficiency, and to identify mRNA and peptide features which influence that efficiency. We found that the stop codon (nt +1 to +3), the nucleotide after it (nt +4), the codon in the P site (nt -3 to -1), and 3’-UTR length are the most influential features in the control of readthrough efficiency, while nts +5 to +9 had milder effects. Additionally, we found low readthrough genes to have shorter 3’-UTRs compared to high readthrough genes in cells with thermally inactivated eRF1, while this trend was reversed in wild-type cells. Together, our results demonstrated the general roles of known regulatory elements in genome-wide regulation and identified several new mRNA or peptide features affecting the efficiency of translation termination and readthrough.  相似文献   

4.
In mammalian selenoprotein mRNAs, the recognition of UGA as selenocysteine requires selenocysteine insertion sequence (SECIS) elements that are contained in a stable stem-loop structure in the 3' untranslated region (UTR). In this study, we investigated the SECIS elements and cellular proteins required for selenocysteine insertion in rat phospholipid hydroperoxide glutathione peroxidase (PhGPx). We developed a translational readthrough assay for selenoprotein biosynthesis by using the gene for luciferase as a reporter. Insertion of a UGA or UAA codon into the coding region of luciferase abolished luciferase activity. However, activity was restored to the UGA mutant, but not to the UAA mutant, upon insertion of the PhGPx 3' UTR. The 3' UTR of rat glutathione peroxidase (GPx) also allowed translational readthrough, whereas the PhGPx and GPx antisense 3' UTRs did not. Deletion of two conserved SECIS elements in the PhGPx 3' UTR (AUGA in the 5' stem or AAAAC in the terminal loop) abolished readthrough activity. UV cross-linking studies identified a 120-kDa protein in rat testis that binds specifically to the sense strands of the PhGPx and GPx 3' UTRs. Direct cross-linking and competition experiments with deletion mutant RNAs demonstrated that binding of the 120-kDa protein requires the AUGA SECIS element but not AAAAC. Point mutations in the AUGA motif that abolished protein binding also prevented readthrough of the UGA codon. Our results suggest that the 120-kDa protein is a significant component of the mechanism of selenocysteine incorporation in mammalian cells.  相似文献   

5.
Translation of mRNA into a polypeptide chain is a highly accurate process. Many prokaryotic and eukaryotic viruses, however, use leaky termination of translation to optimize their coding capacity. Although growing evidence indicates the occurrence of ribosomal readthrough also in higher organisms, a biological function for the resulting extended proteins has been elucidated only in very few cases. Here, we report that in human cells programmed stop codon readthrough is used to generate peroxisomal isoforms of cytosolic enzymes. We could show for NAD-dependent lactate dehydrogenase B (LDHB) and NAD-dependent malate dehydrogenase 1 (MDH1) that translational readthrough results in C-terminally extended protein variants containing a peroxisomal targeting signal 1 (PTS1). Efficient readthrough occurs at a short sequence motif consisting of a UGA termination codon followed by the dinucleotide CU. Leaky termination at this stop codon context was observed in fungi and mammals. Comparative genome analysis allowed us to identify further readthrough-derived peroxisomal isoforms of metabolic enzymes in diverse model organisms. Overall, our study highlights that a defined stop codon context can trigger efficient ribosomal readthrough to generate dually targeted protein isoforms. We speculate that beyond peroxisomal targeting stop codon readthrough may have also other important biological functions, which remain to be elucidated.  相似文献   

6.
A Gramstat  D Prüfer    W Rohde 《Nucleic acids research》1994,22(19):3911-3917
The genes for the capsid protein CP and the nucleic acid-binding 12K protein (pr12) of potato virus M (PVM) constitute the 3' terminal gene cluster of the PVM RNA genome. Both proteins are presumably translated from a single subgenomic RNA. We have identified two translational strategies operating in pr12 gene expression. Internal initiation at the first and the second AUG codon of the pr12 coding sequence results in the synthesis of the 12K protein. In addition the protein is produced as a CP/12K transframe protein by ribosomal frameshifting. For these studies parts of the CP and pr12 coding sequences including the putative frameshift region were introduced into an internal position of the beta-glucuronidase gene. Mutational analyses in conjunction with in vitro translation experiments identified a homopolymeric string of four adenosine nucleotides which together with a 3' flanking UGA stop codon were required for efficient frameshifting. The signal AAAAUGA is the first frameshift signal with a shifty stop codon to be analyzed in the eukaryotic system. Substitution of the four consecutive adenosine nucleotides by UUUU increased the efficiency of frameshifting, while substitution by GGGG or CCCC dramatically reduced the synthesis of the transframe protein. Also, UAA and UAG could replace the opal stop codon without effect on the frameshifting event, but mutation of UGA to the sense codon UGG inhibited transframe protein formation. These findings suggest that the mechanism of ribosomal frameshifting at the PVM signal is different from the one described by the 'simultaneous slippage' model in that only the string of four adenosine nucleotides represents the slippery sequence involved in a -1 P-site slippage.  相似文献   

7.
8.
One of three mRNA codons — UAA, UAG and UGA — is used to signal to the elongating ribosome that translation should be terminated at this point. Upon the arrival of the stop codon at the ribosomal acceptor(A)-site, a protein release factor (RF) binds to the ribosome resulting in the peptidyl transferase centre of the ribosome switching to a hydrolytic function to remove the completed polypeptide chain from the peptidyl-tRNA bound at the adjacent ribosomal peptidyl(P)-site. In this review recent advances in our understanding of the mechanism of termination in the bacteriumEscherichia coli will be summarised, paying particular attention to the roles of 16S ribosomal RNA and the release factors RF-1, RF-2 and RF-3 in stop codon recognition. Our understanding of the translation termination process in eukaryotes is much more rudimentary with the identity of the single eukaryotic release factor (eRF) still remaining elusive. Finally, several examples of how the termination mechanism can be subverted either to expand the genetic code (e.g. selenocysteine insertion at UGA codons) or to regulate the expression of mammalian retroviral or plant viral genomes will be discussed.  相似文献   

9.
Coupled expression of the M1 and BM2 open-reading frames (ORFs) of influenza B from the dicistronic segment 7 mRNA occurs by a process of termination-dependent reinitiation. The AUG start codon of the BM2 ORF overlaps the stop codon of the upstream M1 ORF in the pentanucleotide UAAUG, and BM2 synthesis is dependent upon translation of the M1 ORF and termination at the stop codon. Here, we have investigated the mRNA sequence requirements for BM2 expression. Termination-reinitiation is dependent upon 45 nucleotide (nt) of RNA immediately upstream of the UAAUG pentanucleotide, which includes an essential stretch complementary to 18S rRNA helix 26. Thus, similar to the caliciviruses, base-pairing between mRNA and rRNA is likely to play a role in tethering the 40S subunit to the mRNA following termination at the M1 stop codon. Consistent with this, repositioning of the M1 stop codon more than 24 nt downstream from the BM2 start codon inhibited BM2 expression. RNA structure probing revealed that the RNA upstream of the UAAUG overlap is not highly structured, but upon encountering the M1 stop codon by the ribosome, a stem-loop may form immediately 5' of the ribosome, with the 18S rRNA complementary region in the apical loop and in close proximity to helix 26. Mutational analysis reveals that the normal requirements for start site selection in BM2 expression are suspended, with little effect of initiation codon context and efficient use of noncanonical initiation codons. This suggests that the full complement of initiation factors is not required for the reinitiation process.  相似文献   

10.
11.
Forty-two different sense codons, coding for all 20 amino acids, were placed at the ribosomal E site location, two codons upstream of a UGA or UAG codon. The influence of these variable codons on readthrough of the stop codons was measured in Escherichia coli. A 30-fold difference in readthrough of the UGA codon was observed. Readthrough is not related to any property of the upstream codon, its cognate tRNA or the nature of its codon-anticodon interaction. Instead, it is the amino acid corresponding to the second upstream codon, in particular the acidic/basic property of this amino acid, which seems to be a major determinant. This amino acid effect is influenced by the identity of the A site stop codon and the efficiency of its decoding tRNA, which suggests a correlation with ribosomal pausing. The magnitude of the amino acid effect is in some cases different when UGA is decoded by a wildtype form of tRNA(Trp) as compared with a suppressor form of the same tRNA. This indicates that the structure of the A site decoding tRNA is also a determinant for the amino acid effect.  相似文献   

12.
An UGA stop codon context which is inefficient because of the 3'-flanking context and the last two amino acids in the gene protein product has a negative effect on gene expression, as shown using a model protein A' gene. This is particularly true at low mRNA levels, corresponding to a high intracellular ribosome/mRNA ratio. The negative effect is smaller if this ratio is decreased, or if the distance between the initiation and termination signals is increased. The results suggest that an inefficient termination codon can cause ribosomal pausing and queuing along the upstream mRNA region, thus blocking translation initiation of short genes. This cis control effect is dependent on the stop codon context, including the C-terminal amino acids in the gene product, the translation initiation signal strength, the ribosome/mRNA ratio and the size of the mRNA coding region. A large proportion of poorly expressed natural Escherichia coli genes are small, and the weak termination codon UGA is under-represented in small, highly expressed E.coli genes as compared with the efficient stop codon UAA.  相似文献   

13.
A selenocysteine insertion sequence (SECIS) element in the 3'-untranslated region and an in-frame UGA codon are the requisite cis-acting elements for the incorporation of selenocysteine into selenoproteins. Equally important are the trans-acting factors SBP2, Sec-tRNA[Ser]Sec, and eEFSec. Multiple in-frame UGAs and two SECIS elements make the mRNA encoding selenoprotein P (Sel P) unique. To study the role of codon context in determining the efficiency of UGA readthrough at each of the 10 rat Sel P Sec codons, we individually cloned 27-nucleotide-long fragments representing each UGA codon context into a luciferase reporter construct harboring both Sel P SECIS elements. Significant differences, spanning an 8-fold range of UGA readthrough efficiency, were observed, but these differences were dramatically reduced in the presence of excess SBP2. Mutational analysis of the "fourth base" of contexts 1 and 5 revealed that only the latter followed the established rules for hierarchy of translation termination. In addition, mutations in either or both of the Sel P SECIS elements resulted in differential effects on UGA readthrough. Interestingly, even when both SECIS elements harbored a mutation of the core region required for Sec incorporation, context 5 retained a significantly higher level of readthrough than context 1. We also show that SBP2-dependent Sec incorporation is able to repress G418-induced UGA readthrough as well as eRF1-induced stimulation of termination. We conclude that a large codon context forms a cis-element that works together with Sec incorporation factors to determine readthrough efficiency.  相似文献   

14.
Stop codon readthrough is used extensively by viruses to expand their gene expression. Until recent discoveries in Drosophila, only a very limited number of readthrough cases in chromosomal genes had been reported. Analysis of conserved protein coding signatures that extend beyond annotated stop codons identified potential stop codon readthrough of four mammalian genes. Here we use a modified targeted bioinformatic approach to identify a further three mammalian readthrough candidates. All seven genes were tested experimentally using reporter constructs transfected into HEK-293T cells. Four displayed efficient stop codon readthrough, and these have UGA immediately followed by CUAG. Comparative genomic analysis revealed that in the four readthrough candidates containing UGA-CUAG, this motif is conserved not only in mammals but throughout vertebrates with the first six of the seven nucleotides being universally conserved. The importance of the CUAG motif was confirmed using a systematic mutagenesis approach. One gene, OPRL1, encoding an opiate receptor, displayed extremely efficient levels of readthrough (∼31%) in HEK-293T cells. Signals both 5′ and 3′ of the OPRL1 stop codon contribute to this high level of readthrough. The sequence UGA-CUA alone can support 1.5% readthrough, underlying its importance.  相似文献   

15.
16.
K Zerfass  H Beier 《The EMBO journal》1992,11(11):4167-4173
RNA-1 molecules from tobacco rattle virus (TRV) and pea early-browning virus (PEBV), two members of the tobravirus group, have recently been shown to contain internal, in-frame UGA termination codons which are suppressed in vitro. Our results suggest that a UGA stop codon also exists in RNA-1 of pepper ringspot virus (PRV), another tobravirus. UGA suppression may therefore be a universal feature of the expression of tobravirus genomes. We have isolated two natural suppressor tRNAs from uninfected tobacco plants on the basis of their ability to promote readthrough over the leaky UGA codon of TRV RNA-1 in a wheat germ extract depleted of endogenous mRNAs and tRNAs. Their amino acid acceptance and nucleotide sequences identify the two UGA-suppressor tRNAs as chloroplast (chl) and cytoplasmic (cyt) tryptophan-specific tRNAs with the anticodon CmCA. These are the first UGA suppressor tRNAs to be identified in plants. They have several interesting features. (i) Chl tRNA(Trp) suppresses the UGA stop codon more efficiently than cyt tRNA(Trp). (ii) Chl tRNA(Trp) contains an A24:U11 pair in the D-stem as does the mutated Escherichia coli UGA-suppressor tRNA(Trp) which is a more active suppressor than wild-type tRNA(Trp). (iii) The suppressor activity of chl tRNA(Trp) is dependent on the nucleotides surrounding the stop codon because it recognizes UGA in the TRV context but not the UGA in the beta-globin context.  相似文献   

17.
Genomes of mammalian type C retroviruses contain a UAG termination codon between the gag and pol coding regions. The pol region is expressed in the form of a gag-pol fusion protein following readthrough suppression of the UAG codon. We have used oligonucleotide-directed mutagenesis to change the UAG in Moloney murine leukemia virus to UAA or UGA. These alternate termination codons were also suppressed, both in infected cells and in reticulocyte lysates. Thus, the signal or context inducing suppression of UAG in wild-type Moloney murine leukemia virus is also effective with UAA and UGA. Further, mammalian cells and cell extracts contain tRNAs capable of translating UAA and UGA as amino acids. To our knowledge, this is the first example of natural suppression of UAA in higher eucaryotes.  相似文献   

18.
Biosynthesis of selenium-containing proteins requires insertion of the unusual amino acid selenocysteine by alternative translation of a UGA codon, which ordinarily serves as a stop codon. In eukaryotes, selenoprotein translation depends upon one or more selenocysteine insertion sequence (SECIS) elements located in the 3'-untranslated region of the mRNA, as well as several SECIS-binding proteins. Our laboratory has previously identified nuclease sensitive element binding protein 1 (NSEP1) as another SECIS-binding protein, but evidence has been presented both for and against its role in SECIS binding in vivo and in selenoprotein translation. Our current studies sought to resolve this controversy, first by investigating whether NSEP1 interacts closely with SECIS elements within intact cells. After reversible in vivo cross-linking and ribonucleoprotein immunoprecipitation, mRNAs encoding two glutathione peroxidase family members co-precipitated with NSEP1 in both human and rat cell lines. Co-immunoprecipitation of an epitope-tagged GPX1 construct depended upon an intact SECIS element in its 3'-untranslated region. To test the functional importance of this interaction on selenoprotein translation, we used small inhibitory RNAs to reduce the NSEP1 content of tissue culture cells and then examined the effect of that reduction on the activity of a SECIS-dependent luciferase reporter gene for which expression depends upon readthrough of a UGA codon. Co-transfection of small inhibitory RNAs directed against NSEP1 decreased its expression by approximately 50% and significantly reduced luciferase activity. These studies demonstrate that NSEP1 is an authentic SECIS binding protein that is structurally associated with the selenoprotein translation complex and functionally involved in the translation of selenoproteins in mammalian cells.  相似文献   

19.
Two competing events, termination and readthrough (or nonsense suppression), can occur when a stop codon reaches the A-site of a translating ribosome. Translation termination results in hydrolysis of the final peptidyl-tRNA bond and release of the completed nascent polypeptide. Alternatively, readthrough, in which the stop codon is erroneously decoded by a suppressor or near cognate transfer RNA (tRNA), results in translation past the stop codon and production of a protein with a C-terminal extension. The relative frequency of termination versus readthrough is determined by parameters such as the stop codon nucleotide context, the activities of termination factors and the abundance of suppressor tRNAs. Using a sensitive and versatile readthrough assay in conjunction with RNA interference technology, we assessed the effects of depleting eukaryotic releases factors 1 and 3 (eRF1 and eRF3) on the termination reaction in human cell lines. Consistent with the established role of eRF1 in triggering peptidyl-tRNA hydrolysis, we found that depletion of eRF1 enhances readthrough at all three stop codons in 293 cells and HeLa cells. The role of eRF3 in eukarytotic translation termination is less well understood as its overexpression has been shown to have anti-suppressor effects in yeast but not mammalian systems. We found that depletion of eRF3 has little or no effect on readthrough in 293 cells but does increase readthrough at all three stop codons in HeLa cells. These results support a direct role for eRF3 in translation termination in higher eukaryotes and also highlight the potential for differences in the abundance or activity of termination factors to modulate the balance of termination to readthrough reactions in a cell-type-specific manner.  相似文献   

20.
W J Craigen  C T Caskey 《Biochimie》1987,69(10):1031-1041
The termination of protein synthesis in Escherichia coli depends upon the soluble protein factors RF1 or RF2. RF1 catalyzes UAG and UAA dependent termination, while RF2 catalyzes UGA and UAA dependent termination. The proteins have been purified to homogeneity, their respective genes isolated, and their primary structures deduced from the DNA sequences. The sequences reveal considerable conserved homology, presumably reflecting functional similarities and a common ancestral origin. The RFs are encoded as single copy genes on the bacterial chromosome. RF2 exhibits autogenous regulation in an in vitro translation system. The mechanism of autoregulation appears to be an in-frame UGA stop codon that requires a 1+ frameshift for the continued synthesis of the protein. Frameshifting prior to the inframe stop codon occurs at a remarkably high frequency by an unknown mechanism. Future studies will be directed at understanding how RFs interact with the ribosomal components, and further defining the mechanism of RF2 frameshifting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号