首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecules can enter the nucleus by passive diffusion or active transport mechanisms, depending on their size. Small molecules up to size of 50-60 kDa or less than 10 nm in diameter can diffuse passively through the nuclear pore complex (NPC), while most proteins are transported by energy driven transport mechanisms. Active transport of viral proteins is mediated by nuclear localization signals (NLS), which were first identified in Simian Virus 40 large T antigen and had subsequently been identified in a large number of viral proteins. Usually they contain short stretches of lysine or arginine residues. These signals are recognized by the importin super-family (importin α and β) proteins that mediate the transport across the nuclear envelope through Ran-GTP. In contrast, only one class of the leucine-rich nuclear export signal (NES) on viral proteins is known at present. Chromosome region maintenance 1 (CRM1) protein mediates nuclear export of hundreds of viral proteins through the recognition of the leucine-rich NES.  相似文献   

2.
3.
Nucleocytoplasmic transport of proteins   总被引:4,自引:0,他引:4  
In eukaryotic cells, the movement of macromolecules between the nucleus and cytoplasm occurs through the nuclear pore complex (NPC)--a large protein complex spanning the nuclear envelope. The nuclear transport of proteins is usually mediated by a family of transport receptors known as karyopherins. Karyopherins bind to their cargoes via recognition of nuclear localization signal (NLS) for nuclear import or nuclear export signal (NES) for export to form a transport complex. Its transport through NPC is facilitated by transient interactions between the karyopherins and NPC components. The interactions of karyopherins with their cargoes are regulated by GTPase Ran. In the current review, we describe the NPC structure, NLS, and NES, as well as the model of classic Ran-dependent transport, with special emphasis on existing alternative mechanisms; we also propose a classification of the basic mechanisms of protein transport regulation.  相似文献   

4.
The vertebrate nuclear pore complex (NPC) harbors an approximately 10-nm diameter diffusion channel that is large enough to admit 50-kD polypeptides. We have analyzed the permeability properties of the Saccharomyces cerevisiae nuclear envelope (NE) using import (NLS) and export (NES) signal-containing green fluorescent protein (GFP) reporters. Compared with wild-type, passive export rates of a classical karyopherin/importin (Kap) Kap60p/Kap95p-targeted NLS-GFP reporter (cNLS-GFP) were significantly faster in nup188-Delta and nup170-Delta cells. Similar results were obtained using two other NLS-GFP reporters, containing either the Kap104p-targeted Nab2p NLS (rgNLS) or the Kap121p-targeted Pho4p NLS (pNLS). Elevated levels of Hsp70 stimulated cNLS-GFP import, but had no effect on the import of rgNLS-GFP. Thus, the role of Hsp70 in NLS-directed import may be NLS- or targeting pathway-specific. Equilibrium sieving limits for the diffusion channel were assessed in vivo using NES-GFP reporters of 36-126 kD and were found to be greater than wild-type in nup188-Delta and nup170-Delta cells. We propose that Nup170p and Nup188p are involved in establishing the functional resting diameter of the NPC's central transport channel.  相似文献   

5.
During nuclear import, cytosolic transport factors move through the nuclear pore complex (NPC) to the nuclear compartment. Kap95p is required during import for docking the nuclear localization signal-receptor and ligand to the NPC. Recycling of this factor back to the cytoplasm is necessary for continued rounds of import; however, the mechanism for Kap95p recycling is unknown. We have determined that recycling of Kap95p requires a nuclear export signal (NES). A region containing the NES in Kap95p was sufficient to mediate active nuclear export in a microinjection assay. Moreover, the NES was necessary for function. Mutation of the NES in Kap95p resulted in a temperaturesensitive import mutant, and immunofluorescence microscopy experiments showed that the mutated Kap95p was not recycled but instead localized in the nucleus and at the nuclear envelope. Srp1p, the yeast nuclear localization signal-receptor, also accumulated in the nuclei of the arrested kap95 mutant cells. Wild-type and NES-mutated Kap95p both bound Gsp1p (the yeast Ran/TC4 homologue), Srp1p, and the FXFG repeat region of the nucleoporin Nup1p. In contrast, the NES mutation abolished Kap95p interaction with the GLFG repeat regions from the nucleoporins Nup116p and Nup100p. In vivo interaction was demonstrated by isolation of Kap95p from yeast nuclear lysates in either protein A–tagged Nup116p or protein A–tagged Nup100p complexes. The protein A–tagged Nup116p complex also specifically contained Gle2p. These results support a model in which a step in the recycling of Kap95p is mediated by interaction of an NES with GLFG regions. Analysis of genetic interactions suggests Nup116p has a primary role in Kap95p recycling, with Nup100p compensating in the absence of Nup116p. This finding highlights an important role for a subfamily of GLFG nucleoporins in nuclear export processes.  相似文献   

6.
We established a straightforward experimental system to investigate directly the requirements for nucleocytoplasmic transport in live cells. For this purpose, substrates were created containing nuclear localization signals (NLS) or nuclear export signals (NES) linked to a chimeric protein composed of the glutathione S-transferase (GST) fused to the green fluorescent protein (GFP). The combination of GST/GFP-tagging allowed us to control protein expression in bacteria and to monitor protein purification during chromatography. Following microinjection into somatic cells, nuclear export/import of the highly fluorescent substrates could be observed directly by fluorescence microscopy. This system sets the stage to quantitate, in real time, the kinetics of nuclear import/export in living cells and to evaluate qualitative differences in various NLS/NES signals and pathways.  相似文献   

7.
The human immunodeficiency Rev protein shuttles between the nucleus and cytoplasm, while accumulating to high levels in the nucleus. Rev has a nuclear localization signal (NLS; AA 35-50) with an arginine-rich motif (ARM) that interacts with importin beta and a leucine-rich nuclear export signal (NES; AA 75-84) recognized by CRM1/exportin 1. Here we explore nuclear targeting activities of the transport signals of Rev. GFP tagging and quantitative fluorescence microscopy were used to study the localization behavior of Rev NLS/ARM mutants under conditions inhibiting the export of Rev. Rev mutant M5 was actively transported to the nucleus, despite its known failure to bind importin beta. Microinjection of transport substrates with Rev-NES peptides revealed that the Rev-NES has both nuclear import and export activities. Replacement of amino acid residues "PLER" (77-80) of the NES with alanines abolished bidirectional transport activity of the Rev-NES. These results indicate that both transport signals of Rev have nuclear import capabilities and that the Rev NLS has more than one nuclear targeting activity. This suggests that Rev is able to use various routes for nuclear entry rather than depending on a single pathway.  相似文献   

8.
Molecules can enter the nucleus by passive diffusion or active transport mechanisms, depending on their size. Small molecules up to size of 50-60 kDa or less than 10 nm in diameter can diffuse passively through the nuclear pore complex (NPC), while most proteins are transported by energy driven transport mechanisms. Active transport of viral proteins is mediated by nuclear localization signals (NLS), which were first identified in Simian Virus 40 large T antigen and had subsequently been identified in a lar...  相似文献   

9.
β-Catenin transduces the Wnt signal from the membrane to nucleus, and certain gene mutations trigger its nuclear accumulation leading to cell transformation and cancer. β-Catenin shuttles between the nucleus and cytoplasm independent of classical Ran/transport receptor pathways, and this movement was previously hypothesized to involve the central Armadillo (Arm) domain. Fluorescence recovery after photobleaching (FRAP) assays were used to delineate functional transport regions of the Arm domain in living cells. The strongest nuclear import/export activity was mapped to Arm repeats R10-12 using both in vivo FRAP and in vitro export assays. By comparison, Arm repeats R3-8 of β-catenin were highly active for nuclear import but displayed a comparatively weak export activity. We show for the first time using purified components that specific Arm sequences of β-catenin interact directly in vitro with the FG repeats of the nuclear pore complex (NPC) components Nup62, Nup98, and Nup153, indicating an independent ability of β-catenin to traverse the NPC. Moreover, a proteomics screen identified RanBP2/Nup358 as a binding partner of Arm R10-12, and β-catenin was confirmed to interact with endogenous and ectopic forms of Nup358. We further demonstrate that knock-down of endogenous Nup358 and Nup62 impeded the rate of nuclear import/export of β-catenin to a greater extent than that of importin-β. The Arm R10-12 sequence facilitated transport even when β-catenin was bound to the Arm-binding partner LEF-1, and its activity was stimulated by phosphorylation at Tyr-654. These findings provide functional evidence that the Arm domain contributes to regulated β-catenin transport through direct interaction with the NPC.  相似文献   

10.
11.
12.
Active transport of macromolecules between the nucleus and cytoplasm requires signals for import and export and their recognition by shuttling receptors. Each class of macromolecule is thought to have a distinct receptor that mediates the transport reaction. Assembly and disassembly reactions of receptor-substrate complexes are coordinated by Ran, a GTP-binding protein whose nucleotide state is regulated catalytically by effector proteins. Ran function is modulated in a noncatalytic fashion by NTF2, a protein that mediates nuclear import of Ran-GDP. Here we characterize a novel component of the Ran system that is 26% identical to NTF2, which based on its function we refer to as NTF2-related export protein 1 (NXT1). In contrast to NTF2, NXT1 preferentially binds Ran-GTP, and it colocalizes with the nuclear pore complex (NPC) in mammalian cells. These properties, together with the fact that NXT1 shuttles between the nucleus and the cytoplasm, suggest an active role in nuclear transport. Indeed, NXT1 stimulates nuclear protein export of the NES-containing protein PKI in vitro. The export function of NXT1 is blocked by the addition of leptomycin B, a compound that selectively inhibits the NES receptor Crm1. Thus, NXT1 regulates the Crm1-dependent export pathway through its direct interaction with Ran-GTP.  相似文献   

13.
The Ran binding protein RanBP1 is localized to the cytosol of interphase cells. A leucine-rich nuclear export signal (NES) near the C terminus of RanBP1 is essential to maintain this distribution. We now show that RanBP1 accumulates in nuclei of cells treated with the export inhibitor, leptomycin B, and collapse of the nucleocytoplasmic Ran:GTP gradient leads to equilibration of RanBP1 across the nuclear envelope. Low temperature prevents nuclear accumulation of RanBP1, suggesting that import does not occur via simple diffusion. Glutathione S-transferase (GST)-RanBP1(1-161), which lacks the NES, accumulates in the nucleus after cytoplasmic microinjection. In permeabilized cells, nuclear accumulation of GST-RanBP1(1-161) requires nuclear Ran:GTP but is not inhibited by a dominant interfering G19V mutant of Ran. Nuclear accumulation is enhanced by addition of exogenous karyopherins/importins or RCC1, both of which also enhance nuclear Ran accumulation. Import correlates with Ran concentration. Remarkably, an E37K mutant of RanBP1 does not import into the nuclei under any conditions tested despite the fact that it can form a ternary complex with Ran and importin beta. These data indicate that RanBP1 translocates through the pores by an active, nonclassical mechanism and requires Ran:GTP for nuclear accumulation. Shuttling of RanBP1 may function to clear nuclear pores of Ran:GTP, to prevent premature release of import cargo from transport receptors.  相似文献   

14.
The nuclear pore complex (NPC) mediates communication between the cytoplasm and nucleus in eukaryotic cells. Active transport of large polypeptides as well as passive diffusion of smaller (≈10 kD) macromolecules through the NPC can be inhibited by depletion of intracellular Ca2+ stores. However, the physiological relevance of this process for the regulation of nucleocytoplasmic trafficking is not yet clear. We expressed green fluorescent protein (GFP)–tagged glucocorticoid receptor (GR) and mitogen-activated protein (MAP) kinase–activated protein kinase 2 (MK2) to study the effect of Ca2+ store depletion on active transport in HM1 cells, a human embryonic kidney cell line stably transfected with the muscarinic M1 receptor. Dexamethasone-induced nuclear import of GR-GFP and anisomycin-induced nuclear export of GFP-MK2 was monitored by confocal microscopy. We found that store depletion by carbachol, thapsigargin or ionomycin had no effect on GR-GFP import, whereas pretreatment with 1,2-bis-(o-aminophenoxy) ethane-N,N,N′,N′-tetraacetic acid–acetoxymethyl ester (BAPTA-AM) attenuated import significantly. Export of GFP-MK2 was not influenced by any pretreatment. Moreover, carbachol stimulated GFP-MK2 translocation to the cytoplasm in the absence of anisomycin. These results demonstrate that Ca2+ store depletion in intact HM1 cells is not directly linked to the inhibition of active protein transport through the NPC. The inhibition of GR-GFP import but not GFP-MK2 export by BAPTA-AM presumably involves a depletion-independent mechanism that interferes with components of the nuclear import pathway.  相似文献   

15.
Nuclear localization of topoisomerase IIalpha and beta is important for normal cell function as well as being a determinant of tumour cell sensitivity to topoisomerase II-targeting chemotherapeutic agents. However, topoisomerase II is cytoplasmic under certain circumstances, indicating that it may undergo active nuclear export. We have examined the ability of Leu-rich potential nuclear export signal (NES) sequences present in human topoisomerase IIalpha and beta to direct the export of a green fluorescent protein-glutathione-S-transferase fusion protein following microinjection into HeLa cell nuclei. Of 12 sequences tested, only one potential NES sequence from the comparable location in each isoform (alphaNES(1018-1028) and betaNES(1034-1044)) was active. Mutation of hydrophobic residues in alphaNES(1018-1028) and betaNES(1034-1044) substantially reduced their nuclear export activity as did leptomycin B treatment of microinjected cells. Our results provide the first evidence of active nuclear export of topoisomerase II and suggest it is mediated by a CRM1-dependent pathway.  相似文献   

16.
Sphingosine kinase (SPHK) is an enzyme that phosphorylates sphingosine to form sphingosine 1-phosphate (S1P). Human SPHK1 (hSPHK1) was localized predominantly in the cytoplasm when transiently expressed in Cos7 cells. In this study, we have found two functional nuclear export signal (NES) sequences in the middle region of hSPHK1. Deletion and mutagenesis studies revealed that the cytoplasmic localization of SPHK1 depends on its nuclear export, directed by the NES. Furthermore, upon treatment with leptomycin B, a specific inhibitor of the nuclear export receptor CRM1, a marked nuclear accumulation of hSPHK1 was observed, indicating that hSPHK1 shuttles between the cytoplasm and the nucleus. Our results provide the first evidence of the active nuclear export of SPHK1 and suggest it is mediated by a CRM1-dependent pathway.  相似文献   

17.
18.
K Engel  A Kotlyarov    M Gaestel 《The EMBO journal》1998,17(12):3363-3371
To study the intracellular localization of MAPKAP kinase 2 (MK2), which carries a putative bipartite nuclear localization signal (NLS), we constructed a green fluorescent protein-MAPKAP kinase 2 fusion protein (GFP-MK2). In transfected cells, this protein is located predominantly in the nucleus; unexpectedly, upon stress, it rapidly translocates to the cytoplasm. This translocation can be blocked by the p38 MAP kinase inhibitor SB203580, indicating its regulation by phosphorylation. Molecular mimicry of MK2 phosphorylation at T317 in GFP-MK2 led to a mutant which is located almost exclusively in the cytoplasm of the cell, whereas the mutant T317A shows no stress-induced redistribution. Since leptomycin B, which inhibits the interaction of exportin 1 with the Rev-type leucine-rich nuclear export signal (NES), blocks stress-dependent translocation of GFP-MK2, it is supposed that phosphorylation-induced export of the protein causes the translocation. We have identified the region responsible for nuclear export in MK2 which is partially overlapping with and C-terminal to the autoinhibitory motif. This region contains a cluster of hydrophobic amino acids in the characteristic spacing of a leucine-rich Rev-type NES which is necessary to direct GFP-MK2 to the cytoplasm. However, unlike the Rev-type NES, this region alone is not sufficient for nuclear export. The data obtained indicate that MK2 contains a constitutively active NLS and a stress-regulated signal for nuclear export. Keywords: nuclear export/nuclear import/protein phosphorylation/signal transduction/stress response  相似文献   

19.
Transport of proteins into and out of the nucleus occurs through nuclear pore complexes (NPCs) and is mediated by the interaction of transport factors with nucleoporins at the NPC. Nuclear import of proteins containing classical nuclear localization signals (NLSs) is mediated by a heterodimeric protein complex, composed of karyopherin α and β1, that docks via β1 the NLS-protein to the NPC. The GTPase Ran; the RanGDP binding protein, p10; and the RanGTP binding protein, RanBP1 are involved in translocation of the docked NLS-protein into the nucleus. Recently, new distinct nuclear import and export pathways that are mediated by members of the karyopherin β family have been discovered. Karyopherin β2 mediates import of mRNA binding proteins, whereas karyopherin β3 and β4 mediate import of a set of ribosomal proteins. Two other β karyopherin family members, CRM1 and CAS, mediate export of proteins containing leucine-rich nuclear export signals (NES) and reexport of karyopherin α, respectively. This growing family contains new members that constitute potential transport factors for cargoes yet to be identified in the future. The common features of the members of karyopherin β family are the ability to bind RanGTP and the ability to interact directly with nucleoporins at the NPC. The challenge for the future will be to identify the distinct or, perhaps, overlapping cargo(es) for each member of the karyopherin β superfamily and to characterize the molecular mechanisms of translocation of karyopherins together with their cargoes through the NPC. J. Cell. Biochem. 70:231–239, 1998.© 1998 Wiley-Liss, Inc.  相似文献   

20.
Two members of the ‘AhR family’ (a family which is part of the bHLH-PAS superfamily), aryl hydrocarbon receptor (AhR) and AhR repressor (AhRR), originated from a common ancestor and form a regulatory circuit in xenobiotic signal transduction. AhRR is a nucleocytoplasmic shuttle protein, harboring both a nuclear localization signal (NLS) and a nuclear export signal (NES). Because NLS is dominant over NES, AhRR resides predominantly in the nuclear compartment. The NES of AhRR resembles that of AhR in sensitivity to leptomycin B, whereas the NLS of AhRR is monopartite and is, therefore, distinguished from the reported bipartite NLS of AhR. The NLS deletion mutant of GFP-AhRR was transported into the nuclear compartment in the presence of AhR nuclear translocator (Arnt), suggesting the assembly of an AhRR/Arnt heterodimer complex in the cytoplasmic compartment and Arnt-dependent nuclear translocation of this complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号